每日一学:河南省洛阳市东升第三中学2020届九年级上学期数学期中考试试卷_压轴题解答

合集下载

河南省洛阳市九年级上学期数学期中考试试卷

河南省洛阳市九年级上学期数学期中考试试卷

河南省洛阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七下·重庆期末) 如图,在5×5的正方形网格中已有5块被涂成阴影,则在未涂的空格中,任选一格涂成阴影,可使阴影部分为轴对称图形的概率是()A .B .C .D .【考点】2. (2分) (2020九上·无锡期中) 若等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则等腰三角形的周长为()A . 9B . 10C . 12D . 9或12【考点】3. (2分)关于x的方程 x2 – m x – 2 = 0( m为实数)的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 有没有实数根不能确定【考点】4. (2分) (2019九上·绍兴月考) 将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是()A . y=(x+1)2-4B . y=-(x+1)2-4C . y=(x+3)2-4D . y=-(x+3)2-4【考点】5. (2分) (2020九上·二连浩特期中) 一元二次方程配方后化为()A .B .C .D .【考点】6. (2分)不论m取何值,抛物线y=2(x+m)2-m的顶点一定在下列哪个函数图像上()A . y=2x2B . y=-xC . y=-2xD . y=x【考点】7. (2分) (2019九上·萧山开学考) 已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是()A . ﹣1B . ±1C . 1D . 0【考点】8. (2分) (2019八上·临潼月考) 如图,在网格图中,若,则点的位置应在()A . 点处B . 点处C . 点处D . 点处【考点】9. (2分) (2020九上·瑞安期中) 我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P)以及点A ,点B落上同一条抛物线上,若第1根栏杆涂色部分(EF)与第2根栏杆未涂色部分(PQ)长度相等,则EF的长度是()A . 米B . 米C . 米D . 米【考点】10. (2分)如图,在直角坐标系xOy中,△ABC的三个顶点都在方格纸的格点上,点A的坐标是(﹣2,0),将△ABC绕点A顺时针旋转90°得到△AB′C′,则点B的对应点B′的坐标是()A . (1,﹣1)B . (1,1)C . (﹣1,1)D . (﹣1,﹣1)【考点】11. (2分) (2018九上·阿荣旗月考) 已知x1、x2是方程x2﹣5x﹣6=0的两个根,则代数式x1+x2的值()A . 5B . ﹣5C . 6D . ﹣6【考点】12. (2分) (2020九上·洪山月考) 二次函数的图象如图所示,那么,,,这四个代数式中,值为正数的有().A . 4个B . 3个C . 2个D . 1个【考点】二、填空题 (共8题;共8分)13. (1分) (2019九上·辽源期末) 已知点P(a+1,1)关于原点的对称点在第四象限,则a的取值范围是________.【考点】14. (1分) (2019八上·浦东月考) 当m________时,关于的方程有两个相等实数根。

洛阳市2020年(春秋版)九年级上学期数学期中考试试卷B卷

洛阳市2020年(春秋版)九年级上学期数学期中考试试卷B卷

洛阳市2020年(春秋版)九年级上学期数学期中考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若5个有理数之积为负数,则这5个因数中负因数的个数可能是()A . 1B . 3C . 1或3或5D . 2或4或没有2. (2分)(2020八上·南宁期末) 观察下面的变形规律,,,,……回答问题:若,则x的值为()A . 100B . 98C . 1D .3. (2分)下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。

其中真命题的个数有()A . 1B . 2C . 3D . 44. (2分)下列说法中,正确的是()A . 如果,那么B . 的算术平方根等于3C . 当x<1时,有意义D . 方程x2+x﹣2=0的根是x1=﹣1,x2=25. (2分)(2018·东莞模拟) 一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A .B .C .D .6. (2分)如图,∠AOB =60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM的值为()A . 3B . 4C . 5D . 67. (2分) (2018九上·淮阳期中) 如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB= ,则此三角形移动的距离AA′是()A . -1B .C . 1D .8. (2分) (2018九上·淮阳期中) 化简﹣()2得()A . 2B . ﹣4x+4C . xD . 5x﹣29. (2分) (2018九上·淮阳期中) 河堤的横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:,则AB的长是()A . 5B . 5C . 10D . 1010. (2分) (2018九上·淮阳期中) 如图,四边形 ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1 ,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2 ,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn 的面积是A . ①②③B . ②③④C . ①②D . ②③二、填空题 (共5题;共6分)11. (1分)=________.12. (1分)(2017·广东模拟) 要使式子有意义,则x可以取的最小整数是________.13. (1分) (2017八上·宁波期中) 将点P(-2,y)先向下平移4个单位,再向左平移2个单位后得到点Q(x,-1),则x+y=________.14. (2分)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为________ .15. (1分) (2018九上·淮阳期中) 如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.三、解答题 (共8题;共56分)16. (10分)合并同类项:2a3b﹣ a3b﹣a2b+ a2b﹣ab2 .17. (10分) (2019七上·宝应期末) 化简或解方程:(1)化简:3a2-[5a-(2a-3)+4a2](2)解方程: +1=18. (10分) (2018九上·淮阳期中) 已知关于x的方程 mx2﹣(m+2)x+2=0.(1)求证:方程总有实数根;(2)若方程有两个实数根,且都是整数,求正整数m值.19. (2分) (2017九上·衡阳期末) 如图,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈ ,cos67.4°≈ ,tan67.4°≈ )20. (10分) (2018九上·淮阳期中) 如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:△ABE∽△ACD;(2)若BC=2,AD=6,DE=3,求AC的长.21. (2分) (2017九上·恩阳期中) 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?22. (10分) (2018九上·淮阳期中) 有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c 分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;(2)求(1)中方程有两个相等实数解的概率.23. (2分)如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC 匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共56分)16-1、17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、第11 页共11 页。

