绥中县一中2018-2019学年上学期高三数学10月月考试题
睢县第一中学2018-2019学年上学期高三数学10月月考试题

睢县第一中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A .(0,1)B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e )2. 下列判断正确的是()A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台3. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A . B.C. D. 4. 以的焦点为顶点,顶点为焦点的椭圆方程为()A .B .C .D .5. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .306. 设曲线y=ax ﹣ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=()A .0B .1C .2D .37. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log xx y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.8. 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为()O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.9. 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ){}n a A .1B .2C .4D .610.集合的真子集共有( ){}1,2,3A .个B .个C .个D .个11.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .12.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是()m n +A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数()1e e x xf x =-e 的底数,则不等式的解集为________.()()2240f x f x -+-<14.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .15.若函数的定义域为,则函数的定义域是.()f x []1,2-(32)f x -16.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-26121a a a =∙12n n S -⎧⎫⎨⎬⎩⎭的最大值为_________.三、解答题17.(本小题满分12分)已知分别是椭圆:的两个焦点,且,点12,F F C 22221(0)x y a b a b+=>>12||2F F =在该椭圆上.(1)求椭圆的方程;C (2)设直线与以原点为圆心,为半径的圆上相切于第一象限,切点为,且直线与椭圆交于两l b M l P Q 、点,问是否为定值?如果是,求出定值,如不是,说明理由.22F P F Q PQ ++18.(本小题满分10分)选修4-5:不等式选讲已知函数.()|21|f x x =-(1)若不等式的解集为,求实数的值;1(21(0)2f x m m +≤+>(][),22,-∞-+∞ m (2)若不等式,对任意的实数恒成立,求实数的最小值.()2|23|2yyaf x x ≤+++,x y R ∈a19.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.20.(本小题满分12分)已知点,直线与圆()()(),0,0,4,4A a B b a b >>AB 相交于两点, 且,求.22:4430M x y x y +--+=,C D 2CD =(1)的值;()()44a b --A (2)线段中点的轨迹方程;AB P (3)的面积的最小值.ADP ∆21.已知定义域为R 的函数是奇函数.(1)求f (x );(2)判断函数f (x )的单调性(不必证明);(3)解不等式f (|x|+1)+f (x )<0.22.(本小题满分12分)已知函数().2()(21)ln f x x a x a x =-++a R ∈ (I )若,求的单调区间;12a >)(x f y = (II )函数,若使得成立,求实数的取值范围.()(1)g x a x =-0[1,]x e ∃∈00()()f x g x ≥a睢县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】 D【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k .由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1,所以f (x )=lnx+e ,f ′(x )=,x >0.∴f (x )﹣f ′(x )=lnx ﹣+e ,令g (x )=lnx ﹣+﹣e=lnx ﹣,x ∈(0,+∞)可判断:g (x )=lnx ﹣,x ∈(0,+∞)上单调递增,g (1)=﹣1,g (e )=1﹣>0,∴x 0∈(1,e ),g (x 0)=0,∴x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是(1,e )故选:D .【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题. 2. 【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C . 3. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=4. 【答案】D 【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质. 5. 【答案】B【解析】解:∵a n =(﹣1)n (3n ﹣2),∴S 11=()+(a 2+a 4+a 6+a 8+a 10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S 11+S 20=﹣16+30=14.故选:B .【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 6. 【答案】D 【解析】解:,∴y ′(0)=a ﹣1=2,∴a=3.故答案选D .【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视. 7. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log x x y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=xx y a A +∞→x 0→y D C 8. 【答案】D【解析】由切线性质知,所以,则由,得,PQ CQ ⊥222PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,2222(3)(4)4x y x y -++-=+68210x y --=P 9. 【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.10.【答案】C 【解析】考点:真子集的概念.11.【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m 则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.12.【答案】C【解析】由题意,得甲组中,解得.乙组中,78888486929095887m +++++++=3m =888992<<所以,所以,故选C .9n =12m n +=二、填空题13.【答案】()32-,【解析】∵,∴,即函数为奇函数,()1e ,e x x f x x R =-∈()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭()f x 又∵恒成立,故函数在上单调递增,不等式可转化为()0xxf x e e-=+>'()f x R ()()2240f x f x -+-<,即,解得:,即不等式的解集为()()224f x f x -<-224x x -<-32x -<<()()2240f x f x -+-<,故答案为.()32-,()32-,14.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||,再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.15.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得.11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦考点:抽象函数定义域.16.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公1,,,,n n a a d n S 式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.1,a d 三、解答题17.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.18.【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.19.【答案】【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE与∠EBC的大小.在△ADE中,由正弦定理可得,∴sin∠ADE=<=sin30°,∴∠ADE<30°∴∠ADC<∠ABC.【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.20.【答案】(1);(2);(3).()()448a b --=()()()2222,2x y x y --=>>6【解析】试题分析:(1)利用,得圆心到直线的距离,再进行化简,即可求2CD =2d =2解的值;(2)设点的坐标为,则代入①,化简即可求得线段中点的轨()()44a b --A P (),x y 22a xb y ⎧=⎪⎪⎨⎪=⎪⎩AB P 迹方程;(3)将面积表示为,再利用基本()()()114482446224ADP b S a a b a b a b ∆==+-=+-=-+-+A 不等式,即可求得的面积的最小值.ADP ∆(3),()()()11448244666224ADP b S a a b a b a b∆==+-=+-=-+-+≥+=A 当时, 面积最小, 最小值为.∴4a b ==+6+考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为,再利用基本不等式是解答的一个难点,属于()()446ADP S a b ∆=-+-+中档试题.21.【答案】【解析】解:(1)因为f (x )是R 上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…22.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请。
绥德县第二中学2018-2019学年上学期高三数学10月月考试题

绥德县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数的定义域为,函数的图象如图甲所示,则函数的图象是()f x [],a b ()y f x =(||)f x 图乙中的()2.+(a ﹣4)0有意义,则a 的取值范围是()A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为()A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞) 4. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .2255. 若圆心坐标为的圆在直线上截得的弦长为 )()2,1-10x y --=A . B . ()()22210x y -++=()()22214x y -++=C .D .()()22218x y -++=()()222116x y -++=6. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1B .C.D .1234587. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A .B .C .D .8. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D9. 已知集合,,若,则( )},052|{2Z x x x x M ∈<+=},0{a N =∅≠N M =a A . B .C .或D .或1-1-1-2-10.设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=()A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i11.设集合,,若,则的取值范围是( ){|12}A x x =<<{|}B x x a =<A B ⊆A .B .C .D .{|2}a a ≤{|1}a a ≤{|1}a a ≥{|2}a a ≥12.某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A .36种B .18种C .27种D .24种二、填空题13.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .14.