平移和旋转-要用的

合集下载

图形的平移与旋转知识点汇总

图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

数学教案实践:如何将平移和旋转应用到生活中的实际问题

数学教案实践:如何将平移和旋转应用到生活中的实际问题

数学教案实践:如何将平移和旋转应用到生活中的实际问题在日常生活中,我们经常会遇到各种需要平移和旋转的实际问题,例如搬家时需要移动重物,设计房屋时需要确定位置和角度等等。

因此,学习平移和旋转的数学知识可以帮助我们更好地解决这些实际问题。

本文将介绍如何将平移和旋转应用到生活中的实际问题中,并提供一些实际案例。

1.平移的应用1.1.搬家时需要移动重物在搬家时,我们经常需要移动大件重物,这时就需要运用到平移的知识。

我们可以用一个力量向一个物体施加,然后把它沿着一个直线平移,这样就可以把物体从一个地方移到另一个地方。

例如,我们可以使用手推车将重物平移到目的地,或者使用滑轮将物体拖动到目的地。

1.2.设计房屋时需要确定位置在设计房屋时,建筑师需要确定每个房间和建筑物的位置,这时就需要使用平移的知识。

建筑师可以使用测量工具来测量建筑物的长度和尺寸,然后使用平移来确定每个房间的位置。

例如,建筑师可以使用大理石台面来定位厨房的位置,然后使用平移将厨房的其他部分放置在正确的位置。

2.旋转的应用2.1.设计物品时需要确定角度在设计物品时,设计师需要确定物品的角度和旋转方向,这时就需要使用旋转的知识。

设计师可以使用测量工具来测量物品的尺寸和角度,然后使用旋转来确定物品的旋转方向。

例如,在设计汽车时,设计师需要确定车轮的旋转方向和角度,以确保车轮能够正常运转。

2.2.制作风景画时需要确定角度在制作风景画时,画家需要使用旋转的知识来确定画面的角度和方向。

画家可以使用转盘来确定画面的旋转方向和角度,以确保画面的构图合理和美观。

例如,在创作山水画时,画家需要考虑山和水的角度和位置,然后使用旋转来调整画面的构图。

平移和旋转是数学中的两个基本概念,在生活中也有着广泛的应用。

掌握这些知识可以帮助我们更好地解决实际问题,并创造出更美好的生活。

如今,随着数学教学的不断推进和优化,平移和旋转的应用也越来越广泛。

因此,我们应该重视数学教育,为我们的未来发展打下坚实的基础。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

图形的平移与旋转

图形的平移与旋转
将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为( C ) A.(3,4) B.(-4,3) C.(-3,4) D.(4,-3)
解 如图,OA=3,PA=4,
∵线段OP绕点O逆时针旋转90°到OP′位置,
∴OA 旋转到 x 轴负半轴 OA′ 的位置, ∠P′A′O =
∠PAO=90°,OA′=OA=3,P′A′=PA=4,
A.把△ABC向左平移4个单位,再向下平移2个单位
B.把△ABC向右平移4个单位,再向下平移2个单位
C.把△ABC向右平移4个单位,再向上平移2个单位
D.把△ABC向左平移4个单位,再向上平移2个单位
2.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边
形ABFD的周长为( C )
∵PB= 22+32= 13, 90π· 13 13 ∴点 B 运动的最短路径长= 180 = 2 π.
【变式4】 (2017· 盐城)如图,在边长为1的小正方形网格中,将△ABC 13 π 绕某点旋转到△A′B′C′的位置,则点B运动的最短路径长为_______. 2

答案
解题要领
旋转变换是几何证明题中一种很重要的解题技巧,在同一平
剖析
正确解答
分析与反思
错误答案展示 解:在AM、MN、NB中,MN是一个定值,因此AM+MN +NB的最小值就是求AM+NB的最小值.如图,连接AB交河岸边为M, 过M作MN垂直于河岸的另一边,则MN为最佳的造桥位置.
剖析
正确解答
分析与反思
剖析 虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸,由于 MN是一个定值,要求出AM+MN+NB最短,关键在于使AM+BN最 短,根据“两点之间线段最短”,为此,最有效的办法还是把它们移 到一起讨论,利用平行四边形的特征可以实现这一目的. 正确解答 解:如图,作BB′垂直于河岸GH,使BB′等于河宽,连接 AB′,与河岸EF交于点M,作MN⊥GH, 则MN∥BB′,MN=BB′, ∵MNBB′为平行四边形,∴NB=MB′. 根据“两点之间线段最短”可知,AB′最短,

