2016-2017年北师大七年级上数学期末试卷含答案
(典型题)北师大版七年级上册数学期末测试卷及含答案(能力提高)

北师大版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)AB+BD>AD;(3)射线AC和射线AD是同一条射线;(4)三条直线两两相交时,一定有三个交点A.1个B.2个C.3个D.4个2、18的相反数是A.18B.C.D.3、下列各式一定正确的是( )A.(-a) =|-a |B.a =(-a)C.(-a) =|-a |D.-a =(-a)4、下列说法正确的是()A.若|a|=|b|,则a=bB.如果a 2=3a,那么a=3C.若|a|+b 2=0时,则a+b=0D.若|a|=﹣a,则a≤05、|﹣4|﹣(﹣3)的值是()A.﹣7B.﹣C.D.76、若以x为未知数的方程x-2a+4=0的根是负数,则 ( )A.(a-1)(a-2)<0B.(a-1)(a-2)>0C.(a-3)(a-4)<0D.(a-3)(a-4)>0 。
7、如图,在△ABC中,D,E分别是AB,BC的中点.若△DBE的周长是6,则△ABC的周长是( )A.8B.10C.12D.148、长城总长约为6700010米,用科学记数法表示是().(保留两个有效数字)A.6.7×10 5米B.6.7×10 6米C.6.7×10 7米D.6.7×10 8米9、下列各式成立的是()A.2x+3y=5xyB.a-(b+c)=a-b+cC.3a 2b+2ab 2=5a 3b 3D.-2xy+xy=-xy10、过圆上一点可以作圆的最长弦有()条.A.1B.2C.3D.无数条11、据凤凰网报道,来自安徽省财政厅的数据显示,年第一季度,全省财政总收入为亿元,较去年同期增长,亿元用科学记数法表示为().A. 元B. 元C. 元D.元12、若关于的方程与的解相同,则a的值为( )A. B. C. D.13、如果延长线段AB到C,使得BC=AB,那么AC∶AB等于()A.2∶1B.2∶3C.3∶1D.3∶214、下列各式中,正确的是()A. =-2 B. =9C. =±3D. =±315、下图中所示的几何体的主视图是()A. B. C. D.二、填空题(共10题,共计30分)16、如果实数a在数轴上的位置如图所示,那么=________.17、如图,已知A1,A2,A3,…An,…是x轴上的点,且OA1=A1A2=A2A3=…=An−1An…=1,分别过点A1,A2,A3,…An,…作x轴的垂线交反比例函数y= (x>0)的图象于点B 1,B2,B3,…,Bn,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△BnPnBn+1的面积为Sn.则S1+S2+S3+…+Sn=________ .18、单项式的系数为________,次数为________.19、近似数5.08×104精确到 ________位.20、在数-5,1,-3,5,-2中,任取三个相乘,其中最大的积是________21、如果,则x-y=________.22、在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是________.23、如图4所示,在△ABC中,AB=AC,D为BC的中点,则△ABD≌△ACD,根据是________ ,AD与BC的位置关系是________ .24、将123000000用科学记数法表示为________.25、 2020的绝对值是________.三、解答题(共5题,共计25分)26、已知a、b互为相反数,c、d互为倒数,m的绝对值是5,n是最大的负整数,求代数式2011(a+b)-4cd+2mn的值.27、学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.28、已知有理数a、b、c在数轴上的位置如图所示:化简:.29、画出数轴,在数轴上表示下列各数,并用“<”号把这些数连接起来.﹣(﹣4),,+(),0,+(+2.5),, -110 .30、已知a是的倒数,b比a的相反数小5,求b比a小多少?参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、D6、D7、C8、B9、D10、A11、A12、B13、D14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
(完整版)北师大版七年级上册数学期末试卷及答案完整版,推荐文档

数学试卷北师大版七年级上册一、精心选一选(每小题 3 分,共30 分)1.-1 的相反数是()2A.2 B.-2 C.12D.-122.下列式子正确的是()1 1A.-0.1>-0.01 B.—1>0 C.<D.-5<32 33.沿图1 中虚线旋转一周,能围成的几何体是下面几何体中的()A B C D 图14.多项式xy 2 +xy +1是()A.二次二项式B.二次三项式C.三次二项式D.三次三项式5.桌上放着一个茶壶,4 个同学从各自的方向观察,请指出图3 右边的四幅图,从左至右分别是由哪个同学看到的()A.①②③④图3 B.①③②④C.②④①③D.④③①②6.数a ,b 在数轴上的位置如图2 所示,则a +b 是()A.正数B.零C.负数D.都有可能图27.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000 千米用科学记数法表示为()A.0.15×109 千米B.1.5×108 千米C.15×107 千米D.1.5×107 千米8.图5 是某市一天的温度变化曲线图,通过该图可38知,下列说法错误的是()A.这天15 点时的温度最高B.这天 3 点时的温度最低C.这天最高温度与最低温度的差是13℃温度/℃3430262215 18 21 24OOO D. 这天 21 点时的温度是 30℃9. 一个正方体的侧面展开图如图 4 所示,用它围成的正方体只可能是()ABCD10. 已知 4 个矿泉水空瓶可以换矿泉水一瓶,现有 16 个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A .3 瓶B .4 瓶C .5 瓶D .6 瓶二、细心填一填(每空 3 分,共 30 分)11. - xy 2的系数是。
512. 某公园的成人单价是 10 元,儿童单价是 4 元。
某旅行团有 a 名成人和 b 名儿童;则旅行团的门票费用总和为 元。
最新北师大版七年级数学上册期末考试试卷

北师大版七年级数学上册期末试题一、选择题(本大题含10个小题,每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×1053.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz24.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.116.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<010.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个二、填空题:(每题3分,共12分)11.代数式的系数是.12.已知|x﹣2|+(y+3)2=0,则x﹣y=.13.(将一个圆分割成三个扇形,它们的圆心角的度数比为2:3:4,这三个圆心角中最小的圆心角度数为.14.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.三、解答题:(本题满分78分.)15.(8分)计算:(1)2﹣24×(﹣+)﹣3 (2)﹣16﹣(﹣2)2×﹣10×(17﹣24)202016.(8分)解方程:(1)5(x+8)=5﹣6(2x﹣7)(2)x ﹣=﹣117.(8分)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x,y满足x=2,y=﹣3.18.(8分)近两年成都市雾霾天气严重,为了了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了我市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)被抽取的总天数?并补全条形统计图;(2)求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计我市这一年(365天)达到“优”和“良”的总天数.19.(8分)如图,已知线段AB=18,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=2(1)若CE=6,求AC的长;(2)若C是AB的中点,求CD的长.20.(8分)由几个相同的边长为1的小立方块搭成的几何体从上面看到的视图如图,方格中的数字表示该位置的小立方块的个数.请在下面方格纸中分别画出这个几何体从正面看和从左面看到的视图.21.(10分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有★个,第六个图形共有★个;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2017个★?22.(10分)目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?23.