初一数学讲义14(期末复习2)
鲁教版2014春季初一数学期末复习题

鲁教版2014春季初一数学复习题1.如图,C 是AB 的中点,D 是BC 的中点。
下面等式不正确的是( )BD CA(A) DB AC CD -= (B )BC AD CD -= (C ) CD=BD AB -21 (D )AB CD 31=2.如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2的度数是 ( )A .20°B .25°C .30°D .70°3.下列计算,正确的是( )A .()32628x x = B .623a a a ÷= C .222326a a a ⨯= D .01303⎛⎫⨯= ⎪⎝⎭4. 若a a m n==23,,则a m n +等于( ) A. 5 B. 6C. 23D. 325.下列计算不正确的是( )A. 222)(y x xy = B. 2221)1(xx x x +=-C. 22))((b a a b b a -=+- D. 2222)(y xy x y x ++=-- 6.下列多项式乘法,能用平方差公式进行计算的是( ) A.(x +y )(-x -y ) B.(2x +3y )(2x -3z ) C.(-a -b )(a -b )D.(m -n )(n -m )7.下列各图中,∠1和∠2是对顶角的是( )12121212ABCDDCBO A212112218.如图,∠1和∠2是同位角的是( )A B C D9.如图所示,能说明AB ∥DE 的有( )①∠1=∠D ; ②∠CFB +∠D=180°; ③∠B =∠D ; ④∠BFD=∠D.A .1个B .2个C .3个D .4个10.下列调查,比较适用普查而不适用抽样调查方式的是( )A.为了了解中央电视台春节联欢晚会的收视率B.为了了解初三年某班的每个学生周末(星期六)晚上的睡眠时间 C.为了了解夏季冷饮市场上一批冰淇淋的质量情况 D.为了考察一片试验田里某种水稻的穗长情况11.某市社会调查队对城区内一个社区居民的家庭经济状况进行调查.调查的结果是,该社区共有500户,高收入、中等收入和低收入家庭分别有125户、280户和95户.已知该市有100万户家庭,下列表述正确的是( ) A.该市高收入家庭约25万户 B.该市中等收入家庭约56万户 C.该市低收入家庭约19万户D.因城市社区家庭经济状况较好,所以不能据此数据估计全市所 有家庭经济状况 12.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是( ) A .扇形甲的圆心角是72° B .学生的总人数是900人C .丙地区的人数比乙地区的人数多180人D .甲地区的人数比丙地区的人数少180人13.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地 和玉米地的距离为a 千米,小强在玉米地除草比在菜地浇水多用的时间为b 分钟,则a ,b 值分别为( )A .1.1,8B .0.9,3C .1.1,12D .0.9,814.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系( )A. B. C. D. 15.=-23。
(新)初中七年级数学《直线,射线与线段》教学复习讲义典型试题汇编

第15讲直线,射线与线段知识导航1.直线,射线,线段的表示法.2.直线,线段的基本性质.3.线段的度量与比较.4.线段的有关计算.【板块一】直线,射线,线段的有关概念与作图方法技巧1.理解直线,射线,线段的区别与联系.2.直线上有n个点时,线段的条数为(n-1)+(n-2)+(n-3)+…+3+2+1=()12n n-.题型一直线,射线,线段的表示法及基本作图【例1】按下列语句画图:(1)直线l1与直线l2相交于点A,点P在直线l2上,但不在直线l1上;(2)直线a经过点A,而不经过点B;(3)直线l和直线a,b分别交于A,B两点;(4)直线a,b,c两两相交.题型二直线,线段的基本性质【例2】如图,已知A,B,C,D四点中任意三点不在一条直线上.(1)过A,B两点可以画几条直线,为什么?并画出直线AB;(2)作线段AD,射线BC,E在线段AD上,F是线段CD的延长线上一点,画出图形并比较BE+CE与BC的大小,说明理由.DBCA题型三计数问题及其应用【例3】两条直线相交,最多有个交点;三条直线相交,最多有个交点;四条直线相交,最多有个交点;n(n≥2)条直线相交,最多有个交点.【例4】往返于A,B两地的客车,中途停靠三个站(每两站之间的距离都不相等).(1)问有多少种不同的票价?(2)要准备多少种车票?A C D E B针对练习11.下列说法中正确的是( )A .画一条长3cm 的射线B .直线,线段,射线中直线最长C .延长线段到C ,使AC =BAD .延长射线OA 到点C2.如图所示四幅图中,符合“射线P A 与射线PB 是同一条射线”的图为( )PPA BCD3.如图,下列叙述不正确的是( ) A .点O 不在直线AC 上 B .图中共有5条线段C .