设平面向量,满足且,则,的最大()1,2,3,i a i =1i a = 120a a ⋅= 12a a += 123a a a ++值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.15.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB 最小则直线的方程是.16.在空间直角坐标系中,设,,且,则 .)1,3(,m A )1,1,1(-B 22||=AB =m 17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.三、解答题18.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.19.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,()f x 其导函数的图象过点.()'f x ()12,(1)求函数的解析式;()f x (2)设函数,其中m 为常数,求函数的最小值.()()()'g x f x f x m =+-()g x 20.已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2,且{b n }为递增数列,若c n =,求证:c 1+c 2+c 3+…+c n <1.21.(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数{}n x 111n nd x x +-=d *n N ∈{}n x {}n a 列,且,.11a =123451111115a a a a a ++++=(1)求数列的通项;{}n a n a (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存2{}nna n n S n 2015n S ≥n 在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.22.已知函数f (x )=(ax 2+x ﹣1)e x ,其中e 是自然对数的底数,a ∈R .(Ⅰ)若a=0,求曲线f (x )在点(1,f (1))处的切线方程;(Ⅱ)若,求f (x )的单调区间;(Ⅲ)若a=﹣1,函数f (x )的图象与函数的图象仅有1个公共点,求实数m 的取值范围. 23.(本小题满分12分)已知.1()2ln ()f x x a x a R x=--∈(Ⅰ)当时,求的单调区间;3a =()f x (Ⅱ)设,且有两个极值点,其中,求的最小值.()()2ln g x f x x a x =-+()g x 1[0,1]x ∈12()()g x g x -【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.绥德县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:的图象是由这样操作而来:保留轴右边的图象,左边不要.然后将右边的图象关于(||)f x ()f x y y 轴对称翻折过来,故选B .考点:函数图象与性质.【思路点晴】本题主要考查函数的奇偶性、数形结合的数学思想方法.由加绝对值所得的图象有如下几种,()f x 一个是——将函数在轴下方的图象翻折上来,就得到的图象,实际的意义就是将函数值()f x ()f x ()f x 为负数转化为正的;一个是,这是偶函数,所以保留轴右边的图象,左边不要.然后将右边的图象关()f x y 于轴对称翻折过来.y2. 【答案】B 【解析】解:∵+(a ﹣4)0有意义,∴,解得2≤a <4或a >4.故选:B . 3. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减,∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键. 4. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y =0得,x =-1±,5∴|MN |=|(-1+)-(-1-)|=2,选D.5555. 【答案】B 【解析】考点:圆的方程.1111]6.【答案】B 【解析】7. 【答案】C 【解析】考点:三视图.8. 【答案】B 【解析】由题意,可取,所以9. 【答案】D 【解析】试题分析:由,集合,{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M {}a N ,0=又,或,故选D .φ≠N M 1-=∴a 2-=a 考点:交集及其运算.10.【答案】B【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,由z=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],整理得a 2+b 2=2a+2(b ﹣1)i .则,解得.所以z=1+i .故选B .【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.11.【答案】D 【解析】试题分析:∵,∴.故选D .A B ⊆2a ≥考点:集合的包含关系.12.【答案】 C【解析】排列、组合及简单计数问题.【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,有A 33=6种情况,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,有A 33×A 22=12种情况,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,有C 32×2=6种情况,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,有C 31=3种情况,则共有6+12+6+3=27种乘船方法,故选C .【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.二、填空题13.【答案】 [1,)∪(9,25] .【解析】解:∵集合,得 (ax ﹣5)(x 2﹣a )<0,当a=0时,显然不成立,当a >0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a ≤25,当a <0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题. 14..1+【解析】∵,∴,22212112221012a a a a a a +=+⋅+=++= 12a a +=而,222123121233123()2()21cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅<+>+≤+∴,当且仅当与.1231a a a ++≤+ 12a a + 3a1+15.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.16.【答案】1【解析】试题分析:,解得:,故填:1.()()()()2213111222=-+--+-=m AB 1=m 考点:空间向量的坐标运算17.【答案】22,3⎛⎫- ⎪⎝⎭【解析】三、解答题18.【答案】【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2,由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题因此,1≤m <2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.19.【答案】(1);(2)()2f x x =1m -【解析】(2)据题意,,即()()()2'2g x f x f x m x x m =+-=+-()2222{ 22m x x m x g x m x x m x -+<=+-≥,,,,①若,即,当时,,故在上12m <-2m <-2m x <()()22211g x x x m x m =-+=-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,单调递减;当时,,故在上单调递减,在2m x ≥()()22211g x x x m x m =+-=+--()g x 12m ⎛⎫- ⎪⎝⎭,上单调递增,故的最小值为.()1-+∞,()g x ()11g m -=--②若,即,当时,,故在上单调递减;112m -≤≤22m -≤≤2m x <()()211g x x m =-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,当时,,故在上单调递增,故的最小值为2m x ≥()()211g x x m =+--()g x 2m ⎛⎫+∞ ⎪⎝⎭,()g x .224m m g ⎛⎫= ⎪⎝⎭③若,即,当时,,故在上单调递12m >2m >2m x <()()22211g x x x m x m =-+=-+-()g x ()1-∞,减,在上单调递增;当时,,故在上12m ⎛⎫ ⎪⎝⎭,2m x ≥()()22211g x x x m x m =+-=+--()g x 2m ⎛⎫+∞ ⎪⎝⎭单调递增,故的最小值为.()g x ()11g m =-综上所述,当时,的最小值为;当时,的最小值为;当时,2m <-()g x 1m --22m -≤≤()g x 24m 2m >的最小值为.()g x 1m -20.【答案】已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2,且{b n }为递增数列,若c n =,求证:c 1+c 2+c 3+…+c n <1.【考点】数列的求和;等比数列的通项公式.【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.【分析】(Ⅰ)设数列{a n }的公比为q ,从而可得3(1++)=9,从而解得;(Ⅱ)讨论可知a 2n+3=3•(﹣)2n =3•()2n ,从而可得b n =log 2=2n ,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n }的公比为q ,则3(1++)=9,解得,q=1或q=﹣;故a n =3,或a n =3•(﹣)n ﹣3;(Ⅱ)证明:若a n =3,则b n =0,与题意不符;故a 2n+3=3•(﹣)2n =3•()2n ,故b n =log 2=2n ,故c n ==﹣,故c 1+c 2+c 3+…+c n =1﹣+﹣+…+﹣=1﹣<1.【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用. 21.【答案】(1),(2)详见解析. 1n a n=当时,…………13分8n =911872222015S =⨯+>>∴存在正整数,使得的取值集合为,…………15分n 2015n S ≥{}*|8,n n n N ≥∈22.【答案】【解析】解:(Ⅰ)∵a=0,∴f (x )=(x ﹣1)e x ,f ′(x )=e x +(x ﹣1)e x =xe x ,∴曲线f (x )在点(1,f (1))处的切线斜率为k=f (1)=e .又∵f (1)=0,∴所求切线方程为y=e (x ﹣1),即.ex ﹣y ﹣4=0(Ⅱ)f ′(x )=(2ax+1)e x +(ax 2+x ﹣1)e x =[ax 2+(2a+1)x]e x =[x (ax+2a+1)]e x ,①若a=﹣,f ′(x )=﹣x 2e x ≤0,∴f (x )的单调递减区间为(﹣∞,+∞),②若a <﹣,当x <﹣或x >0时,f ′(x )<0;当﹣<x <0时,f ′(x )>0.∴f (x )的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0].(Ⅲ)当a=﹣1时,由(Ⅱ)③知,f (x )=(﹣x 2+x ﹣1)e x 在(﹣∞,﹣1)上单调递减,在[﹣1,0]单调递增,在[0,+∞)上单调递减,∴f (x )在x=﹣1处取得极小值f (﹣1)=﹣,在x=0处取得极大值f (0)=﹣1,由,得g ′(x )=2x 2+2x .当x <﹣1或x >0时,g ′(x )>0;当﹣1<x <0时,g ′(x )<0.∴g (x )在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.故g (x )在x=﹣1处取得极大值,在x=0处取得极小值g (0)=m ,∵数f (x )与函数g (x )的图象仅有1个公共点,∴g (﹣1)<f (﹣1)或g (0)>f (0),即..【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题. 23.【答案】【解析】(Ⅰ))(x f 的定义域),0(+∞,当时,,3a =1()23ln f x x x x=--2'2213231()2x x f x x x x -+=+-=令得,或;令得,,'()0f x >102x <<1x >'()0f x <112x <<故的递增区间是和;()f x 1(0,2(1,)+∞的递减区间是.()f x 1(,1)2(Ⅱ)由已知得,定义域为,x a xx x g ln 1)(+-=),0(+∞,令得,其两根为,222111)(xax x x a x x g ++=++='0)(='x g 012=++ax x 21,x x 且,2121240010a x x a x x ⎧->⎪+=->⎨⎪⋅=>⎩。
改则县一中2018-2019学年上学期高三数学10月月考试题

