§6.2抽样分布定理-PPT课件
合集下载
概率论与数理统计(06)第6章 统计量及其抽样分布

一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
6_2正态总体的抽样分布

§6.2 正态总体的抽样分布
一 、 正态总体样本均值和方差的分布
定理1 若(X1,X2,…,Xn)是正态总体N(, σ2)的一个样本 , X和 S 2 分别是样本均值和样本方差,则:
1° X 与 S 2 相互独立;
2° X ~ N (, 2 )
n
3°
(n 1)S 2
2
~
2 (n 1)
1 n
4°
(n 1)S 2
2
~
2 (n 1)
1 n
2 i 1
Xi X 2 ~ 2 (n 1)
《概率统计》
返回
下页
结束
证明 (1)
X ~ N(, 2 ) , X ~ N(0,1) n / n
(2)
令 U X , / n
V
(n 1)S2
2 ,
则 U ~ N (0,1), V ~ 2(n 1).
,
(
1 n1
1 ) 2 )
n2
标准化后即得
( X Y ) (1 2 ) ~ N (0,1) 11
n1 n2
《概率统计》
返回
下页
结束
(2) 令 U ( X Y ) (1 2 ) ,
11
n1 n2
则由(1)知 U ~ N (0,1)
令V
(n1
1)S12
2
(n2
1)
S
2 2
2
,
由于
(n1
4/5
4/5
2 2(0.56) 0.5754
《概率统计》
返回
下页
结束
二、 单个正态总体的抽样分布 定理2 设(X1,X2,…,Xn)为正态总体N(μ,σ2)的一个样本, 则
一 、 正态总体样本均值和方差的分布
定理1 若(X1,X2,…,Xn)是正态总体N(, σ2)的一个样本 , X和 S 2 分别是样本均值和样本方差,则:
1° X 与 S 2 相互独立;
2° X ~ N (, 2 )
n
3°
(n 1)S 2
2
~
2 (n 1)
1 n
4°
(n 1)S 2
2
~
2 (n 1)
1 n
2 i 1
Xi X 2 ~ 2 (n 1)
《概率统计》
返回
下页
结束
证明 (1)
X ~ N(, 2 ) , X ~ N(0,1) n / n
(2)
令 U X , / n
V
(n 1)S2
2 ,
则 U ~ N (0,1), V ~ 2(n 1).
,
(
1 n1
1 ) 2 )
n2
标准化后即得
( X Y ) (1 2 ) ~ N (0,1) 11
n1 n2
《概率统计》
返回
下页
结束
(2) 令 U ( X Y ) (1 2 ) ,
11
n1 n2
则由(1)知 U ~ N (0,1)
令V
(n1
1)S12
2
(n2
1)
S
2 2
2
,
由于
(n1
4/5
4/5
2 2(0.56) 0.5754
《概率统计》
返回
下页
结束
二、 单个正态总体的抽样分布 定理2 设(X1,X2,…,Xn)为正态总体N(μ,σ2)的一个样本, 则
第6章-统计量及其抽样分布

2、计算出每个样本的统计量值; 3、将来自不同样本的不同统计量值分组排列,把
对应于每个数值的相对出现频数排成另一列, 由此,全部可能的样本统计量值形成了一个概 率分布,这个分布就是我们想要得到的抽样分 布。
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和1.0 1.5 4.0 16
2.5 m
n
(xi mx )2
s
2 x
i 1
M
M为样本数目
(1.0 2.5)2
(4.0 2.5)2
s2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n
从检查一部分得知全体。
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
抽样分布的形成过程 (sampling
distribution)
对应于每个数值的相对出现频数排成另一列, 由此,全部可能的样本统计量值形成了一个概 率分布,这个分布就是我们想要得到的抽样分 布。
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和1.0 1.5 4.0 16
2.5 m
n
(xi mx )2
s
2 x
i 1
M
M为样本数目
(1.0 2.5)2
(4.0 2.5)2
s2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n
从检查一部分得知全体。
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
抽样分布的形成过程 (sampling
distribution)
[课件]概率与统计 6.2 常用统计分布
![[课件]概率与统计 6.2 常用统计分布](https://img.taocdn.com/s3/m/1b84a2116c175f0e7cd1370c.png)
2 Y = ∑Xi , 1 i =1 n 1
2 Y = ∑ Xi 2 i =n +1 1
电子科技大学
n +n2 1
常用统计分布
则
Y +Y = ∑ 1 2
n +n2 1 i =1
2 Xi
相互独立, 且Xi , i=1,2,…,n1+n2 相互独立,Xi~N(0,1), 从而 Y1+Y2~ χ2 (n1+n2).