射线与射线BC 是指同一条射线D .直线AB 与直线CA 是指同一条直线 4.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定28条直线,则n 的值是( )A .6B .7C .8D .95.由上饶到南昌的某一次列车,运行途中停靠的车站依次是:上饶—横峰—弋阳—贵溪—鹰潭—余江—东乡—莲塘—南昌,那么要为这次列车制作的火车票有( )A .9种B .18种C .36种D .72种6.A ,B ,C 三个车站在东西笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )CA .在A 的左侧B .在AB 之间C .在BC 之间D .B 处7.观察下图,并阅读图形下面的相关文字,像这样,20条直线相交,交点最多的个数是()① ② ③ 两条直线相交最多1个交点 三条直线相交最多3个交点 四条直线相交最多6个交点A .100个B .135个C .190个D .200个8.下列三个现象:①用两个钉子就可以把一根木条固定在墙上;②从A 地到B 地架设电线,只要尽可能沿着线段AB 架设,就能节省材料; ③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上. 其中可用“两点确定一条直线”来解释的现象有 (填序号) 9如图,已知四点A ,B ,C ,D ,请按要求画图 (1)画直线AB 与射线CD 交于点M ; (2)连接AC ,BD 交于点N ;(3)连接MN ,并延长至点E ,使NF =NM .A BCD10.如图,平面上有四个点A ,B ,C ,D ,根据下列语句画图; (1)作射线BC ;(2)取一点P ,使点P 即在直线AB 上又在直线CD 上.(3)若A ,C 两点之间距离为4,B ,D 两点之间距离为3,点M 到A ,B ,C ,D 四点距离之和最短,画出点M 的位置,并写出该最小值为 .ACBD【板块二】线段的比较与运算方法技巧1.线段大小比较方法,叠合法,度量法,圆规法及计算推理法. 2.看线段图:用线段的和差表示有关线段. 3.善于用字母表示有关线段,解决复杂计算题. 题型一 线段的大小比较【例5】如图,按下面语句继续画图.(1)分别延长线段AD 和BC ,使它们相交于点M ;(2)延长AB 点N ,使BN =CD ,再连接DN 交线段BC 于点P ; (3)用刻度尺比较线段DP 和PN 的大小.ABCD题型 二 线段的和差运算【例6】如图,点C ,D ,E 都在线段AB 上,已知AD =B C .点E 是线段AB 的中点 (1)比较AC 与DB 的大小; (2)求证:CE =EDE AB C D模型三 线段的等分点【例7】如图,AB =1,廷长AB 至点C ,使AC =2AB ,反向延长AB 至点E ,使AE =13CE(1)线段AC 是线段CE 的几分之几?(2)求段CE 的长。
初一上半期数学复习讲义

初一上半期数学复习讲义一、填空题:1、在()36-中,底数是______,指数是______,在32-中,底数是______,指数是_____。
2、322y x -的系数是______;单项式32h r π的次数是 。
3、y xy x -+-2有几项,各项的系数分别是 、 、 。
4、绝对值小于3的整数有 。
5、数轴上表示3的点和表示-6的点的距离是 。
6、一辆公共汽车有56个座位,空车出发,第一站上2位乘客,第二站上4位乘客,第三站上6位乘客,依次下去,第n 站上_________位乘客,_______站以后车上坐满乘客. 7、若33b a m -与nb a 24的和仍是一个单项式,则m+n=_________。
8、如果多项式x 2 -3x+1=0,那么2x 2 -6x+3=______。
9、用小立方块搭一个几何体,它的主视图与俯视图如下图所示,则它最少需 个立方块 ,最多需 个立方块主视图 俯视图10、如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数 a b ,请用一个等式表示,a 、b 、c 、d 之间的关系____________. c d 11、数a 、b 在数轴上的位置如图所示,化简 a b a --= 。
12、如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A 和数轴上表示-1的点重合,当圆柱体滚动一周时A 点恰好落在了表示2的点的位置。
则这个圆柱体的侧面积是 。