改则县一中 2018-2019 学年上学期高三数学10 月月考试题班级 __________座号_____姓名__________分数__________ 一、选择题1.定义运算,比如.若已知,则=()A .B .C.D.2.已知数列a n是各项为正数的等比数列,点M (2,log 2 a2 ) 、 N (5,log 2 a5 ) 都在直线 y x 1上,则数列a n的前n项和为()A .2n 2 B.2n 1 2 C.2n 1 D.2n 1 13.已知定义在R 上的奇函数 f ( x)知足 f(x)=2x﹣ 4( x>0),则 {x|f ( x﹣1)> 0} 等于()A .{x|x >3} B .{x| ﹣ 1< x< 1} C. {x| ﹣ 1< x< 1 或 x> 3} D . {x|x <﹣ 1}4.某几何体的三视图以下(此中三视图中两条虚线相互垂直)则该几何体的体积为()8A. 3 B . 416 20C. 3 D .35.抛物线 y=﹣ 8x2的准线方程是()A .y= B. y=2 C. x= D. y= ﹣26 .若直线L:( 2m 1)x (m 1) y 7m 4 0 圆C:( x 1)2 ( y 2)2 25 交于 A, B 两点,则弦长 | AB |的最小值为()A.8 5 B.4 5 C.2 5 D . 57.已知定义在R 上的可导函数y=f( x)是偶函数,且知足 xf(′x)< 0,=0,则知足的 x 的范围为()A .(﹣∞,)∪(2,+∞)B.(,1)∪ (1,2)C.(,1)∪ (2,+∞)D.(0,)∪(2,+∞)8.在△ABC 中,∠A、∠B、∠C 所对的边长分别是a、 b、 c.若 sinC+sin (B ﹣ A ) =sin2A ,则△ABC 的形状为()A .等腰三角形B .直角三角形C.等腰直角三角形D.等腰三角形或直角三角形9.若{ a n}为等差数列,S n为其前项和,若 a1 0 ,d 0,S4 S8,则 S n 0 建立的最大自然数为()A .11B .12 C. 13 D.14 10.一个几何体的三视图以下图,假如该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC. 16πD. 48π11.已知函数f ( x) log 2 x( x 0)R ;②对随意 x R,有| x | ( x,函数 g( x) 知足以下三点条件:①定义域为0)g( x) 1g( x 2) ;③当x [ 1,1] 时,g( x) 1 x2 .则函数y f ( x) g (x) 在区间 [ 4,4] 上零2点的个数为()A .7B .6 C. 5 D . 4【命题企图】此题考察利用函数图象来解决零点问题,突出了对分段函数的转变及数形联合思想的考察,此题综合性强,难度大 .12.在ABC 中,b 3 ,c 3, B 30 ,则等于()A .3 B.12 3 C.3或2 3 D. 2二、填空题13.已知定义域为(0 , +∞)的函数 f ( x)知足:(1)对随意 x∈( 0,+∞),恒有 f ( 2x)=2f ( x)建立;( 2)当 x∈( 1,2] 时, f( x) =2﹣ x.给出以下结论:①对随意 m∈Z,有 f(2m) =0;②函数 f ( x)的值域为 [0, +∞);③存在 n∈Z ,使得 f (2n+1 ) =9;④“函数 f ( x)在区间( a,b)上单一递减”的充要条件是“存在 k∈Z,使得( a, b) ? ( 2k, 2k+1)”;此中全部正确结论的序号是.14.用描绘法表示图中暗影部分的点(含界限)的坐标的会合为.15.已知 x, y 知足条件,则函数z=﹣2x+y 的最大值是.16.在以下给出的命题中,全部正确命题的序号为.3②对 ? x,y∈R.若 x+y ≠0,则 x≠1 或 y≠﹣ 1;③若实数 x, y 知足 x2+y 2=1,则的最大值为;④若△ ABC 为锐角三角形,则sinA < cosB.⑤在△ABC 中, BC=5,G,O 分别为△ABC 的重心和外心,且? =5 ,则△ ABC 的形状是直角三角形.三、解答题17.如图,已知椭圆C:+y 2=1,点 B 坐标为( 0,﹣ 1),过点 B 的直线与椭圆 C 此外一个交点为 A ,且线段 AB 的中点 E 在直线 y=x 上(Ⅰ)求直线AB 的方程(Ⅱ)若点 P 为椭圆 C 上异于 A ,B 的随意一点,直线AP ,BP 分别交直线y=x 于点 M , N,证明: OM ?ON 为定值.18.(此题满分15 分)已知函数 f ( x) ax2bx c ,当x 1 时, f (x)1恒建立.( 1)若a 1 , b c ,务实数b的取值范围;( 2)若g(x)cx2bx a ,当 x 1 时,求g (x)的最大值.【命题企图】此题考察函数单一性与最值,分段函数,不等式性质等基础知识,意在考察推理论证能力,剖析问题和解决问题的能力.19.(本小题满分10 分)已知函数f( x)= |x- a|+ |x+ b|,( a≥ 0,b≥0).( 1)求 f( x)的最小值,并求取最小值时x 的范围;( 2)若 f( x)的最小值为2,求证: f( x)≥a+ b.20.(此题满分 12 分)在ABC 中,已知角A, B,C所对的边分别是a, b, c ,边 c 7,且2tan A tan B3 tan A tan B 3 ,又3 3b 的值.ABC 的面积为S ABC ,求 a221.(本小题满分 12 分)已知函数 f (x) x2(2 a 1)xa ln x ( a R ) .( I )若 a1f ( x) 的单一区间;,求 y2( II )函数 g(x) (1 a) x ,若 x 0 [1, e] 使得 f ( x 0 ) g( x 0 ) 建立,务实数 a 的取值范围 .22.一艘客轮在航海中遇险,发出求救信号 .在遇险地址A 南偏西 45 方向 10 海里的B 处有一艘海难搜救艇收到求救信号后立刻侦察,发现遇险客轮的航行方向为南偏东 75 ,正以每小时 9 海里的速度向一小岛凑近 .已知海难搜救艇的最大速度为每小时21 海里 .( 1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; ( 2)若最短时间内两船在C 处相遇,如图,在 ABC 中,求角 B 的正弦值 .23.圆锥底面半径为1cm ,高为 2cm ,此中有一个内接正方体,求这个内接正方体的棱长.改则县一中 2018-2019 学年上学期高三数学10 月月考试题(参照答案)一、选择题1.【答案】 D【分析】解:由新定义可得,====.应选: D.【评论】此题考察三角函数的化简求值,考察了两角和与差的三角函数,是基础题.2.【答案】 C【分析】分析:此题考察等比数列的通项公式与前n 项和公式. log 2 a2 1, log2 a5 4 ,∴a2 2 , a5 16 , 的前 n 项和为2n 1,选C.∴a1 1 , q 2 ,数列an3.【答案】 C【分析】解:当 x> 0 时,由 f ( x)> 0 得 2x﹣ 4>0,得 x>2,∵函数 f ( x)是奇函数,当 x<0 时,﹣ x> 0,则 f (﹣ x) =2﹣x﹣ 4=﹣ f( x),即 f ( x) =4﹣ 2﹣x,x< 0,当 x<0 时,由 f( x)> 0 得 4﹣ 2﹣x> 0,得﹣ 2< x< 0,即 f ( x)> 0 得解为 x> 2 或﹣ 2< x< 0,由 x﹣1> 2 或﹣ 2< x﹣ 1<0,得 x>3 或﹣ 1<x< 1,即 {x|f (x﹣ 1)> 0} 的解集为 {x| ﹣ 1< x< 1 或 x> 3} ,应选: C.【评论】此题主要考察不等式的求解,依据函数奇偶性的性质先求出f( x)> 0 的解集是解决此题的重点.4.【答案】【分析】选 D. 依据三视图可知,该几何体是一个棱长为 2 的正方体挖去一个以正方体的中心为极点,上底面3120为底面的正四棱锥后剩下的几何体如图,其体积V= 2 -3×2×2×1=3,应选 D.5.【答案】 A【分析】解:整理抛物线方程得x2=﹣y,∴ p=∵ 抛物线方程张口向下,∴准线方程是y=,应选: A.【评论】此题主要考察抛物线的基天性质.解决抛物线的题目时,必定要先判断焦点所在地点.6.【答案】B【分析】试题剖析:直线 L : m 2x y 72x y 7 03,1 ,当点(3,1)x y 4 0 ,直线过定点y 4,解得定点x 0是弦中点时,此时弦长AB 最小,圆心与定点的距离 d1 3 2 2 1 2 5 ,弦长AB 22554 5 ,应选B.考点: 1.直线与圆的地点关系; 2.直线系方程 .【方法点睛】此题考察了直线与圆的地点关系,属于基础题型,波及一些最值问题,当点在圆的外面时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,而且弦长公式是l 2 R2 d 2,R是圆的半径,d是圆心到直线的距离.1111]7.【答案】 D【分析】解:当 x> 0 时,由 xf ′(x)< 0,得 f′( x)< 0 ,即此时函数单一递减,∵函数 f (x)是偶函数,∴ 不等式等价为 f ( | |)<,即 | |>,即>或<﹣,解得 0< x<或x>2,故 x 的取值范围是(0,)∪ (2,+∞)应选: D【评论】此题主要考察不等式的求解,依据函数奇偶性和单一性之间的关系是解决此题的重点.8.【答案】 D【分析】解:∵ sinC+sin ( B﹣ A) =sin2A ,∴sin(A+B ) +sin( B﹣ A )=sin2A ,∴sinAcosB+cosAsinB+sinBcosA ﹣ cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA (sinA ﹣ sinB )=0,∴cosA=0 ,或 sinA=sinB ,∴A=,或a=b,∴△ABC 为等腰三角形或直角三角形应选: D.【评论】此题考察三角形形状的判断,波及三角函数公式的应用,此题易约掉 cosA 而致使漏解,属中档题和易错题.9.【答案】 A【分析】考点:得出数列的性质及前项和.【方法点晴】此题主要考察了等差出数列的性质及前项和问题的应用,此中解答中波及到等差数列的性质,等差数列的前项和等公式的灵巧应用的知识点的综合考察,侧重考察了学生剖析问题和解答问题的能力,以及推理与运算能力,属于中档题,此题的解答中,由“a10,d0 ”判断前项和的符号问题是解答的重点.10.【答案】 B【分析】解:由三视图可知几何体是底面半径为 2 的圆柱,∴几何体的侧面积为2π×2×h=12 π,解得 h=3,2∴几何体的体积V= π×2×3=12 π.应选 B.【评论】此题考察了圆柱的三视图,构造特点,体积,表面积计算,属于基础题.11.【答案】 D第Ⅱ卷(共100 分) [. Com]12.【答案】 C【分析】考点:余弦定理.二、填空题13.【答案】①②④.【分析】解:∵x∈( 1, 2]时, f ( x) =2﹣x.∴f( 2) =0. f( 1) = f ( 2) =0.∵f( 2x ) =2f( x),∴f( 2k x) =2k f( x).①f ( 2m) =f ( 2?2m﹣1) =2f ( 2m﹣1) = =2m﹣1 f( 2)=0,故正确;②设 x∈( 2, 4]时,则x∈( 1, 2],∴ f( x)=2f ()=4﹣x≥0.若 x∈(4, 8]时,则x∈( 2, 4],∴ f( x)=2f ()=8﹣x≥0.一般地当x∈( 2m, 2m+1),则∈( 1, 2] , f ( x) =2 m+1﹣ x≥0 ,进而 f ( x)∈[0, +∞),故正确;m 2m+1 ),f x )=2m+1 x 0③由②知当 x∈( 2 ,(﹣≥ ,∴ f( 2n n+1n 1=2 n 1 n f 2 n+1)=2 ﹣ 2 ﹣使(+1 ) =9,﹣,假定存在即 2n﹣ 1=9,∴ 2n=10 ,∵ n∈Z,∴ 2n=10 不建立,故错误;④由②知当 x∈( 2k, 2k+1)时, f ( x) =2k+1﹣ x 单一递减,为减函数,k k+1∴若( a, b) ? (2 , 2)”,则“函数f(x)在区间(a,b)上单一递减”,故正确.14.【答案】{ ( x,y) |xy> 0,且﹣ 1≤x≤2,﹣≤y≤1}.【分析】解:图中的暗影部分的点设为(x, y)则{x ,y) |﹣ 1≤x≤0,﹣≤y≤0或0≤x≤2,0≤y≤1}={ ( x, y) |xy> 0 且﹣ 1≤x≤2,﹣≤y≤1}故答案为: { (x, y) |xy> 0,且﹣ 1≤x≤2,﹣≤y≤1}.15.【答案】4.【分析】解:由拘束条件作出可行域如图,化目标函数z=﹣ 2x+y 为 y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2, 0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2× 2 +0=4.(﹣)故答案为: 4.【评论】此题考察了简单的线性规划,考察了数形联合的解题思想方法,是中档题.16.【答案】:①②③【分析】解:对于①函数 y=2x 3﹣ 3x+1= 的图象对于点(0, 1)成中心对称,假定点(x0,y0)在函数图象上,则其对于①点( 0 ,1)的对称点为(﹣x0, 2﹣ y0)也知足函数的分析式,则① 正确;对于②x,y R x+y ≠0,对应的是直线y=﹣x之外的点,则x≠1 y≠ 1 ②正确;对 ? ∈ ,若,或﹣,对于③若实数 x, y 知足 x2+y 2=1,则= ,能够看作是圆x2+y 2=1 上的点与点(﹣2, 0)连线的斜率,其最大值为,③ 正确;对于④若△ ABC 为锐角三角形,则 A , B,π﹣ A ﹣B 都是锐角,即π﹣A ﹣B <,即 A+B >, B>﹣ A ,则 cosB< cos(﹣A ),即 cosB< sinA ,故④不正确.对于⑤在△ ABC 中, G, O 分别为△ ABC 的重心和外心,取 BC 的中点为 D,连结 AD 、 OD 、GD ,如图:则 OD⊥ BC, GD= AD ,∵=|,由则,即则又 BC=5则有由余弦定理可得cosC< 0,即有 C 为钝角.则三角形ABC 为钝角三角形;⑤ 不正确.故答案为:①②③三、解答题17.【答案】【分析】(Ⅰ)解:设点E( t, t),∵B ( 0,﹣ 1),∴ A ( 2t, 2t+1),∵点A在椭圆 C上,∴,整理得: 6t2+4t=0 ,解得 t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线 AB 的方程为: x+2y+2=0 ;(Ⅱ)证明:设P( x0, y0),则,直线 AP 方程为: y+ =(x+),联立直线AP 与直线 y=x 的方程,解得:x M =,直线 BP 的方程为: y+1=,联立直线BP 与直线 y=x 的方程,解得:x N=,∴ OM ?ON=|x M ||x N|=2?||?||= ||= ||= ||=.