(10分)以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?北师大版七年级数学上册期中试题一、选择题(每小题3分,共30分)1.下列各数中,是负数的是()A.﹣(﹣2)B.(﹣2)2C.|﹣2|D.﹣222.若一个圆的半径为r﹣8,那么该圆的面积S等于()A.πr2B.2πr2C.π(r﹣8)2D.2π(r﹣8)2 3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10104.有理数a2=(﹣5)2,则a等于()A.﹣5 B.5 C.25 D.±55.小明做了下列3道计算题:①=0×2=0,②﹣23﹣(﹣3)2=﹣8﹣9=﹣17,③6÷()=6÷﹣6÷=9﹣6=3.其中正确的有()A.0道B.1道C.2道D.3道6.下列说法中,错误的是()A.m是单项式也是整式B.单项式x2y的系数是,次数是2C.整式不一定是多项式D.多项式2x2﹣xy2+33是三次三项式7.一个物体的外形是长方体(如图(1)),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是()A.圆柱B.球C.圆锥D.圆柱或球8.从x<0,y>0,x+y<0,那么下列关系中正确的是()A.﹣x<﹣y<x<y B.﹣y<x<y<﹣x C.x<﹣y<﹣x<y D.x<﹣y<y<﹣x 9.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3 B.27 C.9 D.110.从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A.21 B.22 C.23 D.99二、填空题(每小题3分,共15分)11.我国现采用国际通用的公历纪年法,如果我们把公元2013年记作+2013年,那么,处于公元前500年的春秋战国时期可表示为年.12.若代数式ax+bx合并同类项后结果为零,则a,b满足的关系式是.13.如图是由几个大小相同的小立方块搭成的几何体,搭成这个几何体需要10个小立方块,在保持从正面看和从左面看到的形状图不变的情况下,最多可以拿掉个小立方块.14.a,b互为相反数,a≠0,n为自然数,则下列叙述正确的有个.①﹣a,﹣b互为相反数;②a n ,b n 互为相反数;③a2n,b2n互为相反数;④a2n+1,b2n+1互为相反数.15.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a,宽为b)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是.三、解答题(本大题共8个小题,满分75分)16.(13分)(1)计算:(﹣3)2×6÷[(﹣2)2+2×(﹣5)].(2)计算:[(﹣1)2019﹣()×18]÷|﹣22|.17.(7分)先化简,再求值:4(a2﹣ab)﹣5(b2﹣ab),其中a=﹣2,b=2.18.(7分)小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,再输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.如1*2=(1﹣2)﹣|2﹣1|=﹣1﹣1=﹣2.(1)计算﹣3*2的值;(2)当a,b在数轴上的位置如图所示时,求a*b的值.19.(8分)观察表中几何体,解答下列问题:(1)补全表中数据;(2)观察表中的结果,试用含有n的代数式表示n棱柱的顶点数:,棱数:,面数:;(3)观察表中的结果,你发现a,b,c之间存在什么关系?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b9 12 18面数c 5 6 720.(9分)聪聪在学习了“展开与折叠”这一课后,明白了很多几何体都能展开成平面图形,于是他在家用剪刀把一个长方体纸盒(如图(1))剪开了,可是他一不小心多剪了一条棱,把纸盒剪成了两部分,即图(2)中的①和②.根据你所学的知识,回答下列问题:(1)若这个长方体纸盒的长、宽、高分别是8cm,4cm,2cm,则该长方体纸盒的体积是多少?(2)聪聪一共剪开了条棱;(3)现在聪聪想将剪掉的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪掉的②粘贴到①中的什么位置?请你帮助他在①上补全一种情况.21.(10分)某商店出售一种商品,其原价为a元,有如下两种调价方案:方案一是先提价15%,在此基础上又降价15%;方案二是先降价15%,在此基础上又提价15%.(1)用这两种方案调价后的价格分别是多少?结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:方案一是先提价25%,在此基础上又降价25%;方案二是先降价25%,在此基础上又提价25%,这时结果怎样?(3)你能总结出什么结论呢?22.(10分)(1)若(a+2)2+|b﹣3|=0,求a b的值.(2)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,13+23+33+43+53=152,…①想一想,等式左边各项幂的底数与右边幂的底数有什么关系?②探索上面式子的规律,试用含n的式子表示第n个等式;③请你用可能出现的第六个等式进行验证.23.(11分)“十一”黄金周期间,某风景区在8天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日8日人数变化(单位:万人)1.2 ﹣0.2 0.8 ﹣0.4 0.6 0.2 ■﹣1.2(1)10月1日至5日这五天中每天到该风景区游客人数最多的是10月日;(2)若9月30日的游客人数为2万人,求10月1日至6日这六天的游客总人数是多少?(3)若9月30日的游客人数为2万人,10月8日到该风景区的游客人数与9月30日的游客人数持平,那么表中“■”表示的数应该是多少?。
北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试题一、单选题1.下列几何体,都是由平面围成的是()A .圆柱B .三棱柱C .圆锥D .球2.在-2,-3,0,2四个数中,最小的一个是()A .0B .2C .-2D .-33.已知下列方程:①x ﹣2=1x ;②0.4x =1;③1x=2x ﹣2;④x ﹣y =6;⑤x =0.其中一元一次方程有()A .2个B .3个C .4个D .5个4.数字4020000000用科学记数法表示为()A .840.210⨯B .94.0210⨯C .940.210⨯D .104.0210⨯5.某校在八年级成立了书法、绘画、体育、歌舞手工五个兴趣小组,每位学生只能参加一个兴趣小组,学生会对学生参加情况进行了问卷调查,并初步绘制了扇形统计图(如图),但图中未显示歌舞和手工部分,请你根据图中信息判断参加歌舞兴趣小组的学生人数一定不可能是()A .50人B .100人C .130人D .200人6.从n 边形的一个顶点出发,可以作5条对角线,则n 的值是()A .6B .8C .10D .127.若x =﹣1是关于x 的方程2x+m =1的解,则m+1的值是()A .4B .2C .﹣2D .﹣18.学校新建教学大楼拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A .(4a+2b)米B .(a 2+ab)米C .(6a+2b)米D .(5a+2b)米9.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几何体的小正方体最少有a 个,最多有b 个,b a-=()A .3B .4C .5D .610.如图所示的运算程序中,若开始输入的x 值为24,我们发现第1次输出的结果为12,第2次输出的结果为6,…,则第2021次输出的结果为()A .6B .3C .24D .12二、填空题11.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是__.12.-2022(1)-的相反数是____.13.若单项式23413m x y --与3x 5yn +1的和仍是单项式,则mn =.14.为了解某校九年级学生的体能情况,学校随机抽查了其中的40名学生,测试了一分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐的次数在20~30之间的频数是_____.15.在等式3526a a +=+的两边同时减去一个多项式可以得到等式1a =,则这个多项式是________.16.定义:对任意有理数a ,b 都有2a b a b =--∇,例如:221213=--=-∇,求()202713=∇∇__________.17.香蕉的单价为a 元/千克,苹果的单价为b 元/千克,买2千克苹果和3千克香蕉共需______元.18.如图是一个正方体的表面展开图,在原正方体中,与“陕”字所在面相对的面上的汉字是_____.三、解答题19.计算:33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭.20.在如图所示的六个方格中,分别填入-2;4;12-;8;14;18,使围成正方体后相对两面的两个数互为倒数.