二、选择题:1、温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为( ) A .81310⨯ B .91.310⨯ C .81.310⨯ D .91.32、在下列各数3,)1(,52,)31(,3),2(2009242-------+-中,负数的个数是( )A .2B .3C .4D .53、下列各组数中的互为相反数的是( )A 、2与21 B 、2)1(-与1 C 、-1与2)1(- D 、2与2--1 0 1 2 3 A A4、对于4)2(-和42-,下列说法正确的是( )A 、它们的意义相同B 、它们的结果相同C 、它们的意义不同,结果相同D 、它们的意义不同,结果也不同5、长方体的截面中,边数最多的多边形是 ( ) A .四边形 B.五边形 C.六边形 D.七边形6、一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为21单位长度,则这个数是( ) A 、21或21- B 、41或41- C 、21或41 D 、21-或41-7、已知大家以相同的效率做某件工作,a 人做b 天可以完工,若增加c 人,则提前完工的天数为( )A. b c a ab -+ B. b c a b -+ C. c a ab b +- D.ca bb +- 8、若,,00<<ab a 则|9||3|---+-b a a b 的值为 ( ) A.6 B. -6 C. 12 D. 1222++-b a9.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变成右边的( )10、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( ) A .c b a 23++ B .c b a 642++ C .c b a 4104++ D .c b a 866++三、解答题:1、计算: (1)3)3(2-⨯2215⨯÷- (2)()⎥⎥⎦⎤⎢⎢⎣⎡⨯-+--⎪⎭⎫ ⎝⎛-⨯-÷-0)2005(22322310322(3)⎪⎭⎫⎝⎛-+⨯-75.03116124 (4) }31]404324{[22)()()(-÷⋅-+-÷⨯-(5)化简)2(3)6(422xy x xy x ---+ (6)化简3]3227[9222-----)(a a a a aA BC Dc ab第102、先化简,2213322222----+b a b a ab b a )()(再求值,其中22=-=b a ,3、已知22A a a =-,51B a =-+.(1)化简:322A B -+; (2)当12a =-时,求322A B -+的值.4、已知当x=2时,代数式c x c x +-+)3(22的值是10,求当3-=x 时,这个代数式的值,5、图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.6、a 、b 、c 三个数在数轴上位置如图所示,且b a = (1)比较a ,―a 、―c 的大小(2)化简c b c a b a b a -+++-++7、计算91101415131412131-++-+-+-1 23 4 1 cba选做题:1、a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,a 2010的差倒数2011a = 。
初一数学复习资料

1 1 1 1 (∠1+∠2) B. ∠1 C. (∠1-∠2) D. ∠2 .................................................... 21 2 2 2 2 第六讲:相交线与平行线 ............................................................................................................. 22 一、知识框架 ................................................................................................................. 22 二、典型例题 ................................................................................................................. 22 2.如图所示,下列说法不正确的是( D ).................................................................................... 22 C.线段 AD 是点 D 到 BC 的垂线段; D.线段 BD 是点 B 到 AD 的垂线段 ............................. 22 4.一学员驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同, ................................... 23 (1)分析:过点 P 作 PE//AB ..................................................................................................... 24
第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直