【评论】此题是一道直线与圆锥曲线的综合题,考察求直线的方程、线段乘积为定值等问题,考察运算求解能力,注意解题方法的累积,属于中档题.18. 【答案】 【分析】 ( 1) [2 2 2,0] ;( 2) 2 .( 1)由 a 1 且 bc ,得 f ( x) x 2 bx b ( xb )2b b 2 ,24当 x 1时, f (1)1 b b1,得 1b 0 , 3 分故 f ( x) 的对称轴 x b [0,1 1时,f ( x)min f ( b ) b b 212] ,当 x24, 5 分2f ( x)max f ( 1) 1 1解得 2 2 2 b2 2 2 ,综上,实数 b 的取值范围为 [ 2 2 2,0] ; 7 分1 12 , 13 分且当 a 2 , b 0 , c1时,若 x 1 ,则 f ( ) 2 2 1 1恒建立,x x 且当 x0 时, g( x)x 2 2 取到最大值 2 . g ( x) 的最大值为 2.15分19. 【答案】【分析】 解:( 1)由 |x - a|+ |x + b|≥ |( x - a )-( x + b ) |= |a + b|得,当且仅当( x - a )( x + b )≤ 0,即- b ≤ x ≤ a 时, f ( x )获得最小值,∴当 x ∈ [- b ,a]时, f ( x ) min = |a + b|= a + b.( 2)证明:由( 1)知 a + b = 2,( a + b ) 2= a + b +2 ab ≤2( a +b )= 4,∴ a + b ≤2,∴f (x ) ≥ a + b = 2≥ a + b ,即 f ( x ) ≥ a + b.11 20. 【答案】.2【分析】试题分析:由 tan A tan B 3 tan A tan B 3可得tan A tan B3 ,即 tan(A B)3 .1 tan A tan B∴tan( C )3 ,∴ tan C3 ,∴ tan C3 .∵C (0, ) ,∴C .3又ABC 的面积为 S ABC 3 3 ,∴ 1ab sin C3 3 ,即 1ab 3 3 3 ,∴ ab 6 .222 22 2又由余弦定理可得 c 2a2b22ab cosC ,∴( 7)2 a 2 b 2 2ab cos ,∴(7)22 1213 11a 2b 2 ab (a b)23ab ,∴ (ab) 2 ,∵ ab 0,∴ a b .1242考点:解三角形问题.【方法点晴】 此题主要考察认识三角形问题, 此中解答中波及到两角和与两角差的正切函数公式、 三角形的面积、正弦定理和余弦定理,以及特别角的三角函数值等知识点的综合考察, 侧重考察了学生剖析问题和解答问题的能力,以及推理与运算能力,此中娴熟掌握基本公式和灵巧运用公式是解答此题的重点,属于中档试题.21. 【答案】【分析】【命题企图】 此题考察导数的应用等基础知识,意在考察转变与化归思想的运用和综合剖析问题解决问题的能力.请22.【答案】(1)2 3 3小时;( 2).3 14【分析】试题分析:( 1)设搜救艇追上客轮所需时间为小时,两船在 C 处相遇.在ABC 中,BAC 45 75 120 ,AB10 , AC 9t , BC21t .由余弦定理得:BC 2AB2AC 2 2 AB AC cos BAC ,因此 (21t) 2102(9t) 2 2 10 9t (1) ,2化简得 36t 29t 10 0,解得 t2 或 t 5 (舍去) .3 2 12因此,海难搜救艇追上客轮所需时间为小时 .3( 2)由 AC92 212 .6, BC14333AC sin BAC6 sin12063 3 在ABC 中,由正弦定理得2sin B1414.BC143 3.因此角 B 的正弦值为14考点:三角形的实质应用.【方法点晴】 此题主要考察认识三角形的实质应用,此中解答中波及到正弦定理、 余弦定理的灵巧应用, 侧重考察了学生剖析问题和解答问题的能力,以及推理与运算能力, 属于中档试题, 此题的解答中, 可先依据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示 AC , BC ,再依据正弦定理和余弦定理,即可求解此类问题,此中正确画出图形是解答的重点.23. 【答案】2cm .2【分析】试题剖析:画出图形,设出棱长,依据三角形相像,列出比率关系,求出棱长即可.试题分析:过圆锥的极点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面 CDD 1C 1 ,以下图.设正方体棱长为,则 CC 1 x , C 1D 1 2x , 作 SOEF 于 O ,则 SO2,OE1,CC 1EC 1 12 x∵ ECC 1x2,EOS ,∴EO ,即1SO2 ∴ x2cm ,即内接正方体棱长为2cm .22考点:简单组合体的构造特点.。
绥中县高中2018-2019学年上学期高三数学期末模拟试卷含答案

绥中县高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 112. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.3. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 4. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D.有无数条,不一定都在平面α内5.设i是虚数单位,则复数21ii在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.已知f(x)为偶函数,且f(x+2)=﹣f(x),当﹣2≤x≤0时,f(x)=2x;若n∈N*,a n=f(n),则a2017等于()A.2017 B.﹣8 C.D.7.在平面直角坐标系中,直线y=x与圆x2+y2﹣8x+4=0交于A、B两点,则线段AB的长为()A.4B.4C.2D.28.已知等差数列{a n}的前n项和为S n,若m>1,且a m﹣1+a m+1﹣a m2=0,S2m﹣1=38,则m等于()A.38 B.20 C.10 D.99.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()A.8 B.1 C.5 D.﹣110.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.3611.直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点12.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣3二、填空题13.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .14.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.15.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .16.S n =++…+= .17.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________. 18.观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …照此规律,第n 个等式为 .三、解答题19.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.20.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.21.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.22.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.23.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)24.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.绥中县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C2. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,3. 【答案】B4. 【答案】B【解析】解:假设过点P 且平行于l 的直线有两条m 与n∴m ∥l 且n ∥l由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾 又因为点P 在平面内 所以点P 且平行于l 的直线有一条且在平面内所以假设错误. 故选B .【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.5. 【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B6.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.7.【答案】A【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A.【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.8.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,若a m等于0,显然S2m﹣1==(2m﹣1)a m=38不成立,故有a m=2,∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10.故选C9.【答案】B【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.10.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
绥中县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 (2)

绥中县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( )A .15B .30C .31D .64 2. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .3. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 4. 抛物线y 2=6x 的准线方程是( )A .x=3B .x=﹣3C .x=D .x=﹣5. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-546.=( )A .﹣iB .iC .1+iD .1﹣i7. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣8. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 9. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,24e ⎡⎫-⎪⎢⎣⎭C .33,24e ⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭1111] 10.若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 11.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱 12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.14.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .15.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 16.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .三、解答题(本大共6小题,共70分。
绥中县民族中学2018-2019学年高三上学期11月月考数学试卷含答案