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a=-,13b =.22.为传承中华优秀传统文化,提升学生文学素养,某中学开展“假期读一本好书”的活动.某校为了了解学生活动开展的情况,从全校学生中随机抽取了部分学生调查他们的读书种类情况,并进行统计分析,绘制了不完整的统计图表.种类频数占抽取总人数的百分比A.科普类a32%B.文学类20bC.艺术类8cD.其他类612%请根据以上信息解答下列问题:(1)求统计表中a,b,c的值;(2)补全条形统计图;(3)若绘制“读书种类情况扇形统计图”,求“文学类”所对应扇形的圆心角度数.23.已知有理数ab<0,a+b>0,且|a|=2,|b|=3.(1)求a、b的值;(2)求223a b-÷的值.24.某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.(1)求甲、乙两种商品的每件进价分别是多少元?(2)该商场从厂家购进了甲、乙两种商品共50件,所用资金恰好为4400元.在销售时,甲种商品的每件售价为100元,要使得这50件商品卖出后获利20%,乙商品的每件售价为多少元?25.如图,在数轴上有A、B两点,点C是线段AB的中点,AB=12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=52 PC26.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM 平分∠BOC时,求∠BON的度数;(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系,并说明理由.27.某校为了了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是;(3)若该校七年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?参考答案1.B2.D3.A4.B5.D6.B7.A8.D9.C10.B11.圆柱.【详解】长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.故答案为:圆柱.12.1【分析】先算乘方得1-,然后根据相反数的定义求解即可.【详解】解:()202211--=-,∴1-的相反数为1,故答案为:1.【点睛】本题考查了乘方与相反数.解题的关键在于正确的运算.13.12【分析】根据整式的加减法则可知单项式23413m x y --与513n x y +是同类项,故可得到235m -=,14n +=,求出m ,n ,故可求解.【详解】由“单项式23413m x y --与513n x y +的和仍是单项式”,可得235m -=,14n +=,即4m =,3n =,则12mn =.故答案为:12.【点睛】此题主要考查整式的加减,解题的关键是熟知同类项的运算特点.同类项是字母相同且相同字母的指数也相同.14.28【分析】首先计算出20~30次的频数,然后根据频率公式:频率=频数÷总数,即可求解.【详解】解:∵被调查的总人数40,由频率分布直方图可以得出,∴仰卧起坐次数在20~30次的学生人数为:12+16=28,∴仰卧起坐次数在20~30次之间的频数28.故答案为:28.【点睛】本题考查了频数与频率,关键是掌握频率公式:频率=频数÷总数.15.25a +【分析】根据3526a a +=+,可得()()25251a a a ++=++,则等式两边同时减去25a +得:1a =,由此即可得到答案.【详解】解:∵3526a a +=+,∴()()25251a a a ++=++,∴等式两边同时减去25a +得:1a =,∴等式3526a a +=+的两边同时减去一个多项式25a +可以得到等式1a =,故答案为:25a +.【点睛】本题主要考查了等式的性质:等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.16.2019【分析】根据题中的新定义化简,计算即可得到结果.【详解】20271∇=-2027−12=﹣2028,(-2028)3∇=-(-2028)−32=2028-9=2019.故答案为2019.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(3a+2b )【分析】用买2千克苹果的钱数加上3千克香蕉的钱数即可.【详解】解:根据题意得:买2千克苹果和3千克香蕉共需(3a+2b )元,故答案为:(3a+2b ).【点睛】本题考查了列代数式,弄清题意是解本题的关键.18.塔【分析】这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.【详解】解:由正方体的展开图特点可得:“陕”和“塔”相对;“东”和“金”相对;“方”和“字”相对.故答案为:塔.【点睛】本题考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.19.-3【分析】按照有理数混合运算的顺序进行运算,即可求得.【详解】解:原式=3(8)()634-⨯---663=--=-3【点睛】本题考查了有理数的混合运算,严格按照有理数混合运算的顺序和法则进行运算是解决本题的关键.20.见解析【分析】利用正方体的表面展开图的特点和互为倒数的特点进行解题即可.【详解】解:根据互为倒数的两个数特点可得:-2和-12是相对面,4和14是相对面,8和18是相对面;再根据正方体的表面展开图的特点填入即可;如图所示,填法不唯一【点睛】本题考查了正方体的表面展开图和倒数的概念,掌握正方体表面展开图的特点是解答本题的关键.21.229a ab -;27【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)16,40%,16%a b c ===;(2)见解析;(3)144°【分析】(1)先根据其他类的频数和百分比求出调查总人数,则可进一步计算a ,b ,c 的值;(2)根据(1)中求得的a 的值以及频数分布表补全统计图即可;(3)用360°乘以“文学类”所占百分比即可.【详解】解:(1)本次调查的学生总人数为612%50÷=(人)5032%16a =⨯=.2050100%40%b =÷⨯=.850100%16%c =÷⨯=.(2)补全的条形统计图如图所示:(3)“文学类”所对应扇形的圆心角度数为:36040%144⨯︒=︒.【点睛】本题主要考查条形统计图、频数分布表、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)a=-2,b=3(2)49【分析】(1)去绝对值得2a =±,3b =±,由有理数00ab a b <+>,,可得,a b 的值;(2)将,a b 的值代入计算即可.(1)解:∵2=a ,3b =,∴2a =±,3b =±,∵有理数00ab a b <+>,,∴23a b =-=,.(2)解:∵23a b =-=,,∴223a b -÷28142(23)3369=--÷⨯=⨯=.【点睛】本题考查了去绝对值,代数式求值.解题的关键在于求出,a b 的值.24.(1)甲、乙两种商品的每件进价分别是80元/件,100元/件;(2)乙商品的每件售价为114元.【分析】(1)设甲种商品的每件进价为x 元,从而可得乙种商品的每件进价为(20)x +元,再根据“若购进甲种商品7件,乙种商品2件,需要760元”建立方程,然后解方程即可得;(2)首先设进甲种产品y 件,则乙种产品为(50-y )件,根据题意列出方程,求出y 的值,然后设乙种商品的每件售价为z 元,根据“利润=(售价-进价)⨯件数”建立方程,再解方程即可得.【详解】(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(20)x +元,由题意得:72(20)760x x ++=,解得80x =(元),则208020100x +=+=(元),答:甲种商品的每件进价为80元,则乙种商品的每件进价为100元;(2)设进甲种产品y 件,则乙种产品为(50-y )件,由题意得:80100(50)4400y y +-=解得:30y =∴进甲种产品30件,则乙种产品为20件设乙种商品的每件售价为z 元,由题意得:30(10080)20(100)440020%z ⨯-+-=⨯,解得114z =(元),答:乙种商品的每件售价为114元.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键.25.(1)-2(2)CM=52t (3)t=32或3【分析】(1)利用AB 的长度以及点C 是线段AB 的中点可得AC 长度,结合OA 长度可求出OC 长度,最后根据数轴上点的坐标特征可求出点C 表示的数.(2)根据动点移动的方向和速度可分别用含t 的式子表示出运动路程,进而求解CM 长度即可.(3)在移动过程中,点P 可能在C 点左侧或者右侧,需要分情况讨论,利用含t 的式子表示出PC ,进而根据CM=52PC 求解t 即可.(1)解:∵点C 是线段AB 的中点.∴AC=BC=12AB=6,∴OC=OA -AC=8-6=2,OB=BC -OC=6-2=4,∴点C 所表示数为-2.(2)解:∵OA=8,OB=4.∴点A 所表示的数为-8,点B 所表示的数为4,由题意可得:点P 在运动过程中所表示的数为-8+3t ,点Q 在运动过程中所表示的数为4+2t .又∵点M 是PQ 的中点,∴点M 在运动过程中所表示的数为83425422t t t -+++-=.