二项式定理8
二项式定理—解题技巧(老师用)

二项式定理—解题技巧(老师用)1.二项式定理:0n1n1rnrrnn(ab)nCnaCnabCnabCnb(nN),2.基本概念:项数:共(r1)项rnrrrnrr通项:Tr1Cnab展开式中的第r1项Cnab叫做二项式展开式的通项。
3.注意关键点:①项数:展开式中总共有(n1)项。
②顺序:注意正确选择a,b,其顺序不能更改。
(ab)n与(ba)n是不同的。
③指数:a的指数从n逐项减到0,是降幂排列。
b的指数从0逐项减到n,是升幂排列。
各项的次数和等于n.012rn④系数:注意正确区分二项式系数与项的系数,二项式系数依次是Cn,Cn,Cn,,Cn,,Cn.项的系数是a与b的系数(包括二项式系数)。
4.常用的结论:(令值法)0122rrnn令a1,b某,(1某)nCnCn某Cn某Cn某Cn某(nN)0122rrnn 令a1,b某,(1某)nCnCn某Cn某Cn某(1)nCn某(nN)5.性质:0nkk1①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即Cn,···CnCnCn012rn②二项式系数和:令ab1,则二项式系数的和为CnCnCnCnCn2n,12rn变形式CnCnCnCn2n1。
③奇数项的二项式系数和=偶数项的二项式系数和:0242r132r1CnCnCnCnCnCnCn1n22n12④各项的系数的和:g某ab某.令某=1g(1)n1g1g121偶数项系数和:g1-g12奇数项系数和:nn⑤二项式系数的最大项:如果n是偶数时,则中间项(第1)的二项式系数项Cn2取得最大值。
2n1n1n1n3如果n是奇数时,则中间两项(第.第项)系数项Cn2,Cn2同22时取得最大值。
⑥系数的最大项:求(ab某)n展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别Ar1Arr1项系数最大,应有为A,从而解出r来。
1,A2,,An1,设第AAr1r26.二项式定理的十一种考题的解法:题型一:二项式定理的逆用;123n例:CnCn6Cn62Cn6n1.0123n解:(16)nCnCn6Cn62Cn63Cn6n与已知的有一些差距,123nCnCn6Cn62Cn6n1112n(Cn6Cn62Cn6n)61011n122nnn(CnCn6Cn6Cn61)[(16)1](71)666123n练:Cn3Cn9Cn3n1Cn.n题型二:利用通项公式求某的系数;例:在二项式(4132n某)的展开式中倒数第3项的系数为45,求含有某3的项的系数?某2n22解:由条件知Cn45,即Cn45,nn900,解得n9(舍去)或n10,由1410r23r10r2r43Tr1C(某)3r10(某)C某r10,由题意10r2r3,解得r6,4363则含有某的项是第7项T61C10某210某3,系数为210。
二项式定理

在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;
《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。
二项式定理 课件

(2)x-1x9 的展开式的通项是 Cr9x9-r-1xr=(-1)rCr9x9-2r. 根据题意,得 9-2r=3,r=3. 因此,x3 的系数是(-1)3C93=-84.
1+1x4=1+C141x+C241x2+C341x3+1x4=1+4x+
方法二 1+1x4=1x4(x+1)4=1x4[x4+C14x3+C24x2+C34x+1] =1+4x+x62+x43+x14.
探究点二 二项展开式的通项 例 2 (1)求(1+2x)7 的展开式的第 4 项的二项式系数、项的
问题 3 二项式定理展开式的系数、指数、项数的特点是什么? 答 (1)它有 n+1 项,各项的系数 Ckn(k=0,1,…,n)叫二项 式系数; (2)各项的次数都等于二项式的次数 n.
问题 4 二项式定理展开式的结构特征是什么?哪一项最具有 代表性? 答 (1)字母 a 按降幂排列,次数由 n 递减到 0,字母 b 按升 幂排列,次数由 0 递增到 n; (2)Cknan-kbk 叫二项展开式的通项,用 Tk+1 表示,即通项 Tk+1=Cknan-kbk.
=81x2+108x+54+1x2+x12.
小结 在展开二项式之前根据二项式的结构特征进行必要变 形可使展开多项式的过程得到简化,例如求(1-x)5(1+x+x2)5 的展开式,可将原式变形为(1-x3)5,再展开较为方便.
跟踪训练 1 求1+1x4 的展开式.
解 方法一 x62+x43+x14.
二项式定理