初一数学期末复习讲义复习内容:第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直 一、知识点复习及例题选讲 1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n 个,则有n(n-1)/2条线段。
射线的统计方法:直线上端点的个数为n 个,则有2n 条射线;其中有2条不好用图中字母表示。
射线上端点的个数为n 个,则有n 条射线;其中有1条不好用图中字母表示。
例 1、已知点A 、点B 、点C 是直线上的三个点,则下图中有_____条线段,它们是 ,有____射线,能用图中字母表示的有 ,有_________条直线,它们是 ,。
ABC例 2、判断题:射线AB 与射线BA 表示同一条直线. ( )例 3、根据图形,下列说法:①直线AC 和直线BD 是不同的直线;②直线AD=AB+BC+CD ;③射线DC 和射线DB 不是同一条射线;④射线AB 和射线BD 不是同一条射线;⑤线段AB 和线段BA 是同一条线段。
其中正确..的是 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、知识点2 :(1)两点之间的所有连线中,线段最短。
(2)两点之间线段的长度叫做这两点之间的距离。
(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。
例 1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设④把弯曲的道路改直,就能缩短路程。
其中可用“两点之间,线段最短.........”的道理来解释的现象有__________.例 2、判断题:连结两点的线段叫做两点之间的距离.( )例 3、 如图,从A 地到B 地有①、②、③三条路可以走,每条路长分别为n m l 、、(图中、表示直角),则第_________条路最短,另两条路的长短关系为__________________。
初一上数学期末复习总结

初一数学(上)期末复习资料1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数(看作分母为1的分数)和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线./3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0a+b=0 a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;]注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;&(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,,以上数据表示与标准质量的差, 绝对值越小,越接近标准质量的差6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0 倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1 立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).}9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
初一数学上期末复习总纲
有理数乘除法法则·
同号得,异号得,绝对值相乘(除).
“奇负偶正”的应用·
1、如下符号的化简(指负号的个数与结果符号的关系),如:-{+[-(-2)]}=-2
2、连乘式的积(指负因数的个数与结果符号的关系),如:
(-1)×(-2)×(-3)×(+4)=-24 (-1)×(-2)×(-3)×(-4)=24
练1.从运算上看式子an,可以读作;从结果上看式子an可以读作.
练2.33=;( )2=;-52=;22的平方是;
练3.下列各式正确的是()
A.-52=(-5)2B.(-1)1996=-1996C.(-1)2003-(-1)=0D.(-1)99-1=0
练4.下列说法正确的是()
A.如果a>b,那么a2>b2B.如果a2>b2,那么a>b
4,-|-2|,-4.5,1,0
练3.下列语句中正确的是( )
A.数轴上的点只能表示整数B.数轴上的点只能表示分数
C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来.
练4.①比-3大的负整数是;②已知m是整数且-4<m<3,则m为.
③有理数中,最大的负整数是,最小的正整数是,最大的非正数是.
初一(上)期末复习总纲
【有理数】
1.正负数
统称整数,统称分数,统称有理数.
2.有理数分类:
基础练习
练1.把下列各数填在相应额大括号内:
1,-0.1,-789,25,0,-20,-3.14,-590,
·正整数集{…};·正有理数集{…};·负有理数集{…}
·负整数集{…};·自然数集{…};·正分数集{…}
1、和统称整式.