∴CM=545(2)22t t ---=即线段CM 的长为52t .(3)解:①当点P 位于C 点左侧时,PC=-2-(-8+3t )=6-3t ∴52t =5(63)2t -解得:32t =②当点P 位于C 点右侧时,PC=-8+3t -(-2)=3t -6,52t =5(36)2t -解得:t=3,综上,当t=32或3时,CM=52PC .【点睛】本题主要考查了数轴上的动点问题,动点问题要注意“化动为静”,找到关键点的位置根据等量信息求解即可,熟知数轴上的点与长度之间的联系是解决本题的关键.26.(1)60°(2)见解析(3)30NOC AOM ∠-∠=︒,理由见解析【分析】(1)由180BOC AOC ∠=︒-∠求出BOC ∠的度数,12BOM BOC ∠=∠取出BOM ∠的值,根据BON NOM BOM ∠=∠-∠计算求解即可;(2)对顶角相等可知60AOP BON ∠=∠=︒,由POC AOC AOP ∠=∠-∠求POC ∠的值,进而结论得证;(3)由题意知120AON NOC ∠=︒-∠,90AON AOM ∠=︒-∠,则12090NOC AOM ︒-∠=︒-∠,整理可得,NOC AOM ∠∠的关系.(1)解:∵120AOC ∠=︒,∴18012060BOC ∠=︒-︒=︒,又∵OM 平分∠BOC ,∴30BOM ∠=︒,又∵90NOM ∠=︒,∴903060BON ∠=︒-︒=︒,∴∠BON 的值为60°.(2)解:∵60AOP BON ∠=∠=︒,∴60POC AOC AOP ∠=∠-∠=︒,∴12AOP POC AOC ∠=∠=∠,∴射线OP 是∠AOC 的平分线.(3)解:30NOC AOM ∠-∠=︒.理由如下:∵120AOC ∠=︒,∴120AON NOC ∠=︒-∠,∵90MON ∠=︒,∴90AON AOM ∠=︒-∠,∴12090NOC AOM ︒-∠=︒-∠,∴30NOC AOM ∠-∠=︒.27.(1)见解析(2)36°(3)120人【分析】(1)根据A 等人数为10人,占扇形图的20%,求出总人数,可以得出D 的人数,即可画出条形统计图;(2)根据D 的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A 组所占比例即可得出A 级学生人数.【详解】解:(1)总人数是:10÷20%=50,则D 级的人数是:50−10−23−12=5.条形统计图补充如下:(2)D 级的学生人数占全班学生人数的百分比是:1−46%−20%−24%=10%;D 级所在的扇形的圆心角度数是360×10%=36°;(3)∵A 级所占的百分比为20%,∴A 级的人数为:600×20%=120(人).。
北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( )A .49B .32C .54D .942.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或33.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+14.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-5.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20136.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人 7.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式8.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海 10.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .32 12.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒C .40D .4513.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b14.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .16.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <017.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度C .8度D .9度18.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数19.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =20.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .25321.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .9122.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+23.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >024.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +2025.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >026.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .627.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )A .2B .4C .6D .8【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关, ∴2m-3=0,-2+n=0, 解得:m=32,n=2, 故m n =(32)2= 94. 故选D . 【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键.2.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b c a b c ++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.3.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.D解析:D 【解析】 【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.5.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.8.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.9.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.10.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.11.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()---=x x39018020x=解得35故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本13.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.C解析:C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.18.D解析:D【解析】【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;故选:D .【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.19.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0).【详解】解:A 、含有两个未知数,不是一元一次方程,选项错误;B 、不是方程是不等式,选项错误;C 、符合一元一次方程定义,是一元一次方程,正确;D 、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C .【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b )21的展开式中第三项的系数.【详解】解:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b )21第三项系数为1+2+3+…+19+20=210;故选:B .【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.21.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)= 1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B .【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.22.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.23.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.24.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.25.A解析:A【解析】【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.26.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 27.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.。