【初三数学】洛阳市九年级数学上期中考试检测试题(含答案)

【初三数学】洛阳市九年级数学上期中考试检测试题(含答案)

新九年级(上)数学期中考试试题及答案一、填空题(每小题3分,共30分).1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y29.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②二、填空题(每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是.13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为公顷,比2014年底增加了公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一、填空题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)【分析】根据一元一次方程的定义,一元二次方程的定义对各选项分析判断即可得解.解:A、化简可得2x=﹣1,是一元一次方程,故本选项正确;B、未知数在分母上,不是整式方程,故本选项错误;C、没有对常数a、b不等于0的限制,所以不是一元一次方程,也不是一元二次方程,故本选项错误;D、整理得x2+2x+1=2x+2,是一元二次方程,故本选项错误.故选:A.【点评】本题利用了一元二次方程的概念,一元一次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).解:点(2,﹣3)关于原点中心对称的点的坐标是(﹣2,3).故选:C.【点评】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),比较简单.4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【分析】根据二次函数的性质对各开口方向、顶点坐标、对称轴以及与x轴交点的坐标进行判断即可.解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.【点评】本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与x轴交点的判定方法是解决问题的关键.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 【分析】根据函数图象的平移规律:左加右减,上加下减,可得答案.解:y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是y=(x+3)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 【分析】根据根与系数的关系得到2+(﹣3)=﹣b,2×(﹣3)=c,然后可分别计算出b、c的值.解:根据题意得2+(﹣3)=﹣b,2×(﹣3)=c,解得b=1,c=﹣6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°【分析】先求的分针旋转的速度为=6(度/分钟),继而可得答案.解:∵分针旋转的速度为=6(度/分钟),∴从5点15分到5点20分,分针旋转的度数为6×5=30(度),故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应线段相等,对应角相等,对应点与旋转中心的连线段的夹角等于旋转角.8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1>y2,根据C(3,y3)在对称轴上可判断y3<y2;于是y1>y2>y.3解:由二次函数y=x2﹣6x+c可知对称轴为x=﹣=﹣=3,∴C(3,y3)在对称轴上,∵A(﹣1,y1),B(2,y2)在对称轴的左侧,y随x的增大而减小,∴y1>y2>y3.故选:A.【点评】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.9.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx 来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②【分析】①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④根据﹣3<﹣2<,结合抛物线的性质即可判断y1和y2的大小.解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵抛物线开口向下,对称轴为x=,∴在对称轴的左边y随x的增大而增大,∵﹣3<﹣2<,∴y1>y2.故④错误;综上所述,正确的结论是①②.故选:D.【点评】本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.二、填空题(本大题共6小题,每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是3x2﹣5x﹣2=0 .【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),据此即可求解.解:一元二次方程3x2=5x+2的一般形式是3x2﹣5x﹣2=0.故答案为:3x2﹣5x﹣2=0.【点评】在移项的过程中容易出现的错误是忘记变号.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是a≠﹣2 .【分析】根据一元二次方程的定义得出a+2≠0,求出即可.解:∵(a+2)x2﹣2x+3=0是关于x的一元二次方程,∴a+2≠0,∴a≠﹣2.故答案为:a≠﹣2.【点评】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是ax2+bx+c=0(abc都是常数,且a≠0).13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为 4 .【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.【点评】主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是﹣1 .【分析】直接利用非负数的性质以及二次根式的性质求出x,y的值进而得出答案.解:∵x2﹣6x++9=0,∴(x﹣3)2+=0,解得:x=3,y=﹣4,故(x+y)2017=(3﹣4)2017=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x的值是解题关键.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为(9﹣2x)•(5﹣2x)=12 .【分析】由于剪去的正方形边长为xcm,那么长方体纸盒的底面的长为(9﹣2x),宽为(5﹣2x),然后根据底面积是12cm2即可列出方程.解:设剪去的正方形边长为xcm,依题意得(9﹣2x)•(5﹣2x)=12,故填空答案:(9﹣2x)•(5﹣2x)=12.【点评】此题首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S =++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).【分析】移项,利用因式分解法求得方程的解即可.解:3(x﹣2)2=2(2﹣x)3(x﹣2)2﹣2(2﹣x)=0(x﹣2)[3(x﹣2)+2]=0x﹣2=0,3x﹣4=0解得:x1=2,x2=.【点评】此题考查用因式分解法解一元二次方程,掌握提取公因式法是解决问题的关键.18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1点的坐标,然后描点即可;(2)由(1)可得)△A1B1C1中各个顶点的坐标.解:(1)如图,(2)A1(1,﹣3),B1(6,﹣1),C1(3,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了等腰三角形的性质.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?【分析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,∴有,解得.∴二次函数的解析式为y=x2+2x﹣2.(2)∵a=1>0,∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.故当x≤﹣1时,y随x的增大而减小.【点评】本题考查了二次函数的性质,解题的关键是:(1)由点的坐标以及对称轴的解析式得出二元一次方程组;(2)由a=1>0及对称轴为x=﹣1,结合二次函数的性质即可得知当x≤﹣1时,函数递减.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为60 公顷,比2014年底增加了 4 公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是2014 年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.【分析】(1)根据统计图能看出2003年的绿化面积和2002年的绿化面积.(2)设04,05两年绿地面积的年平均增长率为x,根据计划到2005年底使城区绿地面积达到72.6公顷,可列方程求解.解:(1)2015年的绿化面积为60公顷,2014年绿化的面积为56公顷.60﹣56=4,比2014年底增加了4公顷,这三年中增长最多的是2014年.故答案是:60;4;2014;(2)设2016,2017两年绿地面积的年平均增长率为x,60(1+x)2=72.6.x=10%或x=﹣210%(舍去).答:2016,2017两年绿地面积的年平均增长率10%.【点评】本题考查折线统计图及一元二次方程的应用的知识,从上面可看出每年对应的公顷数,以及2015年和2017年的公顷数,求出增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.【分析】(1)利用待定系数法把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c中,可以解得b,c的值,从而求得函数关系式即可;(2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.解:(1)把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得:,解得:,所以此抛物线的解析式为y=﹣2x2﹣4x+4;(2)∵y=﹣2x2﹣4x+4=﹣2(x2+2x)+4=﹣2[(x+1)2﹣1]+4=﹣2(x+1)2+6,∴此抛物线的对称轴为直线x=﹣1,顶点坐标为(﹣1,6);(3)由(2)知:顶点C(﹣1,6),∵点A(0,4),∴OA=4,∴S△CAO=OA•|x c|=×4×1=2,即△CAO的面积为2.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.【分析】(1)先计算出△=(k+2)2﹣4•2k=(k﹣2)2,然后根据非负数的性质和根的判别式的意义判断方程根的情况;(2)分类讨论:当b=c时,△=0,则k=2,再把k代入方程,求出方程的解,然后计算三角形周长;当b=a=1或c=a=1时,把x=1代入方程解出k=1,再解此时的一元二次方程,然后根据三角形三边的关系进行判断.(1)证明:△=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:当b=c时,△=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△ABC的周长为5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:①当△>0,方程有两个不相等的实数根;②当△=0,方程有两个相等的实数根;③当△<0,方程没有实数根.也考查了三角形三边的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【点评】本题考查了二次函数的运用.关键是根据题意列出函数关系式,运用二次函数的性质解决问题.24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【分析】(1)根据旋转的性质得AE=AF=AB=AC=2,∠EAF=∠BAC=45°,然后根据“SAS”证明△ABE≌△ACF,于是根据全等三角形的性质即可得到结论;(2)根据菱形的性质得DF=AF=2,DF∥AB,再利用平行线的性质得∠1=∠BAC=45°,则可判断△ACF为等腰直角三角形,所以CF=AF=2,然后计算CF﹣DF即可.(1)证明:∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC 解析式,与抛物线解析式联立即可求出D的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N 3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N 1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).【点评】此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题.新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.答案 1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于 .1()2αβ-90αβ︒-答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”) 答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.。

