《博弈论》课程课件

合集下载

博弈论PPT课件

博弈论PPT课件
有i si 0, i si 1 si Si
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)

第六讲博弈论课件

第六讲博弈论课件
❖ 对于矩阵博弈,其主要的任务就是求出矩阵 博弈的Nash均衡解-----双方尽可能满意的结 果。
例12.1 智猪博弈模型
❖ 每次踩出6个单位的食物,按者支付2个单位 成本,小踩,(1,5)大踩(4,2)同时 (2,4)
大猪
小猪

踩 2,4 等待 4,2
等待
1,5 0,0
小猪的收入矩阵
A
2, 4,
❖ 20世纪50年代以来,纳什、泽尔腾、海萨尼 等人使博弈论最终成熟并进入实用。
三位大师主要的贡献
❖ 1950年和1951年纳什的两篇关于非合作博弈 论的重要论文,彻底改变了人们对竞争和市 场的看法。他证明了非合作博弈及其均衡解, 并证明了均衡解的存在性,即著名的纳什均 衡。从而揭示了博弈均衡与经济均衡的内在 联系。因为在现实世界中,非合作博弈要比 合作博弈普遍得多。
囚徒困境的意义
❖ “囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。
❖ 他们两人都是在坦白与抵赖策略上首先想到 自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串 供)时,才可以得到最短时间的监禁的结果。
顺序和信息
❖ 博弈论非常强调时间和信息的重要性,认为 时间和信息是影响博弈均衡的主要因素。
❖ 在博弈过程中,参与者之间的信息传递决定 了其行动空间和最优战略的选择;
❖ 同时,博弈过程中始终存在一个先后问题 Sequence order,参与人的行动次序对博弈 最后的均衡有直接的影响。
分类
❖ 博弈的划分可以从参与人行动的次序和参与 人对其它参与人的特征、战略空间和支付的 知识、信息,是否了解两个角度进行。

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论讲义完整PPT课件

博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页

博弈论PPT课件

博弈论PPT课件

第1个数字表示企业1 的收入, 第2个数字表示企业2的收入。
13
7.2.2合作博弈:建立卡特尔 • 合作是避免囚徒困境的有效方法 • 合作博弈与欺骗者
14
7.2.3重复性博弈:怎样对付欺骗者 • 重复性博弈:反复进行多次博弈 • 重复性博弈的最优策略——针锋相对:模仿上一
次博弈中对手的行为 • 针锋相对是最优策略 • 好的博弈四原则 ☞简单,不易误解 ☞针锋相对不是先搞欺骗 ☞不允许欺骗行为,但要给欺骗行为以处罚 ☞针锋相对是宽大的,允许对方恢复合作
可以采取降价策略,使新的进入者不敢贸然进入 • 投资于剩余生产能力的决策:投资引起的当前的
利润损失低于新企业进入而引起的将来的利润损 失
29
7.3.4先发制人:使市场饱和
• 在各地布点,使新的进入者无法利用高运 输成本的机会
N1 E N2
E1
E2
E4
E3
30
7.3.5 市场渗透定价 •通过制定低价抢占市场份额的策略。 •市场渗透定价是网络外部性明显的产业常用策 略。
的违约问题 • 先合作,第N次违约的收入:
30+30+30+30+······+40
• 现实:不知道N是多少→选择合作策略 • 如何在员工工作的最后一天激励员工? • 有结止日期的有限重复博弈等于一次性博弈
17
•市场中的重复博弈的作用 •市场中的一次性博弈使得生产劣质产品的企业有 利 •市场中的重复博弈促使生产者生产高质量产品
15
重复性博弈下的行为选择
• 合作收入:30+30+30+30+······
• 不合作收入:40+20+20+20 +······

博弈论课件

博弈论课件
第一章
1 Part
博弈论简介
2 Part
博弈的要素
3 Part
博弈ห้องสมุดไป่ตู้分类
4 Part
课堂互动
假设我脸干净
A脸干净
如果我脸也干净
A