北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。
北师大版(完整版)七年级数学上册期末试卷及答案
北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >02.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种3.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 4.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD5.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >06.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .37.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元 B .赚了12元 C .亏损了12元 D .不亏不损 8.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒ C .40 D .45 9.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><10. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm 11.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定12.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.月球沿着一定的轨道围绕地球运动,它在近地点时与地球相距约为363000千米,这个数据用科学记数法表示,应记为_____千米.14.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为_________.15.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .16.若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____.17.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.18.下列图案是我国古代窗格的一部分,其中“O ”代表窗纸上所贴的剪纸,则第51个图中所贴剪纸“O ”的个数为__________.19.关于x 的方程()212ax x -=-的解为__________.20.将一列有理数1,2,3,4,5,6,---按如图所示有序排列,如:“峰1”中的封顶C 的位置是有理数4;“峰2”中C 的位置是有理数-9,根据图中的排列规律可知,2008应排在,,,,A B C D E 中的__________位置.21.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________. 22.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.三、解答题23.发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表. 成绩x /分 频数 百分比 5060x ≤< 5 5% 6070x ≤< 15 15%7080x ≤< 20n8090x ≤<m35% 90100x ≤≤2525%请根据所给信息,解答下列问题:(1)m =______,n =______,并补全频数分布直方图;(2)若成绩在90分以上(包括90分)的为“优”等,则该校参与这次比赛的800名学生中成绩“优”等的约有多少人? 24.(1)计算:()13564734-++- (2)计算:()320201342-⨯+÷- (3)x 22x 1146+--= 25.嘉琪同学准备化简()()22353326x x x x ---+,算式中“□”是“+、-、×、÷”中的某一种运算符号.(1)如是“□”是“+”,请你化简()()22353326x x x x ---++; (2)当0x =时,()()22353326x x xx ---+的结果是15,请你通过计算说明“□”所代表的运算符号.26.阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,…为等比数列,其中11a =,公比为3q =.则: (1)等比数列2,4,8,…的公比q 为________,第4项是________.(2)如果一个数列1a ,2a ,3a ,4a …是等比数列,且公比为q ,那么根据定义可得到:3241231nn a a a a q a a a a -=====. 所以:21a a q =,2321a a q a q ==,3431a a q a q ==,…由此可得:n a =________(用1a 和q 的代数式表示).(3)若一等比数列的公比5q =,第2项是10,请求它的第1项与第5项.27.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.28.如图,点P 是定长线段AB 上一点,C 、D 两点分别从点P 、B 出发以1厘米/秒,2厘米/秒的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上). (1)若点C 、D 运动到任一时刻时,总有2PD AC =,请说明点P 在线段AB 上的位置;(2)在(1)的条件下,点Q 是直线AB 上一点,且AQ BQ PQ -=,求PQAB的值; (3)在(1)的条件下,若点C 、D 运动5秒后,恰好有12CD AB =,此时点C 停止运动,点D 继续运动(点D 在线段PB 上),点M 、N 分别是CD 、PD 的中点,下列结论:①PM PN -的值不变;②MNAB的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解. 【详解】由图可知,b <0,a >0,且|b|>|a|, A 、a -b >0,故本选项符合题意; B 、a +b <0,故本选项不合题意;C 、ba<0,故本选项不合题意; D 、ab <0,故本选项不合题意. 故选:A . 【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.2.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.3.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.4.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C 是线段AD 的中点, ∴AD=2AC=2CD , ∵2BD>AD , ∴BD> AC= CD ,A. CD=AD-AC> AD - BD ,该选项错误;B. 由A 得AD - BD < CD ,则AD <BD+CD=BC,则AB=AD+BD < BC+ BD <2BD ,该选项错误;C.由B 得 AB <2BD ,则BD+AD <2BD,则AD <BD,该选项错误;D. 由A 得AD - BD < CD ,则AD <BD+CD=BC, 该选项正确 故选D . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.6.D解析:D 【解析】 【分析】直接利用已知代入得出b 的值,进而求出输入﹣3时,得出y 的值. 【详解】∵当输入x 的值是﹣3,输出y 的值是﹣1, ∴﹣1=32b-+, 解得:b =1,故输入x 的值是3时,y =2331⨯-=3. 故选:D . 【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.7.C解析:C【解析】试题分析:设第一件衣服的进价为x元,依题意得:x(1+25%)=90,解得:x=72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y元,依题意得:y(1﹣25%)=90,解得:y=120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C.