河南省洛阳市2020版九年级上学期数学期中考试试卷(I)卷

河南省洛阳市2020版九年级上学期数学期中考试试卷(I)卷

河南省洛阳市2020版九年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果有意义,那么()A . x≥0B . x≥2C . x≤2D . 0≤x≤22. (2分)下列二次根式中:,,,,,,其中最简二次根式的个数有()A . 2个B . 3个C . 4个D . 5个3. (2分)下列计算正确的是()A . a4•a3=a12B .C .D . 若x2=x,则x=14. (2分)(2019·黑龙江模拟) 如图,l1∥l2∥l3 , AC、DF交于点O,则下列比例中成立的是()A .B .C .D .5. (2分) (2019八下·嘉兴开学考) 下列一元二次方程中,有实数根的是()C . x2-x-1=0D . x2+6=46. (2分)如图,从图甲到图乙的变换是()A . 轴对称变换B . 平移变换C . 旋转变换D . 相似变换7. (2分) (2018九上·浦东期中) 把△ABC的各边长都增加两倍,则锐角A的正弦值()A . 增加2倍B . 增加4倍C . 不变D . 不能确定8. (2分) (2019九上·崇明期末) 如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A . ∠B=∠DB . ∠C=∠AEDC . =D . =9. (2分)从正方形铁片上截去宽的一个矩形,剩余矩形的面积为,则原来正方形的面积为().A .B .10. (2分) (2020九上·路桥期末) 如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转46°得到Rt△A′B′C,点A在边B′C上,则∠ACB的大小为()A . 23°B . 44°C . 46°D . 54°二、填空题 (共5题;共5分)11. (1分)计算:= ________.12. (1分)若5x=8y,则x:y=________ .13. (1分)(2019·广西模拟) 若一元二次方程ax2-bx-2 015=0有一根为x=-1,则a+b=________14. (1分)某人从A点出发,向北偏东60°方向走了10米到达B点,再从B点向南偏西15°方向走了10米到达c点,则∠ABC等于 ________。