初一数学讲义
第一讲 和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b 例2.已知:z x <<0,0>xy ,且x z y >>,那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体的思想)方程x x -=-20082008 的解的个数是( ) A .1个 B .2个 C .3个 D .无穷多个例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答: .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 . (4) 满足341>+++x x 的x 的取值范围为四、小结1.理解绝对值的代数意义和几何意义以及绝对值的非负性 2.体会数形结合、分类讨论等重要的数学思想在解题中的应用第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
新编【人教版】初一数学下册《期末复习(四) 二元一次方程组》(解析版)
人教版初一数学下册期末复习(四) 二元一次方程组(典型例题+复习试卷配解析)考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解, 则2m-n 的算术平方根为( )A.4B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩ 方法二:1,28.x y x y =++=⎧⎨⎩①② 对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩ 【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩ 2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( ) A.由①得y=3x-2,再代入② B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( ) A.1,2 B.1,-2 C.-1,2 D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元. (1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩ 答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
人教版初一数学上册 直线、射线、线段 讲义
直线、射线与线段知识点一、直线、射线、线段的概念1、直线:由无数个点构成,没有端点,向两端无限延长,长度是无穷的,无法测量2、射线:由无数个点构成,有一个端点,从这个端点开始向另一端无限延长,长度是无穷的,无法测量3、线段:由无数个点构成,有两个端点,从一个端点连向另一个端点,长度是有限的,可以测量1、下列说法正确的有_____________①直线比射线长②线段由无数个点构成③过三点一定能作一条直线④线段的长度是无穷的⑤直线有两个端点⑥射线有两个端点⑦线段有两个端点2、下列关于直线、射线、线段的说法正确的是()A、直线最长,线段最短B、射线是直线长度的一半C、直线没有端点D、直线、射线和线段的长度都不确定3、下列说法正确的是()A、线段不能延长B、延长直线AB到CC、延长射线AB到CD、直线上两个点和它们之间的部分是线段A、线段AB的长度是A、B两点间的距离B、若点P使PA=PB,则点P是AB中点C、画一条10厘米的直线D、画一条3厘米的射线知识点二、直线、射线、线段的表示方法1、直线用一个小写字母或两个大写字母表示,例如直线a或直线AB。
注意:直线AB和直线BA是同一条直线2、射线用一个小写字母或两个大写字母表示,例如射线a或射线AB注意:射线AB指从A射向B,射线BA指从B射向A,是不同的两条射线3、线段用一个小写字母或两个大写字母表示,例如线段a或线段AB注意:线段AB和线段BA是同一条线段思考:(1)直线AB和直线BA一样吗?_______(2)射线AB和射线BA一样吗?_______(3)线段AB和线段BA一样吗?_______1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线A、线段AB和线段a可以代表同一条线段B、直线AB和直线BA是同一条直线C、线段AB和线段BA是同一条线段D、射线AB和射线BA是同一条射线3、下列叙述正确的是()A、直线AB、线段ABC、射线abD、直线Ab4、下列叙述不正确的是()A、线段aB、射线bC、直线CDD、射线Ca知识点三、数学原理1、两点确定一条直线2、两点之间线段最短1、下列说法正确的有_______________①经过两点有且只有一条直线②两点之间线段最短③两点确定一条直线④到线段两个端点距离相等的点叫做线段的中点⑤线段的中点到线段两个端点的距离相等2、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,体现的原理是________________________3、小明是神枪手,他打靶时眼睛总要与枪上的准星、靶心在同一条直线上,这体现了什么道理_______________________4、从A到B有多条路,但是聪明的人都知道走走中间的直路比较近,这体现的数学原理是_____________________5、把弯曲的河流改成直的,可以缩小航程,这体现的原理是_____________________6、要把一根木条在墙上钉牢,至少需要______枚钉子,原理是_________________7、开学整理教室时,老师总是先把每一列最前和最后的课桌整理好,然后再依次摆中间的课桌,一会儿一列课桌就摆在一条线上,整整齐齐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
初一数学——期末复习(2)
1、(2009年牡丹江)尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径
画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两
弧交于点P,作射线OP,由作法得OCPODP△≌△的根据是( )
A.SAS B.ASA C.AAS D.SSS
2、(2009年广西钦州)如图,在等腰梯形ABCD中,AB=DC,AC、BD交于点O,则图
中全等三角形共有( )
A.2对 B.3对 C.4对 D.5对
3、(2009陕西省太原市)如图,ACBACB△≌△,BCB=30°,则ACA的度数
为( )
A.20° B.30° C.35° D.40°
4、(2009年江苏省)如图,给出下列四组条件:
①ABDEBCEFACDF,,;
②ABDEBEBCEF,,;
③BEBCEFCF,,;
④ABDEACDFBE,,.