C一定知道自己脸脏 但C不知道
B
所以我脸脏
所以B一定知道自己脸脏 但B不知道,说明我的假设不正确 故我脸脏
第一章
1 Part
博弈论简介
2 Part
博弈的要素
3 Part
Static Game Perfect Information
教CO学NT要EN求TS:
NO.1 知 占识优目策标略均衡 NO.2 能 重力复目剔标除占优均衡 NO.3 情 纳感什目均标衡 NO.4 重混点合难策点略均衡
Static Game Perfect Information
通过经典案例分析,掌握重复剔除的占优策略、纳什均 衡与混合策略均衡理论。 培养分析问题、解决问题的能力。 体会博弈论的应用价值,开拓视野,激发学习兴趣。
自测题目
教学大纲
教学课件
相关视频 参考书目
教学课件
Teaching courseware
目录
• 第一章 博弈论概述
006
• 第二章 完全信息静态博弈
041
第一节 占优策略均衡
043
第二节 重复剔除的占优均衡
066
第三节 纳什均衡
088
第四节 混合策略均衡
106
第一章
教学要求
知识目标 掌握博弈论的概念、发展、分类与要素
42
第二章 完全信息静态博弈
1.1 博弈的策略式表述
在博弈论中,一个博弈可以用两种不同的方式来表达: 策略式表达 和 扩展式表达 。策略式表达更适合于静态 博弈,而扩展式表达更适合于讨论动态博弈。

博弈论课件

博弈论课件

博弈论强调参与者之间的互动关系,通过数学模型和理论分析来研究 策略选择和均衡结果。
博弈论的发展历程
博弈论的起源可以追溯到20世纪初,当时数学家和经 济学家开始研究游戏中的策略和均衡。
1944年,冯·诺依曼和摩根斯坦合著的《博弈论与经济 行为》标志着博弈论的诞生。
随后,纳什、泽尔腾和哈萨尼等学者进一步发展了博弈 论,形成了现代博弈论的基础。
商业竞争与合作
商业竞争
博弈论可以用于分析商业竞争中的策略和行为,例如价格战、广告战等。通过 博弈论,企业可以更好地理解竞争对手的策略,制定出更有效的竞争策略。
商业合作
博弈论也可以用于分析商业合作中的策略和行为,例如供应链管理、合资企业 等。通过博弈论,企业可以更好地理解合作伙伴的需求和期望,制定出更有效 的合作策略。
贝叶斯纳什均衡
在不完全信息博弈中,如果所有参与 者都根据自己掌握的信息选择最优策 略,则所有参与者都能获得最大收益 。
静态博弈与动态博弈
01
静态博弈
02
动态博弈
所有参与者在同一时间点选择策略并获得收益。
参与者的选择有先后顺序,后选择的参与者可以观察到先选择的参与 者的策略和收益。
03
纳什均衡
纳什均衡的定义
博弈优化方法
线性规划
线性规划是一种数学优化方法, 用于找到在满足一组约束条件下 最大化或最小化目标函数的最优
解。
非线性规划
非线性规划是数学优化的一种方 法,用于找到一组变量的最优值 ,使得一个或多个目标函数达到
最优。
动态规划
动态规划是一种通过将问题分解 为相互重叠的子问题来解决问题 的方法,每个子问题的解被保存
博弈论课件
汇报人:
汇报时间:202X-01-04
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:地球是圆的。
27
图1 地球是圆的?还是平的?。
做出上面这个思维实验的人就是大名鼎 鼎的希腊智者——亚里斯多德。
28
会( 现二 象) 用 囚 徒 困 境 解 释 各 种 社


( 一 ) 标 准 的 囚 徒 困 境
29
(一)囚徒困境 囚徒困境的策略式 1)参与者集合:囚徒1定义为1,囚徒2定 义为2,N = {1 , 2}。 (2)策略空间:囚徒1的策略空间S1 = {沉 默,招供},囚徒2的策略空间S2 = {沉默, 招供}。策略s11 = s21 = 沉默,s12 = s22 = 招 供。 (3)偏好和收益函数:囚徒1的偏好,从好 到差排序为(招供,沉默)……(沉默,招 供)。囚徒2与此类似。
姚国庆 yaogqing@