图形的平移和旋转知识点

图形的平移和旋转知识点

图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

CAD平移和旋转命令的应用

CAD平移和旋转命令的应用CAD(计算机辅助设计)软件是一种广泛应用于建筑、机械、电气等设计领域的工具。

在使用CAD软件进行设计时,掌握平移和旋转命令的应用是非常重要的。

本文将介绍CAD平移和旋转命令的使用技巧及其应用。

一、平移命令的应用平移命令可以将选定的图形或对象沿着指定的方向进行移动。

使用平移命令可以快速方便地对设计进行调整和修改。

1. 打开CAD软件并加载需要进行平移操作的图形文件。

2. 在CAD软件的工具栏或菜单栏中找到“平移”命令按钮,并点击打开。

3. 在命令提示区中,CAD软件会提示您选择需要平移的对象或图形。

您可以使用鼠标点击选择,也可以使用“选择”命令来选择目标对象。

4. 当您选择完需要平移的对象后,CAD软件会提示您指定基点。

基点是平移操作的参考点,决定了对象移动的基准位置。

您可以使用鼠标点击选择基点,也可以手动输入坐标。

5. 在CAD软件的命令提示区中,您会被要求指定目标点。

目标点是平移操作的目标位置。

您可以使用鼠标点击选择目标点,也可以手动输入坐标。

6. 完成上述操作后,CAD软件会自动完成平移命令,您可以观察到对象的位置发生了改变。

二、旋转命令的应用旋转命令可以将选定的图形或对象按照指定的角度进行旋转。

掌握旋转命令的使用技巧可以方便地对设计进行调整和变换。

1. 打开CAD软件并加载需要进行旋转操作的图形文件。

2. 在CAD软件的工具栏或菜单栏中找到“旋转”命令按钮,并点击打开。

3. 在命令提示区中,CAD软件会提示您选择需要旋转的对象或图形。

您可以使用鼠标点击选择,也可以使用“选择”命令来选择目标对象。

4. 当您选择完需要旋转的对象后,CAD软件会提示您指定基点。

基点是旋转操作的参考点,决定了对象旋转的中心。

您可以使用鼠标点击选择基点,也可以手动输入坐标。

5. 在CAD软件的命令提示区中,您会被要求输入旋转角度。

输入正数表示逆时针旋转,输入负数表示顺时针旋转。

您可以手动输入角度,也可以使用鼠标拖动来设置旋转角度。

平移和旋转知识点总结

平移和旋转知识点总结一、平移的基本概念平移是指物体沿着某一方向按照一定距离进行移动的操作。

在平面上,平移是指将图形在水平方向和垂直方向上进行平移,将图形中的每一个点沿着相同的距离进行移动。

在三维空间中,平移是指将物体在三个坐标轴方向上进行移动,即沿着 x 轴、y 轴和 z 轴进行平移。

在进行平移变换时,可以使用矩阵的乘法来进行描述。

对于二维坐标系中的点 (x, y),如果要将其进行平移变换,可以使用以下的矩阵表示:```1 0 tx0 1 ty0 0 1```其中 tx 和 ty 分别表示在 x 方向和 y 方向上的平移距离。

对于三维空间中的点 (x, y, z),平移变换可以使用以下的矩阵表示:```1 0 0 tx0 1 0 ty0 0 1 tz0 0 0 1```其中 tx、ty 和 tz 分别表示在 x 轴、y 轴和 z 轴方向上的平移距离。

二、平移的性质1. 平移变换具有可加性,即两个或多个平移变换的效果可以合并为一个平移变换。

设 T1 和 T2 分别表示两个平移变换,对于任意的点 P,有 T2(T1(P)) = T3(P),其中 T3 为合并后的平移变换。

2. 平移变换的逆变换也是一个平移变换。

即如果对一个点进行一次平移变换 T,再对其进行逆变换 T^-1,则得到的结果还是一个平移变换,并且可以合并为一个恒等变换。

即 T^-1(T(P)) = P。

3. 平移变换不改变点之间的相互位置关系。

对于图形中的任意两点 A 和 B,它们之间的距离和方向在进行平移变换后不会发生改变,只是位置发生了移动。

三、平移的应用1. 平移变换在计算机图形学中有着广泛的应用。

在计算机图形学中,平移变换可以用来实现图形在屏幕上的移动、拖拽等操作。

在图形处理软件中,也可以使用平移变换来进行图形的平移操作。

2. 在工程和建筑设计中,平移变换可以用来描述物体在平面或空间中的移动和位置调整。

例如在建筑设计中,可以使用平移变换来进行建筑结构的调整和优化。

平移和旋转(教学课件)

3D模型变换
在计算机图形学中,平移和旋转是基本的3D模型变换操作。通过平移和旋转,可以对3D模型进行位 置调整、方向调整和角度调整,以实现各种视觉效果和动画效果。
游戏开发
在游戏开发中,平移和旋转操作被广泛应用于游戏场景、角色和物体的变换。通过平移和旋转,可以 实现游戏中的移动、视角转换、物体旋转等效果,提高游戏的互动性和视觉体验。
球类运动
各种球类运动如篮球、足球等,球体 本身做旋转运动。
平移和旋转在机械工程中的应用
要点一
机械加工
要点二
机器人操作
在机械加工中,刀具对工件进行平移和旋转运动,实现切 削加工。
机器人手臂通过平移和旋转运动,实现对物体的抓取和移 动。
06
平移和旋转的教学设计
教学目标与要求
理解平移和旋转的基本概念
物体同时进行顺时针和逆时针方向的 旋转。
复合平移
物体同时进行水平和垂直方向的平移 。
03
平移和旋转的应用
平移在几何图形变换中的应用
图形平移
平移操作可以将图形在平面内沿某一方向移动一定的距离, 而不改变其形状和大小。在几何图形变换中,平移可以用于 构造复杂的图形或对图形进行位置调整。
图形对称
通过平移,可以将图形进行对称变换,即在平面内将图形沿 垂直或水平方向移动一定的距离,得到与原图形关于某一点 或直线对称的新图形。
垂直平移
物体在垂直方向上移动, 不改变其方向和宽度。
斜向平移
物体在任意方向上移动, 不改变其方向和高度、宽 度。
旋转的表示方法
顺时针旋转
物体按照顺时针方向进行 旋转。
逆时针旋转
物体按照逆时针方向进行 旋转。
旋转角度
描述旋转的幅度,通常以 度数表示。