2020-2021学年河南省洛阳市九年级上册期中数学试卷

2020-2021学年河南省洛阳市九年级上册期中数学试卷

2020-2021学年河南省洛阳市九年级上册期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.若√x与√5是同类二次根式,则x可以是()A. 0.5B. 50C. 125D. 252.式子√a+1a−2有意义,则实数a的取值范围是()A. a⩾−1B. a≠2C. a⩾−1且a≠2D. a>23.化简√12+(−12√2)的结果是()A. 1B. −1C. 2D. 04.关于x的方程3x2+3x−5=0的二次项系数和一次项系数的和是()A. 6B. 5C. 8D. 75.如图,点D在△ABC的边AC上,若CD=2,AC=6,且△CDB∽△CBA,则BC的值为()A. 3B. 2√3C. 6D. 126.一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长是()A. 10mB. 12mC. 13mD. 14m7.如图,△ABC中,D、E分别为AC、BC边上的点,AB//DE,CF为AB边上的中线,若AD=5,CD=3,DE=4,则BF的长为()A. 323B. 163C. 103D. 838.如图,平行四边形ABCD的对角线AC、BD交于点O,E是AD的中点,连接BE交AC于点F,若S△ABF=10,则S△AEF=()A. 2B. 3C. 4D. 59.关于x的方程ax2+c=0有实数根的条件是()A. a≠0B. ac≠0C. ac≤0且a≠0D. ac≥0且a≠010.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于()A. 2√53B. 13C. 23D. 12二、填空题(本大题共5小题,共15.0分)11.如果xy =32,那么x+yx的值是______.12.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:2,已知△ABC的面积为3,那么△A1B1C1的面积是______.13.设方程x2+3x−4=0的两个实数根为x1、x2,求1x1+1x2=______ .14.如图,点G为△ABC的重心,GE//BC,BC=12,则GE=______.15.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE//BC.如果DEBC =35,CE=16,那么AE的长为______三、解答题(本大题共8小题,共75.0分)16.计算:(1)3√3−√8+√2−√27(2)(5√2+2√5)(5√2−2√5)+(√3−1)217.先化简,再求值:1a2−b2÷(1a+b−1a−b),其中b=12.18.用配方法解方程:x2+2x−2=019.已知一元二次方程x2−4x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)如果一元二次方程x2−4x+k=0有一个根是3,求另一个根和k的值.20.如图,某测量人员的眼睛A与标杆顶端F、电视塔顶端E在同一条直线上,已知此人的眼睛到地面的距离AB=1.6m,标杆FC=2.2m,且BC=1m,CD=5m,标杆FC,ED垂直于地面.求电视塔的高ED.21.如图,在ΔABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟ΔABC与ΔPBQ相似?试说明理由。