电子科技大学
常用统计分布
总体, 总体,个体 简单随机样本 正态总体的 2个抽样定理 个抽样定理
统计量
样本均值 样本方差 样本矩(样本相关系数) 样本矩(样本相关系数)
统计量的分布
χ2分布
t 分布 F分布 分布
分位数 结构定理
电子科技大学
常用统计分布
设随机变量X 服从正态分布N(0,1), 对给 例6.2.1 设随机变量 服从正态分布 定的α(0<α<1),数uα满足 , 定的 , P{X > uα} = α
电子科技大学
T~t(n) ~
又称学生氏分布--第一个研究者以 又称学生氏分布--第一个研究者以Student --第一个研究者
常用统计分布
定理6.2.2 设随机变量 Y 相互独立 X 设随机变量X, 相互独立, 定理 ~N(0,1),Y~ χ2(n),则 , ~ ,
X T= ~ t(n) Yn
即随机变量 T 服从自由度为 n 的 t 分布 服从自由度为 分布.
电子科技大学
常用统计分布
χ2分布的三条性质: 分布的三条性质 三条性质:
性质1. 数字特征 数字特征) 性质 (数字特征 设 χ2 ~ χ2(n) ,则有 E( χ2 ) = n , 证明 D( χ2 ) = 2n
2 Y = ∑ Xi 2 i =n +1 1
电子科技大学
n +n2 1
常用统计分布
则
Y +Y = ∑ 1 2
n +n2 1 i =1
2 Xi
相互独立, 且Xi , i=1,2,…,n1+n2 相互独立,Xi~N(0,1), 从而 Y1+Y2~ χ2 (n1+n2).
电子科技大学
常用统计分布
总体, 总体,个体 简单随机样本 正态总体的 2个抽样定理 个抽样定理
统计量
样本均值 样本方差 样本矩(样本相关系数) 样本矩(样本相关系数)
统计量的分布
χ2分布
t 分布 F分布 分布
分位数 结构定理
电子科技大学
常用统计分布
设随机变量X 服从正态分布N(0,1), 对给 例6.2.1 设随机变量 服从正态分布 定的α(0<α<1),数uα满足 , 定的 , P{X > uα} = α
电子科技大学
T~t(n) ~
又称学生氏分布--第一个研究者以 又称学生氏分布--第一个研究者以Student --第一个研究者
常用统计分布
定理6.2.2 设随机变量 Y 相互独立 X 设随机变量X, 相互独立, 定理 ~N(0,1),Y~ χ2(n),则 , ~ ,
X T= ~ t(n) Yn
即随机变量 T 服从自由度为 n 的 t 分布 服从自由度为 分布.