其中,能使ABCDEF△≌△的条件共( )
A.1组 B.2组 C.3组 D.4组
5、 (2009宁夏)如图,ABC△的周长为32,且ABACADBC,于D,ACD△的
周长为24,那么AD的长为 .
6、(09湖南怀化)如图,已知ADAB,DACBAE,要使 ABC△≌
ADE△
A C E B D ABCDOC A B B A A
B
C
D
O
D
P
C
A
B
2
可补充的条件是 (写出一个即可).
7、(2009年吉林省)如图,ABACADBCDADAEABDAEDEF于点,,平分交于点,
于E,请你写出图中三对..全等三角形,并选取其中一对加以证明.
8、(2009年舟山)如图,四边形ABCD是矩形,△PBC和△QCD
都是等边三角形,且点P在矩形上方,点Q在矩形内.求
证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.
9、(2009年佳木斯)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,
AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明.
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥
AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
10.如图,在△ABC中,AB=AC,∠B=90°,D、E分别为AB、BC上的动点,且BD=CE,
M是AC的中点,试探究在DE运动的过程中,△DEM的形状是
否发生变化?它是什么形状的三角形?
B D C
F
A
E
A C B D
P
Q
M
E
D
C
B
A
3
11、关于的方程222(1)0xkxk两实根之和为m,2(1)mk,关于y的不等于
组4yym有实数解,则k的取值范围是_________________.
12、如果不等式组2223xaxb≥的解集是01x≤,那么ab的值为 .
13、已知关于x的不等式组0521xax≥,只有四个整数解,则实数a的取值范围是 .
14、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是
( )
A.13cm B.6cm C.5cm D.4cm
15、若方程组323ayxyx的解是负数,那么a的取值范围是 .
17、从2008年12月1日起,国家开始实施家电下乡计划,国家按照农民购买家电金额的
13%予以政策补贴,某商场计划购进A、B两种型号的彩电共100台,已知该商场所筹购
买的资金不少于222000元,但不超过222800元,国家规定这两种型号彩电的进价和售价
如下表:
型号
A B
进价(元/台)
2000 2400
售价(元/台)
2500 3000
(1)农民购买哪种型号的彩电获得的政府补贴要多些?请说明理由;
(2)该商场购进这两种型号的彩电共有哪些方案?其中哪种购进方案获得的利润最
大?请说明理由.(注:利润=售价-进价)。
4
E
D
C
B
A
A
F
C
E
B
D
M
P
2
1
A
B
C
D
18、右图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形统计图。
(1)求该班有多少名学生?
(2)补上步行分布直方图的空缺部分;
(3)在扇形统计图中,求骑车人数所占的圆心角度数。
(4)若全年级有500人,估计该年级步行人数。
19、设有编号为1到50的50张考签,一学生任意抽取一张进行面授,那么该学生抽到前
20号考签的概率是 ;
21、袋中装有3个白球,2个红球,1个黑球,从中任取1个,那么取到的不是红球的概
率是 ;
22、有左、中、右三个抽屉,左边的抽屉里放2个白球,中间和右边的抽屉里各放一个红球和
一个白球,从三个抽屉里任选一个球是红球的概率是多少?是白球的概率是多少?
23、第十中学教研组有25名教师,将他的年龄分成3组,在38~45岁组内有8名教师,
那么这个小组的频数是( )
(A)0.12 (B)0.38 (C)0.32 (D)3.12
24、如图,在△ABC中,∠ACB=90°,D是AB
的中点,CE⊥AB,且AC=6,BC=8,则EC= ,
CD= .
25、 如图所示,△ABC中,D为BC上一点,且AB=AC=BD.
则图中∠1与∠2的关系是( )
A.∠1=2∠2 B.∠1+∠2=180°
C.∠1+3∠2=180° D.3∠1-∠2=180°
26、如图,在等边△ABC中,P为△ABC内任意一点,
PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AM⊥BC于M,
试猜想AM、PD、PE、PF之间的关系,并证明你的猜想.
乘车50%
步行
20%
骑车
30%
20
12
乘车 步行 骑车
(人数)