洛阳市重点中学九年级期中数学卷

洛阳市重点中学九年级期中数学卷

2020年洛阳市重点中学九年级(上)期中考试数 学(考试时间100分钟,满分150分)考生注意:答案、解题过程必须写在答题纸上,填写在试卷上的答案和过程一律不给分. 一、选择题(3分⨯8=24分) 1.Sin30°的值是( ) A.23 B. 21 C. 22D. 12.已知G 是△ABC 的重心,过G 作EF//BC 且与AB 、AC 分别交于E 、F 两点,则EF:BC 的值为( )A. 21B.32C. 31D. 233.△ABC 中,∠C=90°,BC=5,AC=12,cosA 等于( ) A. 125B. 135C.512 D. 13124.如图,△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C, 则下列等式成立的是( ) A.AC AE AB AD = B. BD AD BC AE = C. AB AE BC DE = D. ABADBC DE =5.已知△ABC 中,cosA=21,tgB=1,则△ABC 的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 6. 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,以下关于实数c b a ,,的符号判断中,正确的是( )A.0,0,0>>>c b aB.0,0,0><>c b aC.0,0,0<>>c b aD.0,0,0<<>c b a 7.如图,装裱一幅长80 cm,宽50 cm 的矩形风景画,在画的四周镶一条宽为x cm 的金边,使装裱后的画幅面积是5400 c m 2,那么x 满足的方程是( ) A. 014001302=-+x x B. 0350652=-+x x C. 014001302=--x x D. 0350652=--x x8.如图,有一张直角三角形纸片,C 是直角顶点,AC=5 cm,BC=10 cm, 将纸片折叠,使B 点与A 点重合,折痕DE,则CD 长为 ( )第4题第7题第6题第8题A.225cm B. 215 cm C. 425 cm D. 415 cm 二、填空题(4分⨯12=48分)9.已知Rt △ABC 中,∠C=90°,c=6,sinA=32,a = . 10.已知一段公路在斜坡上,坡度i=1:3,若汽车在斜坡上行驶100米,则汽车升高 米. 11.如图,请你补充一个条件: ,使△AB C ~△ACD. 12.在实数范围内分解因式:12-+x x = .13.方程:1111=++-x x x 的解为 .14.过圆O 外一点P 向圆作切线,切点分别是A 和B,若PA=a ,PB=2+a ,则实数a = . 15.如果二次函数a x x y ++=2与x 轴有交点,那么实数a 的取值范围是 . 16.如图,小明站在C 处看甲、乙两楼楼顶的点A 和E,A 、E 、C 三点在 同一直线上,甲乙两楼的底部D 、B 与C 也在同一直线上,测得BC 相距 20米,DB 相距20米,乙楼高BE 为15米,则甲楼高(小明身高忽略不 计)为 米.17.两圆的半径分别是方程:017122=+-x x 的两根,圆心距为9,则两圆的位置关系一定是 .18.已知△ABC 中的三边长c b a ,,分别为5,3,2,那么19.如图,已知∠ABC 是直角,在射线BC 上取一点O 为圆心、21径画圆,射线BA 绕点B 顺时针旋转 度时与圆O 20.如简易示意图,乐器上一根弦固定在乐器面板上A 、B 两点, 支撑点C 是靠近点B 的黄金分割点,若AB=80 cm,则AC= .三、简答题(本大题共50分, 21题8分,22题8分,23题10分,24题12分,25题12分)21.解方程组:⎩⎨⎧=+=-441222y x y x 22.在5×5的单位正方形网格中有一个△AB C,点A,B,C 在正方形网格 的交点上.在网格中画一个△A 1B 1C 1,使点A 1、B 1、C 1在正方形网格的交点 上,且△AB C 与△A 1B 1C 1的相似比为2.23. 少年宫组织学生参加夏令营,目的地距少年宫120 km,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车每小时比慢车每小时快20第11题第16题km,求快车、慢车的时速.24.已知抛物线32++=mx x y 的顶点是A,与x 轴的两个交点B 和C,且∠BA C 是直角三角形,求实数m 的值和抛物线的顶点坐标.25.如图,平行四边形ABCD 中,E 是AB 的中点,在 直线AD 上截取AF=2FD,连结EF,EF 交AC 于G.求AG:AC.四、解答题(本大题共28分,26题14分,27题14分)26.如图,在直角坐标系内,A (0,6),B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒。

河南省洛阳市2020版九年级上学期数学期中考试试卷C卷

河南省洛阳市2020版九年级上学期数学期中考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共9分)1. (1分) (2019九上·丽江期末) 使式子有意义的x的取值范围是().A . x≤1B . x≤1且x≠﹣2C . x≠﹣2D . x<1且x≠﹣22. (1分)如果a2=25,,且a<b那么 a+b 的值为()A . -2或8B . 8或-8C . 2或8D . -2或-83. (1分)设 =a,=b,用含a,b的式子表示,则下列表示正确的是()A . 0.3abB . 3abC . 0.1ab2D . 0.1a2b4. (1分) (2017九上·重庆开学考) 若m+n=3,则2m2+4mn+2n2﹣6的值为()A . 12B . 6C . 3D . 05. (1分) (2020八下·河池期末) 如图,要使平行四边形成为矩形,需添加的条件是A .B .C .D .6. (1分) (2020九上·福州月考) 方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有且只有一个实数根D . 没有实数根7. (1分) (2016九上·庆云期中) 某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场()A . 5个B . 6个C . 7个D . 8个8. (1分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树(AB)的高度约为()A . 4.2米B . 4.8米C . 6.4米D . 16.8米9. (1分)已知a是自然数,关于x的方程2x﹣a﹣a+4=0至少有一个整数根,则a可取值的个数为()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)10. (1分) (2016七上·蕲春期中) 若a、b互为相反数,m、n互为倒数,则(a+b)2015+(﹣)2016的值为________.11. (1分)若AB=1cm,点C、点D是AB的黄金分割点,则CD=________cm.12. (1分)如图,三角形1与________和________成轴对称图形,整个图形中共有________条对称轴.13. (1分)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为________ 米.三、解答题 (共7题;共15分)14. (2分)(2018·舟山)(1)计算:2(-1)+|-3|-( -1)0;(2)化简并求值,其中a=1,b=2。