电子科技大学
常用统计分布
χ2分布的三条性质: 分布的三条性质 三条性质:
性质1. 数字特征 数字特征) 性质 (数字特征 设 χ2 ~ χ2(n) ,则有 E( χ2 ) = n , 证明 D( χ2 ) = 2n
抽样与抽样分布.pptx

参数估计也就是用样本统计量去估计总体的 参数。比如,用样本均值估计总体均值估计 总体均值,用样本方差估计总体方差,用样 本比例估计总体比例等。
用计来量估,计用总符体号参 数表的示统计量的名称,称为估
用来估计总体参数时计算出来的估计量的具 体数值,称为估计值
点估计与区间估计
参数估计的方法有点估计和区间估计 ◆(一)点估计
x 的分布形式与原有总体和样本容量n的大
小有关 .3 总体分布
.3 P ( x ) 抽样分布
.2
.2
.1
0 1
234
.1
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
= 2.5
σ2 =1.25
当总体服从正态分布N(μ, 2 )n时,样本均值的抽
样分布仍然是服从正态分布的,其均值仍为 μ , 方差为 ,即2 n样本均值的方差比原总体的方差 要小,而且样本容量n越大,方差越小。
点估计又称定值估计。它是用实际样本指标 数值代替总体指标数值,即总体平均数的点 估计值就是样本平均数,总体成数的点估计 值就是样本成数。这种估计不考虑是否有抽 样误差。
例如,对一批某种型号的电子元件10000只 进行耐用时间检查,随机抽取100只,测试的 平均耐用时间子元件的平均耐用时 间为1055小时,全部电子元件的合格率也是 91%。
.2
.1 0
1
234
现从总体中抽取n=2的简单随机样本,在重复抽样条件 下,共有42=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
用计来量估,计用总符体号参 数表的示统计量的名称,称为估
用来估计总体参数时计算出来的估计量的具 体数值,称为估计值
点估计与区间估计
参数估计的方法有点估计和区间估计 ◆(一)点估计
x 的分布形式与原有总体和样本容量n的大
小有关 .3 总体分布
.3 P ( x ) 抽样分布
.2
.2
.1
0 1
234
.1
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
= 2.5
σ2 =1.25
当总体服从正态分布N(μ, 2 )n时,样本均值的抽
样分布仍然是服从正态分布的,其均值仍为 μ , 方差为 ,即2 n样本均值的方差比原总体的方差 要小,而且样本容量n越大,方差越小。
点估计又称定值估计。它是用实际样本指标 数值代替总体指标数值,即总体平均数的点 估计值就是样本平均数,总体成数的点估计 值就是样本成数。这种估计不考虑是否有抽 样误差。
例如,对一批某种型号的电子元件10000只 进行耐用时间检查,随机抽取100只,测试的 平均耐用时间子元件的平均耐用时 间为1055小时,全部电子元件的合格率也是 91%。
.2
.1 0
1
234
现从总体中抽取n=2的简单随机样本,在重复抽样条件 下,共有42=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
第十六讲(数理统计中常用的分布、抽样分布定理)

2 1 2 2
3 n足够大 时, (n)近似服从• (n,2n) N
2
证
1设
2 (n) X i2
i 1
n
X i ~ N (0,1) i 1,2, , n
X 1 , X 2 , , X n
相互独立,
2 i
则 E ( X i ) 0, D( X i ) 1, E ( X ) 1
•2
P{ X z } 1
-z= z1-
例1 求
z0.05 , z0.025 , z0.005 , z0.95 .
解: P{ X 1.645} 0.05, P{ X 1.96} 0.05, P{ X 2.575} 0.005.
z0.05 1.645 , z0.025 1.96 , z0.005 2.575
0.4 0.3 0.2 0.1
n= 1 n=20
-3
-1
1
2
3
t 分布的图形(红色的是标准正态分布)
t分布的性质: 1. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形, 1 t 2 2 再 由函数的性质有 lim f (t ) 2 e . n
~ ( n2 ), U
2
与V 相互
U n1 F V n2
服从自由度为n1及 n2 的F分布,n1称为 第 一自由度,n2称为第二自由度,记作
F~F(n1,n2) . 由定义可见,
1 V n2 ~F(n2,n1) F U n1
若F~F(n1,n2), F的概率密度为
( n1 n2 ) n n1 n21 1 n n 2 n ( n1 ) 2 ( y ) 1 n1 y 2 ( y ) ( 1 ) ( 2 ) 2 2 2 0
3 n足够大 时, (n)近似服从• (n,2n) N
2
证
1设
2 (n) X i2
i 1
n
X i ~ N (0,1) i 1,2, , n
X 1 , X 2 , , X n
相互独立,
2 i
则 E ( X i ) 0, D( X i ) 1, E ( X ) 1
•2
P{ X z } 1
-z= z1-
例1 求
z0.05 , z0.025 , z0.005 , z0.95 .