绥中县民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题. 2. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限3. 函数f (x﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .104. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( ) A .0B.C.D.5. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为,则这个圆的方程是( ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=6. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16 B .﹣16 C .8D .﹣87. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个8. 等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.B.C.D.9. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 10.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >011.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1二、填空题13.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件 (4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号)15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .17.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 18.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .三、解答题19.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且. (1)当a =()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.20.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.21.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.22.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.23.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2﹣(ac+b)x+bc<0.24.已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M.(I)求椭圆Γ的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.绥中县民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D 【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2AB =,故选D.2. 【答案】C【解析】解:z====+i ,当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解; 故选:C .【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.3. 【答案】C【解析】解:∵函数=,∴f (3)=32+2=11.故选C .4. 【答案】D【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2=4x 的焦点,可得0=a+1,解得a=﹣1, 直线的斜率为﹣1,该直线的倾斜角为:.故选:D .【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.5. 【答案】B 【解析】考点:圆的方程.1111] 6. 【答案】B【解析】解:∵f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.7.【答案】D【解析】解:由{0,1}∪A={0,1}易知:集合A⊆{0,1}而集合{0,1}的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n个元素的集合的子集个数为2n个这个知识点,为基础题.8.【答案】C【解析】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.9.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.10.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.11.【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A.【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.12.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题13.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.14.【答案】(4)【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.16.【答案】6,12,2, nna nn nn*=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312na a a a n n=++⋅⋅⋅⋅⋅⋅⋅11:6n a==;()()()123112312:121n nnn a a a a a n na a a a n n--≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:nnn an+≥=17.【答案】3-【解析】作出可行域如图所示:作直线l:30x y+=,再作一组平行于l的直线l:3x y z a+=-,当直线l经过点5(,2)3M时,3z a x y-=+取得最大值,∴max5()3273z a-=⨯+=,所以max74z a=+=,故3a=-.18.【答案】2016.【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.三、解答题19.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,. 20.【答案】【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E , ∵四边形ABCD 为菱形,∴BD ⊥AC ,又AA 1⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1A ⊥BD ; 又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1, 又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.(2)∵AB =BD =2,且四边形ABCD 是菱形, ∴AC =2AE =2AB 2-BE 2=23,又△BMC 1为等腰三角形,且M 为A 1A 的中点, ∴BM 是最短边,即C 1B =C 1M . 则有BC 2+C 1C 2=AC 2+A 1M 2,即4+C 1C 2=12+(C 1C 2)2,解得C 1C =463,所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2. 21.【答案】【解析】(I )解:∵点(a n ,S n )在y=x 的图象上(n ∈N *),∴,当n ≥2时,,∴,化为,当n=1时,,解得a 1=.∴==.(2)证明:对任意正整数n 都有=2n+1,∴c n =(c n ﹣c n ﹣1)+(c n ﹣1﹣c n ﹣2)+…+(c 2﹣c 1)+c 1 =(2n ﹣1)+(2n ﹣3)+…+3==(n+1)(n ﹣1).∴当n≥2时,==.∴=+…+=<=,又=.∴.【点评】本题考查了等比数列的通项公式与等差数列的前n项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,∴O是AD1的中点,∴OE∥BD1,∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,∴BD1∥平面A1DE.(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,∴ADD1A1是正方形,∴A1D⊥AD1,∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,∴A1D⊥AB,又AB∩AD1=A,∴A1D⊥平面ABD1.23.【答案】【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,且b>1.由根与系的关系得,解得,所以得.(2)由于a=1且b=2,所以不等式ax2﹣(ac+b)x+bc<0,即x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0.①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.综上所述:当c>2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|2<x<c};当c<2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|c<x<2};当c=2时,不等式ax2﹣(ac+b)x+bc<0的解集为∅.【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.24.【答案】【解析】解:(Ⅰ)依题意得,解得,所以所求的椭圆方程为;(Ⅱ)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x﹣2y﹣2=0相切,因为以AM为直径的圆C过点F,所以∠AFM=90°,即AF⊥AM,又=﹣1,所以直线MF的方程为y=x﹣2,由消去y,得3x2﹣8x=0,解得x=0或x=,所以M(0,﹣2)或M(,),(1)当M为(0,﹣2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x﹣2y﹣2=0的距离为d==≠,所以圆C与直线x﹣2y﹣2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r===,所以圆心C到直线x﹣2y﹣2=0的距离为d==r,所以圆心C与直线x﹣2y﹣2=0相切,此时k AF=,所以直线l的方程为y=﹣+2,即x+2y﹣4=0,综上所述,存在满足条件的直线l,其方程为x+2y﹣4=0.【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.。
市中区第一中学2018-2019学年上学期高三数学10月月考试题
市中区第一中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .42. 已知a=log 20.3,b=20.1,c=0.21.3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a3. 已知函数,其中,为自然对数的底数.当时,函数()e sin xf x x =x ∈R e 2.71828= [0,]2x π∈()y f x =的图象不在直线的下方,则实数的取值范围()y kx =k A . B . C . D .(,1)-∞(,1]-∞2(,e )π-∞2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.4. 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆C 22221x y a b-=0a >0b >C 被双曲线截得劣弧长为,则双曲线的离心率为( )C 23a πCA .B CD655. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是()A .B .πC .D .6. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .7. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5 B . C .D .21-7-8. 已知,则f{f[f (﹣2)]}的值为()A .0B .2C .4D .89. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .10.已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为()A .M >N >PB .P <M <NC .N >P >M11.设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )A .1B .2C .3D .412.设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到F 22221(0,0)x y a b a b-=>>OF 另一条渐近线的距离为,则双曲线的离心率为( )1||2OF A . B C .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.二、填空题13.已知是函数两个相邻的两个极值点,且在1,3x x ==()()()sin 0f x x ωϕω=+>()f x 32x =处的导数,则___________.302f ⎛⎫'<⎪⎝⎭13f ⎛⎫= ⎪⎝⎭14.已知实数,满足,目标函数的最大值为4,则______.x y 2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩3z x y a =++a =【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.15.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .16.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .三、解答题17.(本小题12分)在多面体中,四边形与是边长均为正方形,平面ABCDEFG ABCD CDEF a CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.4a =G ADE -【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.18.(本小题满分12分)椭圆C :+=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,B x 2a 2y 2b 2是C 的长轴上的两个顶点,已知|PF |=1,k PA ·k PB =-.12(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.19.