河南省洛阳市2020年(春秋版)九年级上学期期中数学试卷C卷

河南省洛阳市2020年(春秋版)九年级上学期期中数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·孝义期末) 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2. (2分) (2020九下·吴江月考) 关于的方程有两个不相等的实数根,则实数的取值范围是()A .B .C . 且D . 且3. (2分)一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()A . 2,﹣1B . ﹣2,﹣1C . 2,1D . ﹣2,14. (2分)下列各式中,y是x的二次函数的是()A . y=B . y=2x+1C . y=x2+x﹣2D . y2=x2+3x5. (2分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A . y=(x-2)2+1B . y=(x+2)2+1C . y=(x-2)2-3D . y=(x+2)2-36. (2分) (2020九上·景县期末) 三角形的外心具有的性质是()A . 到三边距离相等B . 到三个顶点距离相等C . 外心在三角形外D . 外心在三角形内7. (2分) (2018九上·翁牛特旗期末) 在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是()A .B .C .D .8. (2分)(2019·武昌模拟) 如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A . 100°B . 110°C . 115°D . 120°9. (2分)半圆的圆心角()A . 大于180°B . 等于180°C . 在90°~180°之间D . 等于90°10. (2分) (2019九上·大冶月考) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC;则下列结论:①abc<0;② >0;③ac-b+1=0;④OA•OB=- .其中正确的结论()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2015八下·绍兴期中) 如果关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,那么k的取值范围是________.12. (2分)(2011·宁波) 实数27的立方根是________.如果点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为________.13. (1分) (2019九上·武邑月考) 如图,为⊙ 的直径,,且,则________.14. (1分) (2018九上·三门期中) 如图,△ABD,△AEC 都是等边三角形中,∠BAC=90°,将△ABE 绕点 A 顺时针旋转________可以到△ADC 处.15. (1分) (2017九上·满洲里期末) 如图,一男生推铅球,铅球行进高度(米)与水平距离(米)之间的关系是,则铅球推出距离________米.16. (1分)(2017·河南模拟) 如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为________.(结果保留π)三、解答题 (共9题;共85分)17. (5分) (2019九上·汉滨月考) 若x=0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的一个解,求实数m的值和另一个根.18. (5分)如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).(1)求此二次函数解析式及顶点B的坐标;(2)在抛物线上有一点P,满足S△AOP=3,直接写出点P的坐标.19. (5分)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?20. (10分) (2019九上·北京月考) 已知二次函数 .(1)求证:无论取任何实数时,该函数图象与轴总有交点;(2)如果该函的图象与轴交点的坐标均为整数,且为整数,求值.21. (15分) (2015九下·深圳期中) 已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直线为坐标轴,建立如图1的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ≌△ODQ;(2)求点P的坐标;(3)若将矩形OABC向右平移(图2),得到矩形ABCG,设矩形ABCG与矩形ODEF重叠部分的面积为S,OG=x,请直接写出x≤3时,S与x之间的函数关系式,并且写出自变量x的取值范围.22. (5分)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E(1)求证:△ACE∽△CBE;(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式.23. (15分)(2017·桂林) 已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.24. (10分)(2019·喀什模拟) 已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.25. (15分)(2019·三亚模拟) 如图,抛物线y=ax2+bx+1与x轴交于两点A(﹣1,0),B(1,0),与y 轴交于点C.(1)求抛物线的解析式;(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD 相似?若存在,则求出点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共85分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、24-1、24-2、25-1、25-2、25-3、。

河南省洛阳市2020版九年级上学期数学期中试卷(I)卷

河南省洛阳市2020版九年级上学期数学期中试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·洛阳月考) 下列等式不一定成立的是()A .B .C .D .2. (2分)方程x2﹣5x=0的解是()A . x1=x2=5B . x1=x2=0C . x1=0,x2=5D . x1=﹣5,x2=03. (2分)(2020·鼓楼模拟) 已知5≤ ≤7,4≤ ≤6,则的整数部分可以是()A . 9B . 10C . 11D . 124. (2分)(2017·钦州模拟) 已知反比例函数y= 的图象位于第二、第四象限,那么关于x的一元二次方程x2+2x+k=0的根的情况是()A . 方程有两个不想等的实数根B . 方程不一定有实数根C . 方程有两个相等的实数根D . 方程没有实数根5. (2分)如图,AB为⊙O的切线,切点为B,连接AO,OA与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为4,则图中阴影部分的面积为()A .B .C .D .6. (2分) (2016九上·山西期末) 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A .B .C .D .7. (2分)一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A . 外离B . 外切C . 相交D . 内切8. (2分)在Rt△ABC中,∠C=90°,AB=5,BC=3,以AC所在的直线为轴旋转一周,所得圆锥的表面积为()A . 12πB . 15πC . 24πD . 30π9. (2分)如图所示是某公园为迎接“中国--南亚博览会”设置的一休闲区.∠AOB=90°,弧AB的半径OA 长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A . 10π-(米2)B . π-(米2)C . 6π-(米2)D . 6π-9(米2)10. (2分) (2020九上·诸暨期末) 在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为()A . 2B . 3C . 4D . 6二、填空题 (共10题;共10分)11. (1分)计算(﹣1)2+()﹣1﹣50=________.12. (1分)(2019·温州模拟) 若x(x+1)+y(xy+y)=(x+1)·M,则M=________.13. (1分)(2019·连云港) 如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为________.14. (1分)在一个袋子中装有除颜色外其它均相同的2个黑球、3个红球和5个白球,从中任意摸出一个球,则摸到红球的概率是________ .15. (1分) (2018八上·北京月考) 正多边形的一个内角等于144°,则该多边形是正________边形.16. (1分)(2020·长春模拟) 把正五边形和正六边形按如图所示方式放置,则∠a=________。