解: P{ X 1.645} 0.05, P{ X 1.96} 0.05, P{ X 2.575} 0.005.
z0.05 1.645 , z0.025 1.96 , z0.005 2.575
0.4 0.3 0.2 0.1
n= 1 n=20
-3
-1
1
2
3
t 分布的图形(红色的是标准正态分布)
t分布的性质: 1. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形, 1 t 2 2 再 由函数的性质有 lim f (t ) 2 e . n
~ ( n2 ), U
2
与V 相互
U n1 F V n2
服从自由度为n1及 n2 的F分布,n1称为 第 一自由度,n2称为第二自由度,记作
F~F(n1,n2) . 由定义可见,
1 V n2 ~F(n2,n1) F U n1
若F~F(n1,n2), F的概率密度为
( n1 n2 ) n n1 n21 1 n n 2 n ( n1 ) 2 ( y ) 1 n1 y 2 ( y ) ( 1 ) ( 2 ) 2 2 2 0
抽样与抽样分布 ppt课件
可以按自然区域或行政区域进行分层,使抽样的组织 和实施都比较方便
分层抽样的样本分布在各个层内,从而使样本在总体 中的分布比较均匀
如果分层抽样做得好,便可以提高估计的精度
系统抽样
(systematic sampling)
1. 将总体中的所有单位(抽样单位)按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
样本容量。样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
对于某一既定的总体,由于抽样的方式方法不同,样本 容量也可大可小,因而,样本是不确定的、可变的。
抽样的目的一部分,而且样本的抽取又具有随机性, 因此,样本的内部构成与总体的内部构成总是具有一定 的差异,样本不能完全代表总体,抽样估计总是存在一 定的代表性误差。
1. 将总体中若干个单位合并为组(群),抽样 时直接抽取群,然后对中选群中的所有单 位全部实施调查
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
1. 由简单随机抽样形成的样本 2. 从总体N个单位中随机地抽取n个单位作为
样本,使得每一个容量为n样本都有相同 的机会(概率)被抽中 3. 参数估计和假设检验所依据的主要是简单 随机样本
简单随机抽样
(用Excel对分类数据随机抽样)
【例】某 班级共有 30 名 学 生 , 他们的名 单如右表。 用 Excel 抽 出一个由5 个学生构 成的随机 样本
分层抽样的样本分布在各个层内,从而使样本在总体 中的分布比较均匀
如果分层抽样做得好,便可以提高估计的精度
系统抽样
(systematic sampling)
1. 将总体中的所有单位(抽样单位)按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
样本容量。样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
对于某一既定的总体,由于抽样的方式方法不同,样本 容量也可大可小,因而,样本是不确定的、可变的。
抽样的目的一部分,而且样本的抽取又具有随机性, 因此,样本的内部构成与总体的内部构成总是具有一定 的差异,样本不能完全代表总体,抽样估计总是存在一 定的代表性误差。
1. 将总体中若干个单位合并为组(群),抽样 时直接抽取群,然后对中选群中的所有单 位全部实施调查
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
1. 由简单随机抽样形成的样本 2. 从总体N个单位中随机地抽取n个单位作为
样本,使得每一个容量为n样本都有相同 的机会(概率)被抽中 3. 参数估计和假设检验所依据的主要是简单 随机样本
简单随机抽样
(用Excel对分类数据随机抽样)
【例】某 班级共有 30 名 学 生 , 他们的名 单如右表。 用 Excel 抽 出一个由5 个学生构 成的随机 样本
3个重要分布和抽样定理
7
0.989
1.690 9.803 12.017 14.067 16.013 16.622 18.475 20.278 22.601 24.322
8
1.344
2.180 11.030 13.362 15.507 17.535 18.168 20.090 21.955 24.352 26.124
9
1.735
则称随机变量
t
X
Y /n
服 从 自 由 度 为n 的 t 分 布,
记为 t ~ t(n).