点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.8.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()x x---=39018020x=解得35故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.9.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.10.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.11.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.12.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.二、填空题13.63×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:63×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:363000千米=3.63×105千米.故答案为:3.63×105【点睛】考核知识点:科学记数法.理解科学记数法的要求是关键.14.5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(解析:5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(2x2+3y)=3=6x2+9y,∴6x2+9y+2=5.故答案为5.【点睛】本题考查了代数式求值,整体法的运用是解题的关键.15.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质. 16.38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.解析:38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.【点睛】本题考查了补角的定义和一元一次方程,根据题意列出一元一次方程是解答本题的关键.17.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.18.155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n个图形的剪纸“○”的表达式,再把n=51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸解析:155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n个图形的剪纸“○”的表达式,再把n=51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸“○”,第2个图形有8个剪纸“○”,第3个图形有11个剪纸“○”,……,依此类推,第n个图形有(3n+2)个剪纸“○”,当n=51时,3×51+2=155.故答案为:155.【点睛】本题是对图形变化规律的考查,属于常考题型,观察出后一个图形比前一个图形多3个剪纸“○”是解题的关键.19.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.B【解析】【分析】根据图形,可以发现每个峰中有5个数字,这些数字中的奇数都是负的,偶数都是正的,从而可以得到2008应排在A,B,C,D,E中的哪个位置.【详解】解:由图可知,奇数为负值解析:B【解析】【分析】根据图形,可以发现每个峰中有5个数字,这些数字中的奇数都是负的,偶数都是正的,从而可以得到2008应排在A,B,C,D,E中的哪个位置.【详解】解:由图可知,奇数为负值,偶数为正值,每个峰中有5个数据,∵(2008-1)÷5=2007÷5=401…2,∴2008应排在B的位置,故答案为:B.【点睛】此题考查图形的变化类,解答本题的关键是明确题意,发现数字的变化特点,利用数形结合的思想解答.21..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等 解析:3(32)(31)n n -+ 113231n n --+ 300301. 【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】 由13111414a ==-⨯,23114747a ==-⨯,3311710710a ==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差, ∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-, =11301-, =300301, 故答案为:3(32)(31)n n -+, 113231n n --+,300301. 【点睛】此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.22.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)()解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.三、解答题23.(1)35,20%,补全图见解析;(2)200(人)【解析】【分析】(1)根据第4组的频率是35%,求得m 的值,根据第3组频数是20,求得n 的值,然后补全频数直方图即可;(2)利用总数800乘以“优”等学生的所占的频率即可得出该校参加这次比赛的800名学生中成绩“优”等的人数.【详解】解:(1)由题可得,m=100×35%=35;n=20÷100=20%,补全频数直方图如下:故答案为:35,20%;(2)该校参加这次比赛的800名学生中成绩“优”等约有:800×25%=200(人).【点睛】本题考查频数(率)分布表,用样本估计总体,频数直方图.利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.24.(1)-30;(2)-3.5;(3)-4【解析】【分析】(1)根据加法结合律和交换律即可得到结果;(2)根据含乘方的有理数的混合运算即可得到结果;(3)根据解一元一次方程的步骤即可得到结果.【详解】解:(1)原式=13+47-(56+34)=60-90=-30;(2)原式=-1×3+4÷(-8)=-3-0.5=-3.5; (3)x 22x 1146+--= ()()3222112x x +--=364212x x +-+=4x -=4x =-【点睛】本题主要考查的是含乘方的有理数的混合运算以及解一元一次方程,掌握以上知识点是解题的关键.25.(1)-11x-21;(2)减号【解析】【分析】(1)先用乘法分配律,再开括号合并同类项即可;(2)将x=0代入代数式化简即可得出结果.【详解】解:(1)原式=2235336181121x x x x x -----=--;(2)当x=0时,()330615--⨯=, ∴-3-3×(0-6)=15,∴□所代表的的运算符号是减号.【点睛】本题主要考查的是整式的化简求值,掌握整式的化简求值是解题的关键.26.(1)2,16;(2)11n a q -;(3)2,1250.【解析】【分析】(1)由第二项除以第一项求出公比q 的值,确定出第4项即可;(2)根据题中的定义归纳总结得到通项公式即可;(3)由公比q 与第二项的值求出第一项的值,进而确定出第5项的值.【详解】解:(1)422q ==,第4项是16, 故答案为:2,16; (2)归纳总结得:11n n a a q -=,故答案为:11n a q -;(3)等比数列的公比5q =,第二项为10,212a a q∴==,4451251250a a q ==⨯=. 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.27.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP (或MN=MP-NP ),即可求出MN 的长度;(2)分-6<a <3及a >3两种情况考虑,由点P 表示的有理数可得出AP 、BP 的长度(用含字母a 的代数式表示),根据三等分点的定义可得出MP 、NP 的长度(用含字母a 的代数式表示),再由MN=MP+NP (或MN=MP-NP ),即可求出MN=6为固定值.【详解】解:(1)若点P 表示的有理数是0(如图1),则AP=6,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=4,NP=23BP=2, ∴MN=MP+NP=6; 若点P 表示的有理数是6(如图2),则AP=12,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=8,NP=23BP=2, ∴MN=MP-NP=6.故答案为:6;6.(2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是a (a >-6且a≠3).