河南省洛阳市三中2019-2020学年九年级(上)期中数学试卷(含答案)[精品]

河南省洛阳市三中2019-2020学年九年级(上)期中数学试卷一.选择题(满分30分,每小题3分)1.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知方程2﹣4+2=0的两根是1,2,则代数式的值是( ) A .2011B .2012C .2013D .20143.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转90°得到点A ′,则点A ′的坐标是( ) A .(﹣3,1)B .(3,﹣1)C .(﹣1,3)D .(1,﹣3)4.一元二次方程2﹣8﹣1=0配方后可变形为( ) A .(+4)2=17B .(+4)2=15C .(﹣4)2=17D .(﹣4)2=155.已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,连接AD 、BD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是( )A .75°B .65°C .60°D .50°6.P 是⊙O 外一点,PA 、PB 分别交⊙O 于C 、D 两点,已知、的度数别为88°、32°,则∠P 的度数为( )A.26°B.28°C.30°D.32°7.如图,以点P为圆心作圆,所得的圆与直线l相切的是()A.以PA为半径的圆B.以PB为半径的圆C.以PC为半径的圆D.以PD为半径的圆8.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105°B.112.5°C.120°D.135°9.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为,△ABP的面积为S,能正确反映S与之间函数关系的图象是()A .B .C .D .二.填空题(满分15分,每小题3分)11.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是 .12.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式: . 13.如图,⊙O 的半径为2,切线AB 的长为,点P 是⊙O 上的动点,则AP 的长的取值范围是 .14.如图,矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为 .15.如图,在矩形ABCD 中,AB =1,AD =2,点E 是边AD 上的一个动点,把△BAE 沿BE 折叠,点A 落在点A '处,若点A '恰好在矩形的对称轴上,则∠A 'BE 的度数为 .三.解答题16.(9分)如表:方程1、方程2、方程3、…是按一定规律排列的一列方程.(2)请写出这列方程中第10个方程,并用求根公式求其解.(3)根据表中的规律写出第n个方程和这个方程的解.17.(9分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?18.(9分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?19.(9分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC绕点A顺时针旋转90°,画出旋转后的△A1B1C1;(2)求经过A1B1两点的直线的函数解析式.20.(9分)如图,已知直线y=﹣6与抛物线y=a2+b+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.21.(9分)已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.22.(10分)综合与实践已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.(1)【问题发现】如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),①证明:△ADE≌△BDF;②猜想:S△DEF+S△CEF=S△ABC.(2)【类比探究】如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△+S△CEF与S△ABC的关系,并给予证明.DEF(3)【拓展延伸】如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)23.(11分)如图,抛物线与轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥轴于点D,交直线BC于点E,抛物线的对称轴是直线=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A 、是轴对称图形,但不是中心对称图形,故此选项错误;B 、不是轴对称图形,也是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是中心对称图形也是轴对称图形,故此选项正确.故选:D .2.解:∵方程2﹣4+2=0的两根是1,2, ∴12+2=41,22﹣42=﹣2,∴=++2011=4﹣1+2011 =2014. 故选:D .3.解:如图所示,由旋转可得:∠AOA '=∠BOC =90°,AO =A 'O ,∴∠AOB =∠A 'OC ,而∠ABO =∠A 'CO =90°, ∴△AOB ≌△A 'OC ,∴A 'C =AB =1,CO =BO =3, ∴点A '的坐标为(3,﹣1), 故选:B .4.解:∵2﹣8=1,∴2﹣8+16=1+16,即(﹣4)2=17,故选:C.5.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.6.解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠A=44°﹣16°=28°.故选:B.7.解:∵PB⊥l于B,∴以点P为圆心,PB为半径的圆与直线l相切.故选:B.8.解:连结PP′,如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP′,∴BP=BP′,∠BAP=∠BCP′,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=PB=2,在△APP′中,∵PA=1,PP′=2,AP′=3,∴PA2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C=135°.故选:D.9.解:连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选:C.10.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<≤2,s=,当2<≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:点(3,4)关于原点对称的点的坐标是(﹣3,﹣4).故答案为:(﹣3,﹣4).12.解:抛物线y=﹣(+2)2+1的开口向下、顶点坐标为(﹣2,1),故答案为:y=﹣(+2)2+1(答案不唯一).13.解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=,则AF=8﹣,在Rt△AFD′中,(8﹣)2=2+42,解之得:=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N===0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A ′E 2=(1﹣A ′E )2+12,解得:A ′E =1,∴AE =1;②如图2,过A ′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP =PB ,AD ∥PQ ∥BC ,∴A ′B =2PB ,∴∠PA ′B =30°,∴∠A ′BC =30°,∴∠EBA ′=30°,∴AE =A ′E =A ′B ×tan30°=1×=;综上所述:AE 的长为1或;故答案为:1或. 三.解答题(共8小题,满分75分)16.解:(1)∵2+3﹣18=0即(+6)(﹣3)=0∴+6=0或﹣3=0∴1=﹣6,2=3;(2)方程规律:2+1•﹣12•2=0,2+2•﹣22•2=0,2+3•﹣32•2=0, 即第10个方程为2+10﹣102•2=0,所以第10个方程为2+10﹣200=0,解得=,1=10,2=﹣20;(3)由(2)得:第n 个方程为:2+n ﹣2n 2=0,方程的两根为1=﹣2n ,2=n .17.解:(1)y =(﹣50)[50+5(100﹣)]=(﹣50)(﹣5+550)=﹣52+800﹣27500,∴y =﹣52+800﹣27500(50≤≤100);(2)y =﹣52+800﹣27500=﹣5(﹣80)2+4500,∵a =﹣5<0,∴抛物线开口向下.∵50≤≤100,对称轴是直线=80,∴当=80时,y 最大值=4500;(3)当y =4000时,﹣5(﹣80)2+4500=4000,解得1=70,2=90.∴当70≤≤90时,每天的销售利润不低于4000元.18.解:(1)设每次降价的百分率为.40×(1﹣)2=32.4=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y 元,由题意,得(40﹣30﹣y )(4×+48)=510, 解得:y 1=1.5,y 2=2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.19.解:(1)如图,(2)设线段B1A1所在直线l的解析式为:y=+b(≠0),∵B1(﹣2,3),A1(2,0),∴,∴,∴线段B1A1所在直线l的解析式为:.20.解:(1)把A(1,﹣4)代入y=﹣6,得=2,∴y=2﹣6,令y=0,解得:=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(﹣1)2﹣4=2﹣2﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).21.(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)22.解:(1)①∵∠C=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴∠ADE=∠B,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=∠BDF,∵点D是AB的中点,∴AD=BD,在△ADE和△BDF中,,∴△ADE≌△BDF(SAS);②如图1中,当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形.设△ABC的边长AC=BC=a,则正方形CEDF的边长为a.∴S△ABC=a2,S正方形DECF=(a)2=a2即S△DEF+S△CEF=S△ABC;故答案为.(2)上述结论成立;理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD,∴∠DCE=∠B,∠CDB=90°,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴S△DEF+S△CEF=S△ADE+S△BDF=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.23.解:(1)点A的坐标是(2,0),抛物线的对称轴是直线=﹣1,则点B(﹣4,0),则函数的表达式为:y=a(﹣2)(+4)=a(2+2﹣8),即:﹣8a=﹣2,解得:a=,故抛物线的表达式为:y=2+﹣2;(2)将点B、C的坐标代入一次函数表达式:y=m+n并解得:直线BC的表达式为:y=﹣﹣2,则tan∠ABC=,则sin∠ABC=,设点D(,0),则点P(,2+﹣2),点E(,﹣﹣2),∵PE=OD,OD=﹣,∴PE=(2+﹣2++2)=2+,解得:=0或﹣5(舍去=0),即点D(﹣5,0)S=×PE×BD=(2+﹣2﹣+2)(﹣4﹣)=;△PBE(3)由题意得:△BDM是以BD为腰的等腰三角形,①当BD=BM时,过点M作MH⊥轴于点H,BD=1=BM,则MH=y M=BM sin∠ABC=1×=,则M=﹣,故点M(﹣,);②当BD=DM(M′)时,同理可得:点M′(﹣,);故点M坐标为(﹣,)或(﹣,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