二项式定理[考纲传真]会用二项式定理解决与二项展开式有关的简单问题.【知识通关】1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质1.C0n+C1n+C2n+…+C n n=2n.2.C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.【基础自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.()(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.()(4)通项T k+1=C k n a n-k b k中的a和b不能互换.()[答案](1)×(2)×(3)√(4)√2.(1-2x)4展开式中第3项的二项式系数为()A.6B.-6C.24 D.-24A3.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( ) A .5B .-20C .20D .-5A4.C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( ) A .1B .2C .2 019D .2 019×2 020B 5.(1+x )n 的二项展开式中,仅第6项的系数最大,则n =________.10【题型突破】二项展开式的有关问题【例1】 (1)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( ) A .-3B .-2C .2D .3 (2)(2018·广州二模)⎝ ⎛⎭⎪⎫x 2-2x +y 6的展开式中,x 3y 3的系数是________.(用数字作答) (1)D (2)-120[方法总结] 求二项展开式中的特定项的方法,求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程.,特定项的系数问题及相关参数值的求解等都可依据上述方法求解.,(4)求特定项或特定项的系数要多从组合的角度求解,一般用通项公式太麻烦.(1)若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中常数项为1516,则实数a 的值为( )A .±2B .12C .-2 D .±12(2)已知在⎝⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项,则展开式中所有的有理项分别是________.(1)A (2)454x 2,-638,45256x -2二项式系数的性质及应用►考法1 二项式系数的和【例2】 (1)在⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120 (2)(2019·汕头质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(1)C (2)-3或1►考法2 二项式系数的性质【例3】 设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8 B [方法总结] (1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.(1)若⎝ ⎛⎭⎪⎫x 2-1x n的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(2)已知⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的二项式系数和为32,⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的各项系数的和为2,则该展开式中的常数项为________.(1)255 (2)40【真题链接】1.(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35C2.(2015·全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2项的系数为() A .10 B .20C .30D .60C。
二项式定理课件