自由度为n的t分布概率密度
f (x)
n 2
n
1
n
1
x2 n
n1 2
2
x
其中 ( ) x 1e x dx 0
是Gamma函数
不同自由度下的t分布密度曲线
0
t 分布密度曲线特点
服从自由度为n 的²分布,记
2 ~ 2 (n)
独立的随机变量的个数n: 自由度
.
²n分布的概率密度
f (x) 2n
1 2 (n
n 1
x -
x2 e 2,
2)
x
0,
0,
x 0.
其中 ( ) x 1e x dx 0
是Gamma函数
²n分布密度曲线
不同自由度下的2 n分布
f(x)
设X服从N(0, 1) 设f(x)是N (0, 1)的密度函数
则
E
X4
x4
f
x
dx
x3
xf
xdx
x 3d
f x
x 3
f x
f
x
d
x3
3
x
§6.2抽样分布定理
查表完成 F0.02(57,8) 4.5285,62
F0.05(14,30)2.0374. 2
F分布的上 分位点具有
如下性:F 质 1(n1,n2)F(n 12,n1).
F0.95(12,9)
1 F0.05(9,
12)
1 2.796375
0.35760. 6
上页 下页 返回
二、抽样分布定理
当总体为正态分布时,我们简单地叙述几个抽样分布 定理.
S/ n
(3)X与S2独立 .
上页 下页 返回
2. 两个正态总体
定理3 X1, X2, , Xn1与Y1,Y2, ,Yn2 分别是具有相同
方差的两正态总N体 (1,2), N(2,2)的样本, 且这
两个样本互
相
独, 设立X
1 n1
n1
Xi
i1
,Y
1 n2
n2
Yi
i1
分别是
这两个样本的均,S值 12
当 n 充分 2(大 n )1 2 (z时 2 n , 1 )2
上页 下页 返回
2. t 分布 (1). 定义:
设X~N(0,1) , Y~ 2(n), 且相互独立,
则称随机变量 T X Yn
服从自由度为 n的 t 分布,也称为t 变量. 记为 T~t(n). t 分布又称学生氏(Student)分布. 经过计算 :t(得 n)分布的概率密度函数为
§6.2 抽样分布定理
一、常用分布 二、抽样分布定理
一、常见分布
统计量是样本的函数,它是一个随机变量,
统计量的分布称为抽样分布.
1. 2分布
(1). 定义 若 X ~ N ( 0 ,1 ),则 X 2 ~2 ( 1 ).
F0.05(14,30)2.0374. 2
F分布的上 分位点具有
如下性:F 质 1(n1,n2)F(n 12,n1).
F0.95(12,9)
1 F0.05(9,
12)
1 2.796375
0.35760. 6
上页 下页 返回
二、抽样分布定理
当总体为正态分布时,我们简单地叙述几个抽样分布 定理.
S/ n
(3)X与S2独立 .
上页 下页 返回
2. 两个正态总体
定理3 X1, X2, , Xn1与Y1,Y2, ,Yn2 分别是具有相同
方差的两正态总N体 (1,2), N(2,2)的样本, 且这
两个样本互
相
独, 设立X
1 n1
n1
Xi
i1
,Y
1 n2
n2
Yi
i1
分别是
这两个样本的均,S值 12
当 n 充分 2(大 n )1 2 (z时 2 n , 1 )2
上页 下页 返回
2. t 分布 (1). 定义:
设X~N(0,1) , Y~ 2(n), 且相互独立,
则称随机变量 T X Yn
服从自由度为 n的 t 分布,也称为t 变量. 记为 T~t(n). t 分布又称学生氏(Student)分布. 经过计算 :t(得 n)分布的概率密度函数为
§6.2 抽样分布定理
一、常用分布 二、抽样分布定理
一、常见分布
统计量是样本的函数,它是一个随机变量,
统计量的分布称为抽样分布.