当-6<a <3时(如图1),AP=a+6,BP=3-a .∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a ), ∴MN=MP+NP=6;当a >3时(如图2),AP=a+6,BP=a-3. ∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).28.(1)点P 在线段AB 的13处;(2)13或1;(3)结论②MN AB的值不变正确,112MN AB =. 【解析】【分析】(1)设运动时间为t 秒,用含t 的代数式可表示出线段PD 、AC 长,根据2PD AC =,可知点P 在线段AB 上的位置;(2)由AQ BQ PQ -=可知AQ PQ BQ =+,当点Q 在线段AB 上时,等量代换可得AP BQ =,再结合13AP AB =可得PQ AB的值;当点Q 在线段AB 的延长线上时,可得AQ BQ AB PQ -==,易得PQ AB 的值. (3)点C 停止运动时,12CD AB =,可求得CM 与AB 的数量关系,则PM 与PN 的值可以含AB 的式子来表示,可得MN 与AB 的数量关系,易知MN AB 的值. 【详解】解:(1)设运动时间为t 秒,则2,PD PB t PC AP t =-=-,由2PD AC =得22()PB t AP t -=-,即2PB AP =AP PB AB +=,2AP AP AB ∴+=,3AP AB ∴=,即13AP AB = 所以点P 在线段AB 的13处; (2)①如图,当点Q 在线段AB 上时,由AQ BQ PQ -=可知AQ PQ BQ =+, AQ AP PQ =+13PQ AP AB ∴==13PQ AB ∴= ②如图,当点Q 在线段AB 的延长线上时,AQ BQ AB -=,AQ BQ PQ -=AB PQ ∴=1PQ AB∴= 综合上述,PQ AB 的值为13或1; (3)②MN AB的值不变. 由点C 、D 运动5秒可得5,5210CP BD ==⨯=, 如图,当点M 、N 在点P 同侧时,点C 停止运动时,12CD AB =, 点M 、N 分别是CD 、PD 的中点,11,22CM CD PN PD ∴== 14CM AB ∴= 154PM CM CP AB ∴=-=- 2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=- 112MN PN PM AB ∴=-= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 如图,当点M 、N 在点P 异侧时,点C 停止运动时,12CD AB =, 点M 、N 分别是CD 、PD 的中点,11,22CM CD PN PD ∴== 14CM AB ∴= 154PM CP CM AB ∴=-=-2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=- 112MN PN PM AB ∴=+= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 所以②MN AB 的值不变正确,112MN AB =. 【点睛】本题考查了线段的相关计算,利用线段中点性质转化线段之间的和差倍分关系是解题的关键.。
2017年秋北师大版七年级数学上课堂内外期末综合测试卷(PDF版)
(B )
4 ������ 下列等式恒成立的是
1 2 元 C ������ 8. 5ˑ1 0
B ������- ( x- z) =-x- z y+ y- ( C ������ x+2 z=x-2 z) y-2 y+ D ������- a+ b+ c+d=- ( a- b) -( - c-d)
(D )
正确的是 7 ������ 下列各题的变形中 ,
Байду номын сангаас
2 x-1 x-3去分母得 ( ) ( ) B ������ 由 =1+ 22 x-1 =1+3 x-3 3 2 1 5 8
A ������ 由 7 x=4 x-3 移项得 7 x-4 x=3
(D )
( ) ( ) C ������ 由 2 2 x-1 -3 x-3 =1 去括号得 4 x-2-3 x-9=1 时针与分针的夹角为 8 ������ 钟表上 2 ʒ 3 0, 9 ������ 如果用 A ������ 1 2 0 ʎ 表示 1 个立方体 , 用 B ������ 1 1 5 ʎ ( ) 移项 ㊁ 合并同类项得 x=5 D ������ 由 2 x+1 =x+7 去括号 ㊁ C ������ 1 1 0 ʎ (D ) 表示 (B )
æ1 ö 1 4 0÷ =2 B ������ x- x- ç x+2 4 0 è3 ø 3
ö 1 1æ1 4 0÷ A ������ x= x+ ç x+2 ø 3 2è3
æ1 ö 1æ1 ö 4 0÷ = ç x+2 4 0÷ C ������ x- ç x+2 è3 ø 2è3 ø D ������ ö 1 1æ1 4 0÷ =x-2 x- ç x+2 4 0 ø 3 2è3
2016-2017年七年级上《有理数及其运算》单元试卷含答案解析
2016-2017学年度北师大七年级数学上册《有理数及其运算》单元测验(解析版)学校:___________姓名:___________班级:___________考号:___________一、选择题1.在0,-13.48,715,32 ,-6,这些数中,负分数共有几个( ) A .0个 B .1个 C .2个 D .3个2.在,0,﹣1,﹣这四个数中,最小的数是( )A .B .0C .﹣D .﹣13.-2的绝对值是( )A .-2B .-12C .2D .124.某种计算机完成一次基本运算所用的时间约为0.0000000015s ,把0.0000000015用科学记数法可表示为( )A .0.15×10-8B .0.15×10-9C .1.5×10-8D .1.5×10-95.﹣的倒数是( )A .B .2C .﹣2D .﹣6.比-7.1大,而比1小的整数的个数是( )A .6B . 7C .8D .97.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下列沿顺时针方向跳两个点:若停在偶数点上,则下次沿逆时针方向跳一个点,若青蛙从1这点开始跳,则经过2016A.1 B.2 C.3 D.58.若,则的值是()A.B.C.D.9.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从点M2跳到OM2的中点M3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()A.12n B.112n-C.11()2n+D.12n二、填空题10.(2015秋•昌平区期末)互为相反数的两数之和是.11.用四舍五入法取近似数,1.806≈__________(精确到0.01).12.当a=2时,=.13.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.14.(2015秋•平顶山校级期中)若﹣1<n<0,则n、n2、的大小关系是.15.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为.16.若x的相反数是3,|y|=5,则x+y的值为.三、解答题17.根据下面给出的数轴,解答下面的问题: BA 0-6-5-4-3-2-154321⑴ 请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A : B : ;⑵ 观察数轴,与点A 的距离为4的点表示的数是: ; ⑶ 若将数轴折叠,使得A 点与-3表示的点重合,则B 点与数 表示的点重合⑷ 若数轴上M 、N 两点之间的距离为2016(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M: N:18.出租车司机小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为3升/千米,这天下午小李开车共耗油多少升?19.(2015秋•沧州期末)一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.20.某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;那么:(1)该旅行团应付多少的门票费;(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.21.已知|2x+1|+(y-2)2=0,求(xy)2 011的值。
北师大版七年级上学期数学《期末检测题》含答案解析
[解析]
[分析]
根据多项式与单项式的基本概念判断A、B,根据代数式的定义判断C,根据字母可以表示任何数判断D.
[详解]A.多项式 是二次三项式,正确,不符合题意;
B.单项式 系数是 ,次数是9,正确,不符合题意;
C.式子 , , , , 都是代数式,正确,不符合题意;
D.若 为有理数,则 一定大于 ,若a=0,则 ,D判断错误,符合题意.
13.计算:
[答案]0
[解析]
[分析]
根据有理数混合运算法则进行计算:先去括号,先算乘方,在算乘除,再算加减.
[详解]解:
=
=
=1+(-1)
=0
[点睛]考核知识点:含有乘方的混合运算.掌握运算法则是关键.