( 五 ) 博 弈 模 型 的 分 类
( 四 ) 博 弈 论 的 两 个 前 提 假 设
( 三 ) 纳 什 均 衡
( 二 ) 博 弈 表 达 的 科 学 式
( 一 、剪刀、布
猪八戒
(2)博弈的扩展式 博弈的扩展式就是非常详细地描绘出一个博弈的参 与者、策略、行动顺序以及行动时拥有的信息、可 能结果和收益等细节就称为博弈的扩展式。
7
1、博弈策略式的定义 在具体情况中,不同博弈的故事千差万别, 但其中总有一些本质的东西是不变的。通常 描述一个博弈必不可少的要素包含三个: (1)参加博弈有哪些“人”; (2)每个参与者都有些什么样的“策略”, 由于策略的定义比较复杂,这里我们先将策 略理解为“行动”; (3)偏好和效用函数(收益函数)。
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼底设防 成功,失败
失败,成功
失败,成功
3
例3 鸽派和鹰派
美 国 鸽派政策 苏联 鹰派政策
30
囚徒困境的博弈矩阵
囚徒2
沉默 沉默 招供 –9,0
囚徒1
– 1 ,– 1
招供
0 ,– 9
–6,–6
31
(二)用囚徒困境解释各种社会经济现象
a. 全球气候变暖与碳减排 b. 北京交通的拥堵 c. 人民公社为什么垮掉 d. 三个和尚没水喝 e. 为什么社会缺乏信用
f. 合同法能解决囚徒困境吗?
g. 道德的价值
22
表 1 博弈的分类和均衡概念
完全信息 静态 非完全信息
完全信息静态博弈 非完全信息静态博弈 (纳什均衡) (贝叶斯均衡)
完全信息动态博弈 非完全信息动态博弈 动态 (子博弈精炼均衡) (序列均衡)
23
非完全信息动态博弈
非完 全信 息静 态博 弈
完全 信息 动态 博弈
完全信息静态博弈
一般均衡
图1-2 四个博弈模型关系图
鸽派政策
鹰派政策
0,0
+1,–1
–1,+1
– ∞,– ∞
4
从上面的三个例子中,我们可以概括出一个博弈 所具有的共同特征:利益相冲突的参与者、参与 者总是根据对手可能采取的策略来采取相应的行 动----相互依存的策略和行动、参与者总是追求自 身利益最大化。根据这些共同特征我们就能给出 一个博弈的定义,只要符合这个定义,就可以将 其纳入到博弈论的研究范畴之中。
从博弈论的角度来看,父母的关爱越深切反而 会进一步削弱父母的威慑力,有趣的是,如果 女儿怀疑父母不爱她,反而有可能把对手的威 胁当真,这就是中国古语所说“异子而教”。
35
2、破釜沉舟
破釜沉舟这个成语故事对中国人来说妇孺皆知, 他之所以2千年了仍被人传唱,根本的原因就 是项羽成功的解决了不可置信的难题,并将其 变成了一种激励,鞭笞士兵拼命。
参与者1
参与者2
正面 反面
参与者1
正面
反面
+1, -1
-1, +1
-1, +1
+1, -1
17
二是,所谓混合策略是指参与者按照概率 来选择行动,这个概率分布就是所谓的混 合策略。
定义5 如果一个策略组合s* = (s1* , …, sn*) 是博弈G = {N, S, u}的一个纳什均衡,那么 对任一参与者i = 1, 2, …, n,对其任一个策 略 si,不等式 ui(s*i, s*– i) ≥ ui(si, s*– i) (1) 成立。
13
例5 取消管制 扩展式的一个等价形式就是所谓的博弈树。
政府 维持 进 2 取消 1
退 退