1. 2分布
(1). 定义 若 X ~ N ( 0 ,1 ),则 X 2 ~2 ( 1 ).
16几个常用的抽样分布与抽样分布定理
0
(s
0),
(s 1)
s (s) ,(12)
3
3.性质:
1)期望与方差
提示: 2
X
2 1
X
2 n
若 2 ~ 2(n),则 E( 2)= n,D( 2)=2n
证明: 因为Xi~N(0, 1)
所以
E
(
X
2 i
)
D( Xi
) [E( Xi
)]2
1 0 1
D(
X
2 i
)
E
(
X
4 i
)
[
2 1
/
2 2
~
F (n1
1, n2
1)
29
定理2结论(3)
假定
2 1
2 2
2,
就有
t T ( X Y ) (1 2 ) ~ S 1 n1 1 n2
(n1 n2 2)
其中
S2
(n11)S12 (n2 1)S22 n1 n 2 2
即
( X Y ) (1 2 )
13
T 的概率密度为
(s) xs1e x d x (s 0),
0
f (t)
( n 1) 2
(1
t2
)
n1
2,
(12)
t
n ( n) n
2
14
2.基本性质:
(1) f ( t ) 关于 t = 0(纵轴)对称。
(2) f ( t ) 的极限为 N(0, 1) 的密度函数,即
lim f (t) (t)
标准化
定理1:设总体 X ~ N ( , 2 ) ,X1, X2,…, Xn 是
来自总体 X 的样本,
(s
0),
(s 1)
s (s) ,(12)
3
3.性质:
1)期望与方差
提示: 2
X
2 1
X
2 n
若 2 ~ 2(n),则 E( 2)= n,D( 2)=2n
证明: 因为Xi~N(0, 1)
所以
E
(
X
2 i
)
D( Xi
) [E( Xi
)]2
1 0 1
D(
X
2 i
)
E
(
X
4 i
)
[
2 1
/
2 2
~
F (n1
1, n2
1)
29
定理2结论(3)
假定
2 1
2 2
2,
就有
t T ( X Y ) (1 2 ) ~ S 1 n1 1 n2
(n1 n2 2)
其中
S2
(n11)S12 (n2 1)S22 n1 n 2 2
即
( X Y ) (1 2 )
13
T 的概率密度为
(s) xs1e x d x (s 0),
0
f (t)
( n 1) 2
(1
t2
)
n1
2,
(12)
t
n ( n) n
2
14
2.基本性质:
(1) f ( t ) 关于 t = 0(纵轴)对称。
(2) f ( t ) 的极限为 N(0, 1) 的密度函数,即
lim f (t) (t)
标准化
定理1:设总体 X ~ N ( , 2 ) ,X1, X2,…, Xn 是
来自总体 X 的样本,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2(n )分布的概率密度图形如 下 :
上页
下页
返回
(2). 2 分布的性质
) 性质1 (2 分布的可加性 2 2 2 2 2 2 设 ~ ( n ), ~ ( n ), 并且 , 独立 , 1 1 2 2 1 2 2 2 2 则 ~ ( n n ). 1 2 1 2
z0.025 1 .96 ,
z . 根据正态分布的对称性知 z 1 1 2 2 当 n 充分大时, ( n ) ( z 2 n 1 ) 2
上页
下页 返回
2. t 分布
(1). 定义:
设X~N(0,1) , Y~ 2(n), 且相互独立, 则称随机变量 T
1 1 1 2
上页
下页
返回
(2). F 分布的分位点
对于给定的 ,0 1 , 称满足条件 P { F F ( n ,n )} ( y ) d y 1 2 F ( n ,n) 的点 F ( n ,n ) 为 F ( n ,n ) 分布的上 分位点 . 1 2 1 2
2 2 设 X ~ ( n ), Y ~ ( n ) 且相互独立 , 则称随 1 2
X n1 F Y n2
也称为F变量
服从自由度为n1及 n2 的F-分布, n1称为第一自由度, n2称为第二自由度, 记作 F~F(n1, n2) .