(本小题满分10分)已知曲线,直线(为参数).22:149x y C +=2,:22,x t l y t =+⎧⎨=-⎩(1)写出曲线的参数方程,直线的普通方程;C (2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.C P 30A ||PA 20.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)(1)求C 1与C 2交点的坐标;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由. 2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)21.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M (x 0,y 0)到直线l :Ax+By+C=0的距离d=,当点M 在函数y=h(x )图象上时,公式变为,请参考该公式求出函数ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)|,(s ∈R ,t >0)的最小值. 22.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD(1)求证:平面;//PQ SAD (2)求证:平面平面.⊥SAC SEQ市中区第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A 【解析】1111]试题分析:.故选A .111]199515539()9215()52a a S a a a S a +===+考点:等差数列的前项和.2. 【答案】C【解析】解:由对数和指数的性质可知,∵a=log 20.3<0b=20.1>20=1c=0.21.3 < 0.20=1∴a <c <b 故选C . 3. 【答案】B【解析】由题意设,且在时恒成立,而()()e sin xg x f x kx x kx =-=-()0g x ≥[0,]2x π∈.令,则,所以在上递'()e (sin cos )x g x x x k =+-()e (sin cos )x h x x x =+'()2e cos 0x h x x =≥()h x [0,]2π增,所以.当时,,在上递增,,符合题意;当21()h x e π≤≤1k ≤'()0g x ≥()g x [0,]2π()(0)0g x g ≥=时,,在上递减,,与题意不合;当时,为一2e k π≥'()0g x ≤()g x [0,]2π()(0)0g x g ≤=21e k π<<()g x '个递增函数,而,,由零点存在性定理,必存在一个零点,使得'(0)10g k =-<2'(e 02g k ππ=->0x ,当时,,从而在上单调递减,从而,与题0'()0g x =0[0,)x x ∈'()0g x ≤()g x 0[0,)x x ∈()(0)0g x g ≤=意不合,综上所述:的取值范围为,故选B .k (,1]-∞ 4. 【答案】B考点:双曲线的性质.5.【答案】C【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档6.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项.故选:C .【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 7. 【答案】D111]【解析】试题分析:.()()()311112f f f -=-==+=考点:分段函数求值.8. 【答案】C 【解析】解:∵﹣2<0∴f (﹣2)=0∴f (f (﹣2))=f (0)∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4故选C . 9. 【答案】A【解析】解:因为两条直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8,l 1与l 2平行.所以,解得m=﹣7.故选:A .【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力. 10.【答案】A【解析】解:∵0<a <b <c <1,∴1<2a <2,<5﹣b <1,<()c <1,5﹣b =()b >()c >()c ,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.11.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)| }将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题12.【答案】B【解析】二、填空题13.【答案】1 2【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,ω可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,ϕϕ302f ⎛⎫'<⎪⎝⎭()f x 就可以求出.113f ⎛⎫⎪⎝⎭14.【答案】3-【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线0l 30x y +=0l l 3x y z a +=-经过点时,取得最大值,∴,所以,故l 5(,2)3M 3z a x y -=+max 5()3273z a -=⨯+=max 74z a =+=.3a =-15.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.16.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||,再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.三、解答题17.【答案】【解析】(1)连接,由题意,知,,∴平面.FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分EF CD A EF GH ⊥由题意,得,,,∴,14BH a =34CH a =12BG a =2222516GH BG BH a =+=,,22225()4FG CF BG BC a =-+=22222516FH CF CH a =+=则,∴.……………………………4分222FH FG GH =+GH FG ⊥又∵,平面.……………………………5分EF FG F = GH ⊥EFG ∵平面,∴平面平面.……………………………6分GH ⊂AGH AGH ⊥EFG18.【答案】【解析】解:(1)可设P 的坐标为(c ,m ),则+=1,c 2a 2m 2b 2∴m =±,b 2a ∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k PA ·k PB =-得12·=-,即b 2=a 2,②b 2a c +a b 2a c -a 1212由①②解得a =2,b =,2∴椭圆C 的方程为+=1.x 24y 22(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (,1),此时S △PMN =×2×=212222.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得+=1,即x =±,x 24k 2x 2221+2k 2∴y =±,2k 1+2k 2即M (,),N (,),21+2k 22k 1+2k 2-21+2k 2-2k 1+2k 2∴|MN |= (41+2k 2)2 +(4k 1+2k 2)2 =4,1+k 21+2k 2点P (,1)到l :kx -y =0的距离d =,∴S △PMN =|MN |d =·2|2k -1|k 2+112124·1+k21+2k2|2k -1|k 2+1=2·=2 |2k -1|1+2k 22k 2+1-22k 1+2k 2=2 ,1-22k 1+2k2当k >0时,≤=1,22k 1+2k 222k 22k 此时S ≥0显然成立,当k =0时,S =2.当k <0时,≤=1,-22k 1+2k 21+2k 21+2k 2当且仅当2k 2=1,即k =-时,取等号.22此时S ≤2,综上所述0≤S ≤2.22即当k =-时,△PMN 的面积的最大值为2,此时l 的方程为y =-x .2222219.【答案】(1),;(22cos 3sin x y θθ=⎧⎨=⎩26y x =-+【解析】试题分析:(1)由平方关系和曲线方程写出曲线的参数方程,消去参数作可得直线的普通方程;(2)C C 由曲线的参数方程设曲线上任意一点的坐标,利用点到直线的距离公式求出点直线的距离,利用正C C P P 弦函数求出,利用辅助角公式进行化简,再由正弦函数的性质求出的最大值与最小值.PA PA 试题解析:(1)曲线的参数方程为,(为参数),直线的普通方程为.C 2cos 3sin x y θθ=⎧⎨=⎩26y x =-+(2)曲线上任意一点到的距离为.C (2cos ,3sin )P θθ|4cos 3sin 6|d θθ=+-则,其中为锐角,且,当时,取|||5sin()6|sin 30d PA θα==+- α4tan 3α=sin()1θα+=-||PA.当时,sin()1θα+=||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.20.【答案】【解析】解:(1)∵曲线C 1:ρ=1,∴C 1的直角坐标方程为x 2+y 2=1,∴C 1是以原点为圆心,以1为半径的圆,∵曲线C 2:(t 为参数),∴C 2的普通方程为x ﹣y+=0,是直线,联立,解得x=﹣,y=.∴C 2与C 1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t 为参数),化为普通方程为::x 2+4y 2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C 1与C 2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.21.【答案】【解析】解:(1)因为点P ,Q 关于直线y=x ﹣1对称,所以.解得.又n=e m ﹣1,所以x=1﹣e (y+1)﹣1,即y=ln (x ﹣1).(2)ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)﹣1|=,令u (s )=.则u (s ),v (t )分别表示函数y=e x ﹣1,y=ln (t ﹣1)图象上点到直线x ﹣y ﹣1=0的距离.由(1)知,u min (s )=v min (t ).而f ′(x )=e x ﹣1,令f ′(s )=1得s=1,所以u min (s )=.故.【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.22.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取中SD 点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先F PF AF ,AF PQ //证明线面垂直,根据所给的条件证明平面,即平面平面.⊥AC SEQ ⊥SAC SEQ 试题解析:证明:(1)取中点,连结.SD F PF AF ,∵分别是棱的中点,∴,且.F P 、SD SC 、CD FP //CD FP 21=∵在菱形中,是的中点,ABCD Q AB ∴,且,即且.CD AQ //CD AQ 21=AQ FP //AQ FP =∴为平行四边形,则.AQPF AF PQ //∵平面,平面,∴平面.⊄PQ SAD ⊂AF SAD //PQ SAD考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理.。
绥中县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