《平移和旋转》教案五篇(教案)2023-2024学年数学三年级下册北师大版

《平移和旋转》教案五篇(教案)20232024学年数学三年级下册北师大版作为一名经验丰富的教师,我深知教学的重要性在于引导学生理解并掌握知识。

下面是我根据《平移和旋转》这一课题,为北师大版三年级下册数学教案所设计的教学内容。

一、教学内容今天我们要学习的是北师大版三年级下册数学的第四章《平面几何》中的第二个主题《平移和旋转》。

我们将通过学习,了解平移和旋转的概念,掌握它们的基本性质和运用。

二、教学目标1. 了解平移和旋转的定义及其区别。

2. 能够识别和绘制简单的平移和旋转图形。

3. 理解平移和旋转对图形的影响,并能够运用平移和旋转解决实际问题。

三、教学难点与重点重点:理解平移和旋转的概念,掌握它们的性质和运用。

难点:理解平移和旋转对图形的影响,以及如何运用平移和旋转解决实际问题。

四、教具与学具准备教具:黑板、粉笔、PPT学具:练习本、彩笔五、教学过程1. 引入:通过展示一个滑滑梯的动画,让学生观察并描述滑滑梯的运动,引出平移的概念。

2. 讲解:用PPT展示平移的定义和性质,通过实例讲解平移对图形的影响。

3. 练习:让学生绘制一个简单的图形,并进行平移操作。

4. 讲解:引入旋转的概念,用PPT展示旋转的定义和性质,通过实例讲解旋转对图形的影响。

5. 练习:让学生绘制一个简单的图形,并进行旋转操作。

6. 应用:通过实际问题,让学生运用平移和旋转解决实际问题。

六、板书设计板书设计如下:平移:定义:图形在平面内沿某一方向移动一定的距离。

性质:移动后的图形与原图形形状和大小不变,位置改变。

旋转:定义:图形在平面内围绕某一点旋转一定的角度。

性质:旋转后的图形与原图形形状和大小不变,位置改变。

七、作业设计作业题目:1. 绘制一个正方形,并进行平移操作。

2. 绘制一个三角形,并进行旋转操作。

答案:1. 平移后的正方形位置改变,但形状和大小不变。

2. 旋转后的三角形位置改变,但形状和大小不变。

八、课后反思及拓展延伸课后反思:通过本节课的学习,学生是否能理解并掌握平移和旋转的概念,以及它们的性质和运用,是我课后需要反思的地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∟ ∟
一、请判断,下面分别是什么角?
∠ (锐角)

(直角 )
(钝角)
二、请找出这个图形中的直角、钝角和锐角。
钝角
锐角

直角
直角
平移与旋转
平移与旋转
你知道它们分 别是什么吗?它们 都是怎么运动的呢?
升降机沿 钢架垂直上下 移动。
缆车在缆绳上徐徐移动。
推拉门可以 左右推动。
平移旋转
物体或图形在直线方向上移动, 而本身没有发生方向上的改变,这 种现象就是平移。
2、旋转是物体围绕一个点或一个轴 做圆周运动。
说出下面现象那些是平移,哪些是旋转, 并用手势做出它的动作。
说一说: 小房子向哪个
方向移动了几格?



房子向(下)平移 {
了(5 )格

向( )平移了( )格
向( )平移了( )格
向( )平移了( )格
向( )平移了( )格
向( )平移了( )格
向( 上)平移了(5)格
向上平移了5格
向左平移了( 6 )格
向右平移了(7 )格
向下平移了( 5 )格
把向右平移4格后得到的 涂上颜色。
把向右平移4格后得到的 涂上颜色。
把向右平移4格后得到的 涂上颜色。
把向右平移4格后得到的 涂上颜色。
把向右平移4格后得到的 涂上颜色。
例如:前后、上下、左右运动都属于平移
在日常生活中,你还见过哪些平移现象?
升旗、传送带、电梯……
平移与旋转
你们知道这些玩具 是怎么玩的吗?
平移与旋转
物体围绕一个点或一个轴 做圆周运动(转圈),就是旋转。
平移与旋转
说一说,平移与旋转有什么区别?
1、平移是物体或图形在直线方向上移动, 而本身没有发生方向上的改变。
相关文档
最新文档