1 Y n2 由定义可见, ~F(n2, n1) F X n1
对于不同的 , n , 可以通过查表求 分位点 .
查表完成
2 ( 8 ) 17 . 535 , 0 .025
P { ( n ) ( n )} ( y ) d y f
2 2
2
( n )
2 3 .247 , ( 10 ) 0 . 975
2 34 . 382 . 25 ) 0 .1(
问题:
2 怎样有 ( n ) 分布的上 分位点 ( 数 ) 表示分 .
上页
下页
返回
同理可由定义标准正态分布的上分位点(数)
设 X ~ N ( 0 , 1 ),
1 ( 0 , 1 ), k,使得 P { X k } e d x 2 π
X Y n
服从自由度为 n的 t 分布,也称为t 变量. 记为 T~t(n). t 分布又称学生氏(Student)分布.
n 1 n 1 2 t2 2 h ( t) 1 , t n n π n 2
可以通过查表求 得上 分位点的值 .
由分布的对称性知
t ( n ) t ( n ). 1
当 n 45 时 , t ( n ) z .
查表完成
t0.05(10 ) 1 .8125 ,
t0.025 (15 ) 2 . 1315 .
上页
下页 返回
3. F分布
(1). 定义:
( 此性质可以推广到多个随机变量的情形. )
2 2 则 ~ ( n n n ). i 1 2 m i 1 m
2 2 2 设 ~ ( n ), 并且 i 1 ,2 , ,m ) 相互独立 , i i i (
) 性质2 (2分布的数学期望和方差
2 2 2 2 若 ~ ( n ), 则 E ( ) n , D ( ) 2 n .
§6.2
抽样分布定理
一、常用分布 二、抽样分布定理
一、常见分布
统计量是样本的函数,它是一个随机变量, 统计量的分布称为抽样分布. 1 . 2分布 2 2 X ~ N ( 0 , 1 ) , 则 X ~ ( 1 ). (1). 定义 若 设 X , X , , X 是来自总体 N ( 0 , 1 ) 的样本 , 1 2 n
2 2 2 2 2 则称 X X X 服从自由 n 的 分 , 1 2 n 2 2 记为 ~ ( n ). 它是一个统计量.
自由度: 2 2 2 2 指 X X X 中右端包含独 个数 . 1 2 n
2 经过计算得 : ( n ) 分布的概率密度为 y 1 1 yn 2 2 e , y0 n n 2 f(y ) 2 ( ) 2 其他 . 上页 下页 返回 0
上页
下页 返回
经过计算得 :t(n )分布的概率密度函数为
t 分布的概率密度曲线如 图
显然图形是关于 t 0 对称的 .
当 n 充分大时, 其图形类似于标准正态变量概率密度 的图形.
上页
下页
返回
(2). t 分布的分位点
对于给定的 ,0 1 , 称满足条件 P { t t ( n )} h ( t) d t t( n ) 的点 t ( n )为 t ( n )分布的上 分位点 .
2 x 2 k
则称点 ( 数 ) k 为正态变量 X 分布的上 分位 ( 数 ). x 1 2 记为 z 即 P { X z } e d x , k 2 π 对于不同的 , 可以通过查表求得 分位点的 . 查表完成
2
z0.05 1 .645 ,
若n1=1时,F~F(1, n2)= t 2(n2).
上页
下页 返回
F分布的概率密度曲线如 图
n n 2 1 n n 1 n 2 1 2 2 n y 2 y0 , n n , (y) n n 2 1 y 1 n 2 2 2 1 n 2 , 其他 . 0
上页
下页
返回
(3). 上分位点(数)
2 设 X ~ ( n ),
f ( x)
Hale Waihona Puke ( 0 , 1 ), k,使得
2 P { ( n ) k } f(y ) d y k
2 则称点 ( 数 ) k 为 ( n ) 分布的上 分位点 ( 数 ).
2 记为 ( n ) , 即