14.解方程:
[答案]x=-3.
[解析]
试题分析:首先进行去分母,然后去括号,移项,合并同类项求解.
[点睛]本题考查一元一次方程的解,将 代入方程得到关于a的方程是解题的关键.
10.若某次数学考试结束的时间为九时五十分,该时间钟面上的时针与分针的夹角是________度.
[答案]5
[解析]
[分析]
由九时五十分可知分针指向10,则时针在指向9后顺时针旋转了50分钟的角,用一大格表示的角度数 乘以 即为时针在指向9后旋转的角度,即可求出时针与分针的夹角.
[答案]
[解析]
[分析]
根据翻折变换表示出所得图形的面积,再根据各部分图形的面积之和等于正方形的面积减去剩下部分的面积进行计算即可得解.
[详解]由题意可知,
…,
剩下部分的面积=
所以,
故答案为
[点睛]属于规律型:图形的变化类,观察图形的变化发现每次折叠后的面积与正方形的关系,从而找出面积的变化规律.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017
学年第一学期期末调研测试卷
七年级数学
说明:
试题卷共4页,答题卡共4页。考试时间90分钟,满分100分
一、选择题(每小题3分,共36分):每小题有四个选项,其中只有一个是正确的,请把答
案按要求填涂到答题卷相应位置上
1. 2的倒数是( )
A. 12 B. 12 C. 2 D. 2
2. 阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912
亿用科学计数法表示为( )
A. 891210 B. 991.210 C. 109.1210 D.
10
0.91210
3. 下列调查中,①检测深圳的空气质量; ②为了解某中东呼吸综合征(MERS)确诊病人
同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;
④调查某班50名同学的视力情况。其中适合采用抽样调查的是( )
A. ① B. ② C. ③ D. ④
4. 下列几何体中,从正面看(主视图)是长方形的是( )
A. B. C. D.
5. 下列运算中,正确的是( )
A. 211 B. 2(3)23xyxy
C. 1363312 D. 222523xxx
6. 木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因
为( )
A. 两点之间,线段最短 B. 两点确定一条直线
C. 过一点,有无数条直线 D. 连接两点之间的线段叫做两点间的距离
7. 已知322mxy和nxy是同类项,则nm的值是( )
b
a
A. B. 12 C. 14 D. 18
8. 如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且8ABcm,
则MN的长度为( )cm
NBC
M
A
A. 2 B. C. 4 D. 6
9. 下列说法中,正确的是( )
A. 绝对值等于他本身的数是正数
B. 任何有理数的绝对值都不是负数
C. 若线段ACBC,则点C是线段AB的中点
D. 角的大小与角两边的长度有关,边越长角越大
10. 一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可
获利8元,则这种服装每件的成本是( )
A. 100元 B. 105元 C. 110元 D. 115元
11. 如图是一块长为a,宽为b(ab)的长方形空地,要将阴影部分绿化,则阴影面积
是( )
A. 22ab B. 2aba C. 24abb D. 24aba
12. 有理数a、b在数轴上的位置如图所示,下列选项正确的是( )
b-101
a
A. abab B. 0ab
C. 11b D. 1ab
二、填空题(每小题3分,共12分):请把答案按要求填到答题卷相应位置上。
13. 单项式235xy的系数是
14. 对于有理数a、b,定义一种新运算,规定2abab☆,则2(3)☆
15. 如图,在直线AD上任取一点O,过点O做射线OB,OE平分DOB,OC平分
AOB,26BOC时,BOE
的度数是
DECBA
16. 如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第
2个图案需要11根小棒,第3个图案需要16根小棒„„,则第n个图案需
要 根小棒
(3)
(2)
(1)
三、解答题(共52分):
17. 计算(共8分,第一题3分,第二题5分)
(1) 10(5)(9)6 (2) 321(1)102()5
18. 化简(共9分,第一题4分,第二题5分)
(1)化简2(21)3(3)mmm
(2)先化简,再求值:22(21)3(2)mmab
19. 解方程(共9分,第一题4分,第二题5分)
(1)3(21)52xx (2)231135xx
20. (本题8分)在“迎新年,庆元旦”期间,某商场推出ABCD、、、四种不同类型礼
盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已
经销售了50%,各类礼盒的销售数量如图2所示:
图1
图2
150
80
168
种类
AC
B
D
0
30
60
90
120
150
180
已售礼品盒数量
A 35%
D 25%
C 20%
B 20%
(1)商场中的D类礼盒有 盒(2分)
(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于 度(2分)
(3)请将图2 的统计图补充完整(2分)
(4)通过计算得出 类礼盒销售情况最好(2分)
21. 列方程解应用题(5分)
某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速
的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40
千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?
22. (8分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?
(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A处,BC
为折痕。若55ABC,求ABD的度数(2分)
(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA重合,折痕为
BE,如图2所示,求2
和CBE的度数(4分)
(3)如果将图2中改变ABC的大小,则BA的位置也随之改变,那么(2)中CBE的
大小会不会改变?请说明(2分)
图2
图1
2
1
DDA'A'D'EABCAB
C
23. 列方程解应用题(5分)
某工艺品厂为了按时完成订单,对员工采取生产奖励活动,奖励办法按照下表所示,
但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量。改进工艺
前一月生产A、B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共
510件,其中A和B的生产量分别比改进前一个月增长了25%和20%。
产量(x件) 每件奖励金额(元)
0100x
10
100300x
20
300x
30
(1)在工艺改进前一个月,员工共获得奖励多少元(1分)
(2)如果某车间员工想获得5500元奖金,需要生产多少件工艺品(2分)
(3)改进工艺前一个月,生产的A、B两种工艺品分别为多少件(2分)
一、选择题
1-5:ACABD
6-10:BDCBA
11-12:CD
二、填空题
13. 35
14.1
15.64
16. 51n
三、解答题
17.(1)12 (2) 12
18.(1) 2358mm (2) 252ab -5
19(1) 5x (2) 37x
20(1) 250
(2)126
(3)102
(4)A
21: 解:设小明家到西湾公园距离x千米
1.684016xxx
答:小明家到西湾公园距离16千米
22(1) 70°
(2)35° 90°
(3)不变,永远是平角的一半