退

图2 取消管制
14
取消管制的扩展式为 Γ =(N, H, P, u),其中 (1)参与者集合:政府1,企业2和企业3, N={1, 2, 3}。 (2)全历史集合:维持为C,取消为D,进 入为E,退出为Q,那么全历史集合H ={(C), (D, [E, E]), (D, [E, Q]), (D, [Q, E]), (D, [Q, Q])。 (3)参与者函数:P(Ø ) = 1,P(D) = {2, 3}。 (4)偏好:对于政府而言,根据五个历史 对应的社会福利进行排序,对于企业1和企 业2而言,则为五个历史对应的利润排序。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来科 学地描述一个博弈,就称为博弈表达的策略式(或 基本式、标准式)。
18
博弈论在研究的过程中有两个基本前提假设 一是,理性人假设。 二是,博弈结构对参与者是公共知识。特别
是,参与者满足完美回忆。
19
例6 旅行者困境 两个旅行者在旅游圣地买了两个花瓶,但在 回程途中被航空公司打碎。航空公司知道花 瓶大约值100元,但并不清楚花瓶的确切价 格。于是,航空公司要求两位旅客各自写下 花瓶的价格,并按照两个旅客中所写的最低 价格进行赔偿(航空公司认为写最低价格的 旅客讲的是真话),为了鼓励旅客讲真话, 规定对讲真话的旅客奖励2元,对讲假话的旅 客罚款2元。容易证明,在理性人的假设下, 这个游戏唯一的结果是两人都写0。
32
这里我们首先考虑一个极端的例子,故事是
这样的,一个穷人威胁,如果富人不给他三 百万,那么穷人就要和富人同归于尽。我们 可以将这个博弈变成一个动态博弈,第一阶 段,富人首先行动已决定给不给钱(给钱或 是不给),第二阶段,穷人根据富人的行动 决定是否拉手榴弹。穷人的威胁是可置信的 吗?
33
手榴弹游戏的扩展式
10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方
(0,2) (0,2) 失败,成功 成功,失败 成功,失败 (1,1) 成功,失败 失败,成功 成功,失败 (2,0) 成功,失败 成功,失败 失败,成功
攻方
(1,1) (2,0)
11
2、博弈扩展式
扩展式之所以称为“扩展”根本的原因在于 它比基本式“详细”。特别是对博弈中参与 者的行动顺序和信息状态做出了比基本式 “详细”得多地刻画。正因为如此,所以扩 展式通常被用来描述复杂的动态博弈。 通俗地说,我们把博弈中所有从开始到结束 的行动序列称为一个play(全历史或完整路 径),全历史中从开始到某个阶段就叫子历 史或路径。
15
纳什均衡是博弈论分析的基础,但纳什均衡
的概念实际上却非常简单。为了更好的理解 我们将从两个层面来加以理解。
一是,纳什均衡是指这样一种策略组合,其
中没有任何一个参与者有动机单方面改变策 略——单边背离。不存在单边背离的策略组 合即为纳什均衡。
16
纳什均衡——不存在单边背离
参与者2
左 中 1,2 3,3 0,1 右 0,1 1,1 2,0 上 中 下 1, 0 2,1 0,3
20
博弈中最重要的两个因素是信息与顺序。
信息上可以分为完全信息和非完全信息。
在博弈的顺序上则可以分为静态与动态。
21
完全信息和非完全信息,完全和非完全判 断的标准就是如果有些信息只有一部分参 与者知道,并不是所有的信息都是公共信 息,那么博弈就是非完全信息博弈。 静态博弈和动态博弈,静态和动态的区别 并不在于时间上是否同时,而是在行动上 是否同时。如果参与者1在行动时,不知道 参与者2的行动,反之也一样,即为同时行 动。
25
这个模型是这样的:
第一个模型 假设:地球是圆的 已知:光线是按直线行走的(现实中观 察到的事实) 那么:在港口的人,首先看到远方驶来 船只的船桅,并逐渐看到船的下部(与现实 中观察到的事实相符)
26
第二个模型
假设:地球是平的 已知:光线是按直线行走的(现实中观 察到的事实) 那么:在港口的人,首先看到的是整个 船身(与现实中观察到的事实相悖)
8
定义3 博弈表达的基本式(或策略式)由博 弈的参与者N,策略空间S和收益函数u三个 要素组成,即G = {N, S, u}。其中N为自然数 集合{1, …, n},S为n重笛卡尔集,Si为参与 者i的纯策略集合,u为参与者的收益函数集 合。 完全信息静态博弈是最简单的博弈,所以通 常用策略式来描述之,策略式最常见的一种 方式就是所谓的“博弈矩阵”。我们在前面 已经接触到。
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
相关文档
最新文档