绥中县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1 B.⎝ C.()1,3⎫⎪⎪⎝⎭D .(2. 某几何体的三视图如图所示,则该几何体的表面积为()A .8+2 B .8+8 C .12+4 D .16+43. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=4. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>5. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4846. 等差数列{a n }中,已知前15项的和S15=45,则a 8等于() A .B .6C .D .37. 下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .xy e =8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L2h 相当于将圆锥体积公式中的π近似取为()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 10.已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}11.对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错12.已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1D .a ≤﹣3二、填空题13.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________. 14.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .15.已知x 、y 之间的一组数据如下: x 0 1 2 3 y 8 2 6 4则线性回归方程所表示的直线必经过点 .16.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1); ②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .17.多面体的三视图如图所示,则该多面体体积为(单位cm ) .18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19.如图,点A 是单位圆与x 轴正半轴的交点,B (﹣,). (I )若∠AOB=α,求cos α+sin α的值;(II )设点P 为单位圆上的一个动点,点Q 满足=+.若∠AOP=2θ,表示||,并求||的最大值.20.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.21.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =122b 2+2c 2-a 2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.22.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.23.(本小题满分12分)某单位共有10名员工,他们某年的收入如下表:员工编号 1 2 3 4 5 6 7 8 9 10 年薪(万元)33.5455.56.577.5850(1)求该单位员工当年年薪的平均值和中位数;ABCDP(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望;(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为3万元、5.4万元、6.5万元、2.7万元,预测该员工第五年的年薪为多少?附:线性回归方程a x b yˆˆˆ+=中系数计算公式分别为: 121()()()niii nii x x y y b x x ==--=-∑∑,x b y aˆˆ-=,其中x 、y 为样本均值.24.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .绥中县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是03060α<<且045α≠,所以直线的斜率为00tan30tan 60a <<且0tan 45α≠,即13a <<或1a << C. 考点:直线的倾斜角与斜率.2. 【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为,根据三视图得出侧棱长度为=2,∴该几何体的表面积为2×(2×+2×2+2×2)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.3. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2xy -=为非奇非偶函数。
绥中县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
绥中县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=()A .2或0B .0C .﹣2或0D .﹣2或22. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .3. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.4. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为()A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)5. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种6. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A .i >4?B .i >5?C .i >6?D .i >7?班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7.()0﹣(1﹣0.5﹣2)÷的值为()A.﹣B.C.D.8.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.定义在(0,+∞)上的单调递减函数f(x),若f(x)的导函数存在且满足,则下列不等式成立的是()A.3f(2)<2f(3)B.3f(4)<4f(3)C.2f(3)<3f(4)D.f(2)<2f(1)11.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=cos2x D.y=﹣sin2x12.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()A.B.C.D.二、填空题13.等比数列{a n}的公比q=﹣,a6=1,则S6= .14.已知1a b>>,若10log log3a bb a+=,b aa b=,则a b+= ▲.15.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考的好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的两人说对了.16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)17.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.{x -2y +1≤02x -y +2≥0x +y -2≤0)18.已知函数,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是 . 三、解答题19.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 24568y 3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.20.(本小题满分12分)已知数列{}的前n 项和为,且满足.n a n S *)(2N n a n S n n ∈=+(1)证明:数列为等比数列,并求数列{}的通项公式;}1{+n a n a (2)数列{}满足,其前n 项和为,试求满足的n b *))(1(log 2N n a a b n n n ∈+⋅=n T 201522>++nn T n 最小正整数n .【命题意图】本题是综合考察等比数列及其前项和性质的问题,其中对逻辑推理的要求很高.n 21.已知函数f (x0=.(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.22.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.23.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.24.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.绥中县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D B D B C D C D A题号1112答案D B二、填空题13. ﹣21 .14.15.乙,丙16. 15 17.18. (﹣∞,2)∪(3,5) .三、解答题19.20.21.22.23.24.。
绥中县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
绥中县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图是一个多面体的三视图,则其全面积为( )A. B. C. D.2. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A. B.C.D.3. 有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( ) A .0B .1C .2D .34. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .若tan α≠1,则α≠ D .若tan α≠1,则α=5. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. B.C.D.6. 已知集合2{430}A x x x =++≥,{21}xB x =<,则A B =( )A .[3,1]--B .(,3][1,0)-∞--C .(,3)(1,0]-∞-- D .(,0)-∞7. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-8. 已知椭圆C:+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( ) A.﹣B.﹣C.D.﹣9. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( ) A .10B .﹣10C .9D .1510.在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形11.已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β 12.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.二、填空题13.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 14.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm . 15.的展开式中的系数为 (用数字作答).16.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________17.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则=+)10()4(f f .18.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.三、解答题19.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.21.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.时,求cos B;(1)当k=54(2)若△ABC面积为3,B=60°,求k的值.22.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.23.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.24.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.绥中县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.2.【答案】B【解析】解:∵y=f(|x|)是偶函数,∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,x<0部分的图象关于y轴对称而得到的.故选B.【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.3.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.4.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.5. 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.6. 【答案】B【解析】(,3][1,)A =-∞--+∞,(,0)B =-∞, ∴(,3][1,0)AB =-∞--.7. 【答案】A 【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 8. 【答案】B【解析】解:如图所示,由椭圆的性质可得==﹣=﹣.由椭圆的对称性可得,,∴=﹣,同理可得===﹣.∴直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积==﹣.故选:B .【点评】本题考查了椭圆的性质可得=﹣及椭圆的对称性,考查了推理能力和计算能力,属于难题.9. 【答案】C【解析】解:由于f (x )在[3,6]上为增函数,f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=﹣1,f (x )为奇函数,故f (﹣3)=﹣f (3)=1,∴f (6)+f (﹣3)=8+1=9. 故选:C .10.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA , ∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0, ∴A=C 即为等腰三角形. 故选:D .【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.11.【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误; 在B 选项中,可能有n ⊂α,故B 错误; 在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.12.【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A.