每日一学:河南省洛阳市东升第三中学2020届九年级上学期数学期中考试试卷_压轴题解答
答案河南省洛阳市东升第三中学2020届九年级上学期数学期中考试试卷_压轴题
~~ 第1题 ~~
(2020洛阳.九上期中) 如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,﹣2),点A 的坐标是(2,0),P 为抛
物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =﹣1.(1) 求抛物线的函数表达式;
(2) 若点P 在第二象限内,且PE = OD ,求△PBE 的面积.
(3) 在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.
考点: 二次函数y=ax^2+bx+c 的性质;待定系数法求二次函数解析式;二次函数的实际应用-几何问题;~~ 第2题 ~~
(2020洛阳.九上期中) 如图,矩形ABCD 中,AB=1,AD=2,点E
是边AD 上的一个动点,把△BAE 沿BE 折叠,点A 落在A′处,如果A′恰在矩形的对称轴上,则AE 的长为________.
~~ 第3题 ~~
(2020洛阳.九上期中) 如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B -C -D
向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是( )
A .
B .
C .
D .
河南省洛阳市东升第三中学2020届九年级上学期数学期中考试试卷_压轴题解答
~~ 第1题 ~~
答案:
解析:
答案:
解析:
~~ 第3题 ~~
答案:C 解析:。

相关文档
最新文档