C
1 3
2 3 3 3
(a b) C a C a b C Байду номын сангаасb C b ③ 展开式:
探究3 仿照上述过程,推导 (a b) 的展开式.
4
1 ab (a b) C a C 2 2
2
0 2 2
3
C b
2 3
2 2 2
2
(a b) C a C a b C ab C b
4
4
分析:为了 方便,可以 先化简后展 开
1 4 2 x 1 ) 2 ( x
1 轾0 4 3 2 1 1 2 3 = 2犏 C4 (2x) - C4 (2x) + C4 (2x) - C4 (2x) + C44 x 臌 1轾 4 3 2 1 = 2犏 16 x 32 x + 24 x 8 x +1 臌 x
k ③二项式系数: C n ( k {0,1,2,, n})
④二项展开式的通项: Tk 1
C a b
k n k k n
二项式定理
(a b) C a C a b C a
n 0 n n k n 1 n 1 n n k k
b C b (n N )
n n n *
*
2.思想方法
(1) 从特殊到一般的数学思维方式.
(2) 用计数原理分析二项式的展开过程.
(3) 类比、等价转换的思想.
1、巩固型作业: 课本28页 联系B组 1、2、3
2、思维拓展型作业:
0 1 探究二项式系数 Cn ,Cn,
C , ,C 有何性质.
2 n n n
聪 明 在 于 勤 奋 ,
考点8.定积分、二项式定理
专题8.定积分、二项式定理考点 考纲要求定积分 了解定积分的基本思想;能够利用微积分基本定理求解定积分;能利用定积分求解平面图形的面积.二项式定理能利用通项求解指定项;能利用赋值法求二项式系数,区分二项式系数与项的系数的不同.⑴定积分的定义:⎠⎛ab f (x )d x =lim n →∞∑n i =1b -an f (ξi ),a ,b 分别叫做 与 , 区间[a ,b ]叫做 ,函数f (x )叫做 , 叫做积分变量, 叫做被积分. ⑵定积分的几何意义:S =⎠⎛a b f (x )d x S =-⎠⎛a b f (x )d x . S =⎠⎛ab [f (x )-g (x )]d x .⑶微积分基本定理一般地,如果f (x )在区间[a ,b ]上连续,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (x )| ba = .这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式.⑷(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n nb n (n ∈N *),这个公式叫做二项式定理.(考过程) ⑸二项展开式的通项:①通项公式:T r +1=C r n a n -r b r (r =0,1,…,n ); ②通项公式的应用:ⅰ通项公式是第r+1项,而不是第r 项;ⅱ运用通项公式可以求出展开式中任意指定的项或具有某种条件的项。
⑹二项式系数:①二项式系数:C 0n ,C 1n ,C 2n ,…,C n n ;②第r+1项系数:C r n (r=0,1,2,...,n); ③二项式系数的性质:ⅰC m n =C n -mn,即与首末两端等距离的二项式系数相等;ⅱC m n +1=C m -1n +C m n ;ⅲC 0n +C 1n +…+C k n +…+C n n = . C 0n +C 2n +…=C 1n +C 3n +…= .例1:①如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为(A)14 (B) 15 (C) 16 (D) 17 ②⎠⎛014-x 2 d x = (A)32π-13 (B) 32+13π (C) 12 +13π (D) 1-32π ③若将圆x 2+y 2=π2内的正弦曲线y =sinx 与x 轴围成的区域记为M ,则在圆内随机放一粒豆子,落入M 的概率为__________. 例2:①(x -1x )9展开式中的常数项是A.-36B.36C.-84D.84 ②(x -y)(x +y)8的展开式中x 2y 7的系数为 .(用数字作答) 3+a (x -2)+a (x -2)2+a 3(x -2)3,则a 2= A.5 B.6 C.7 D.8 课后作业:评价 ⑴⎠⎛01(e +2x )d x 等于( ) A .1 B .e -1 C .e D .e +1⑵若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1⑶曲线xy 2=与直线1-=x y 及4=x 所围成的封闭图形的面积为(A)2ln 2- (B)2ln 4- (C)2ln 24- (D)2ln 2⑷已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a (A )4- (B )3- (C )2- (D )1-⑸若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为( )A .1B .129C .128D .127⑹512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40。
二项式定理的概念
二项式定理的概念
二项式定理是数学中的基本定理之一,它描述了在二项式展开式中各项的系数规律。
这个定理在数学、物理、工程等多个领域都有广泛的应用。
定义:二项式定理表示为:(a+b)^n的展开式为:C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n,其中C(n,k)表示组合数,即从n个不同元素中选取k个元素的组合方式数。
意义:二项式定理的展开式中各项系数是组合数,它们遵循一定的规律。
通过二项式定理,我们可以方便地计算出展开式中的每一项,从而解决一系列问题,如代数问题、概率问题等。
应用:二项式定理的应用非常广泛。
例如,在解决概率论中的二项分布问题时,我们需要用到二项式定理。
在解决组合数学中的排列和组合问题时,二项式定理也起到了非常重要的作用。
此外,在解决一些代数问题、三角函数问题、数列问题等时,我们也可以利用二项式定理来简化计算。
举例说明:当我们需要计算(a+b)^2的展开式时,利用二项式定理可以得出:
(a+b)^2 = C(2,0)a^2 + C(2,1)ab + C(2,2)b^2 = a^2 + 2ab + b^2
这就是二项式定理在计算中的具体应用。
二项式定理(通项公式)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
二项式定理知识点总结
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。