二、填空题13.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.14.【答案】【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,三角形ABD1的面积为4,设点A1到平面AB1D1的距离等于h,则,1则h=故点A1到平面AB1D1的距离为.故答案为:.15.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:16.【答案】【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:17.【答案】2【解析】直线1=x 和2=x 是曲线)(x f y =的对称轴, ∴(2)()f x f x -=,(4)()f x f x -=,∴(2)(4)f x f x -=-,∴)(x f y =的周期2T =. ∴(4)(10)(0)(0)2f f f f +=+=. 18.【答案】20172016【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016. 三、解答题19.【答案】(1)a =12(2)(-∞,-1-1e ].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln x x.令g (x )=22ln xx ,x >0,则g '(x )=()3212ln x x-.令g '(x )=0,解得x当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g 1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a <2时, 当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h ' (a )=3a 2-6a +3=3(a -1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f (x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.20.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值. (3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.21.【答案】【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得54b =a +c ,又a =4c ,∴54b =5c ,即b =4c ,由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =18.(2)∵S △ABC =3,B =60°.∴12ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×12=13.∴b =13,∵k sin B =sin A +sin C ,由正弦定理得k =a +c b =513=51313,即k 的值为51313.22.【答案】【解析】解:(Ⅰ)PD ⊥平面ABCD ,EC ∥PD , ∴EC ⊥平面ABCD , 又BD ⊂平面ABCD , ∴EC ⊥BD ,∵底面ABCD 为正方形,AC ∩BD=N , ∴AC ⊥BD ,又∵AC ∩EC=C ,AC ,EC ⊂平面AEC , ∴BD ⊥平面AEC , ∴BD ⊥AE ,∴异面直线BD 与AE 所成角的为90°. (Ⅱ)∵底面ABCD 为正方形, ∴BC ∥AD ,∵BC ⊄平面PAD ,AD ⊂平面PAD , ∴BC ∥平面PAD ,∵EC ∥PD ,EC ⊄平面PAD ,PD ⊂平面PAD , ∴EC ∥平面PAD ,∵EC ∩BC=C ,EC ⊂平面BCE ,BC ⊂平面BCE ,∴ ∴平面BCE ∥平面PAD , ∵BE ⊂平面BCE , ∴BE ∥平面PAD .(Ⅲ) 假设平面PAD 与平面PAE 垂直,作PA 中点F ,连结DF , ∵PD ⊥平面ABCD ,AD CD ⊂平面ABCD , ∴PD ⊥CD ,PD ⊥AD ,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.23.【答案】【解析】解:(1)由题意得PQ=50﹣50cosθ,从而当时,PQ=50﹣50cos=75.即点P距地面的高度为75米.(2)由题意得,AQ=50sinθ,从而MQ=60﹣50sinθ,NQ=300﹣50sinθ.又PQ=50﹣50cosθ,所以tan,tan.从而tan∠MPN=tan(∠NPQ﹣∠MPQ)==.令g(θ)=.θ∈(0,π)则,θ∈(0,π).由g′(θ)=0,得sinθ+cosθ﹣1=0,解得.当时,g′(θ)>0,g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.从而当g(θ)=tan∠MNP取得最大值时,∠MPN取得最大值.即当时,∠MPN取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.24.【答案】【解析】解:(Ⅰ)由,得,即﹣1<x<1,即定义域为(﹣1,1),则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),则f(x)为奇函数.(Ⅱ)当0<a<1时,由f(x)>0,即log a(1+x)﹣log a(1﹣x)>0,即log a(1+x)>log a(1﹣x),则1+x<1﹣x,解得﹣1<x<0,则不等式解集为:(﹣1,0).【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页,共 16 页 绥中县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题 1. 棱长为2的正方体的8个顶点都在球O的表面上,则球O的表面积为( ) A.4 B.6 C.8 D.10 2. 若动点),(),(2211yxByxA、分别在直线: 011yx和2l:01yx上移动,则AB中点M所在直线方程为( )
A.06yx B.06yx C.06yx D.06yx 3. 已知集合2|5,x|yx3,AyyxBAB( ) A.1, B.1,3 C.3,5 D.3,5 【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 4. 设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m∥l,m⊥α,则l⊥α;
②若m∥l,m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n; ④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m. 其中正确命题的个数是( ) A.1 B.2 C.3 D.4
5. 已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=±x,则
该双曲线的方程为( ) A.﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣
=1
6. 极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为( ) A.1 B. C. D.2
7. 直角梯形OABC中,,1,2ABOCABOCBC,直线:lxt截该梯形所得位于左边图 形面积为,则函数Sft的图像大致为( ) 第 2 页,共 16 页
8. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD=3丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是( ) A.4立方丈 B.5立方丈 C.6立方丈 D.8立方丈
9. 已知函数()2sin()fxx(0)2与y轴的交点为(0,1),且图像上两对称轴之间的最 小距离为2,则使()()0fxtfxt成立的t的最小值为( )1111] A.6 B.3 C.2 D.23 10.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=( ) A.1 B.2 C.3 D.4
11.若圆226260xyxy上有且仅有三个点到直线10(axya是实数)的距离为, 则a( )
A. 1 B. 24 C.2 D.32
12.已知函数f(x)=log2(a-x),x<12x,x≥1若f(-6)+f(log26)=9,则a的值为( ) A.4 B.3 C.2 D.1 二、填空题
13.设,xy满足条件,1,xyaxy
,若zaxy有最小值,则a的取值范围为 .
14.若执行如图3所示的框图,输入,则输出的数等于 。 第 3 页,共 16 页
15.已知随机变量ξ﹣N(2,σ
2),若P(ξ>4)=0.4,则P(ξ>0)= .
16.自圆C:22(3)(4)4xy外一点(,)Pxy引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则PQ的最小值为( )
A.1310 B.3 C.4 D.2110 【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想. 17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 . 三、解答题
18.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.
(1)求实数m的取值范围;
(2)设向量,求满足不等式的α的取值范围. 第 4 页,共 16 页
19.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C的极坐标方程为222123cos4sin,点12,FF
为其左、右焦点,直线的参数方程为
22222xtyt
(为参数,tR).
(1)求直线和曲线C的普通方程; (2)求点12,FF
到直线的距离之和.
20.(本小题满分12分) 已知函数21()(3)ln2fxxaxx.
(1)若函数()fx在定义域上是单调增函数,求的最小值; (2)若方程21()()(4)02fxaxax在区间1[,]ee上有两个不同的实根,求的取值范围.
21.(本小题满分12分) 在ABC中,角,,ABC所对的边分别为,,abc,(31)cos2cosaBbAc,
(Ⅰ)求tantanAB的值;
(Ⅱ)若6a,4B
,求ABC的面积. 第 5 页,共 16 页
22.(本小题满分12分) ABC的内角,,ABC所对的边分别为,,abc,(sin,5sin5sin)mBAC,
(5sin6sin,sinsin)nBCCA垂直.
(1)求sinA的值; (2)若22a,求ABC的面积S的最大值.
23.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,
(1)求|MF|+|NF|的值; (2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.
24.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a. 第 6 页,共 16 页
(Ⅰ)求; (Ⅱ)若c2=b2+a2,求B. 第 7 页,共 16 页 绥中县一中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题 1. 【答案】B 【解析】
考点:球与几何体 2. 【答案】D 【解析】
考点:直线方程 3. 【答案】D 【解析】|5,|3|3,AyyBxyxxx3,5AB,故选D.
4. 【答案】 B 【解析】解:∵①若m∥l,m⊥α, 则由直线与平面垂直的判定定理,得l⊥α,故①正确; ②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m, 得n∥m,同理n∥l,故m∥l,故命题④正确. 第 8 页,共 16 页
故选:B. 【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养. 5. 【答案】B 【解析】解:已知抛物线y2
=4x的焦点和双曲线的焦点重合,
则双曲线的焦点坐标为(,0), 即c=,
又因为双曲线的渐近线方程为y=±x, 则有a2+b2=c2
=10和=,
解得a=3,b=1. 所以双曲线的方程为:﹣y2
=1.
故选B. 【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.
6. 【答案】A 【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,
可知两条曲线是同心圆,如图,|PQ|的最小值为:1. 故选:A. 第 9 页,共 16 页
【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查. 7. 【答案】C 【解析】
试题分析:由题意得,当01t时,2
1
22ftttt,当12t时,
112(1)2212fttt,所以
2,0121,12ttfttt
,结合不同段上函数的性质,可知选项C符
合,故选C. 考点:分段函数的解析式与图象. 8. 【答案】 【解析】解析:
选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GH∥MN∥AD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥E-AGHD与四棱锥F-MBCN与直三棱柱EGH-FMN. 由题意得GH=MN=AD=3,GM=EF=2,
EP=FQ=1,AG+MB=AB-GM=2, 所求的体积为V=13(S矩形AGHD+S矩形MBCN)·EP+S△EGH·EF=13×(2×3)×1+12×3×1×2=5立方丈,故选B.
9. 【答案】A 【解析】