计算流体力学报告书

计算流体力学报告书
计算流体力学报告书

习题1.二维方腔驱动流

一.Re=100

在一个正方形的二维空腔中充满等密度的空气

由Re=ud/ν,又ν=1.789 ×10﹣5 m2/s,顶盖驱动流的速度u=3.0m/s,求得d=0.596mm,得腔每边长为l=0.596mm,即其顶板以3.0m/s的速度向右移动,同时带动方腔内流体的流动,流场内的流体为层流。计算区域示意图如图1所示。

u=3.0m/s

图1 计算区域示意图

1.在Gambit中建立模型

在Gambit中建立模型的操作步骤如下:

Step1:启动Gambit并选择求解器为Fluent5/6。

Step2:创建面

操作:→→

打开对话框如图2所示。输入长度和宽度0.766,在Direction中选择+X、+Y 。

图2 创建面设置对话框

Step3:划分面网格

操作:→→

打开对话框如图3所示,Shift+鼠标左键选择正方形面,Internal count=150,其它保留默认,点击Apply确认。划分后的网格如图4所示。

图3 网格划分设置对话框图4 计算区域网格图

Step4:设置边界类型

操作:→

●在Name栏输入边界名称wall-1,将Type栏选为Wall,在Entity栏选取

Edges,并选中方腔顶部边线。

●在Name栏输入边界名称wall-2,将Type栏选为Wall,在Entity栏选取

Edges,并选中方腔其它三条边线。

Step5:输出网格文件

操作:Fil m→export→mesh

打开对话框如图5所示,选中Export 2-D mesh 前面的复选框,输出网格文件。

图5 网格文件输出对话框

2.求解计算

求解计算的操作步骤如下:

Step1:启动Fluent

选择2d单精度求解器,点击Run,如图6所示。

Step2:设置Fluent运算模式

操作:define→models→viscous models...设置如图7所示:

图6 启动求解器图7 设置运算模式

Step3:导入并检查网格

1.读入网格文件

操作:Fil e→Read→Case...

找到文件后,单击OK按键确认。

2.检查网格

操作:Grid→Check

3.网格比例设置

操作:Grid→Scale...

在Gambit中,生成网格使用的单位是mm,在Grid Was Created In下拉菜单中,选取mm,如图8所示,然后单击Scale,关闭对话框。

图8 网格尺寸设置对话框

4.显示网格

操作:Display→Grid...如下图所示:

图9显示生成网格

Step4:选择计算模型

设置求解器

操作:Define→Models→solve...

保留默认设置。点击OK确认。

Step5:定义流体材料性质

操作:Define→Materials...

打开对话框如图10所示,在该对话框中可定义材料的物理属性,也可以从材料数据库中选择其它材料,或者创建新的材料。在本例中,选择二氧化碳。

图10 材料设置对话框

Step6:设置边界条件

操作:Define→Boundary Conditions...

打开“Boundary Conditions”设置对话框如图11所示。

图11 边界选择对话框

1.设置顶部壁面的边界条件

在Zone下面选择wall-1,它对应的边界条件类型为Wall,然后单击Set按键,

打开wall-1边界条件设置的对话框如图12所示。

(1)在Wall Motion中选择Moving Wall,这样就可以把顶部壁面设置为运

动的;

(2)在Speed中输入速度的大小1.0m/s;

(3)保留其它的默认设置;

(4)点击OK确认。

图12顶部壁面设置对话框

2.保留其它边界的默认设置(默认其它三面为静止壁面)。

Step7:求解方法的设置及其控制

1.求解参数的设置

操作:Solve→Controls→Solution...

本例只需保持默认的求解参数设置即可。

操作:Define→Models→viscous model,选laminar模型。

2.打开残差图

操作:Solve→Monitors→Residual...

打开残差设置对话框如图13所示,选择Option下面的Plot,计算时将动态的显示残差曲线。保留其它默认设置,点击OK确认。

图13残差设置对话框

3.流场初始化

操作:Solve→Initialize→Initialize...

打开初始化对话框如图14所示,依次点击Init、Apply和Close按键即可。

图14 初始化对话框

4.保存case文件

操作:Fil e→Write→Case...

5.开始迭代

操作:Solve→Iterate...

打开对话框如图15所示,在Number of Iteration(迭代次数)栏内输入500;点击Iterate开始计算,计算生成的迭代残差图如图16所示。

图15迭代残差图

6.保存date文件

操作:Fil e→Write→Date...

计算收敛,保存Date文件。

3.计算结果

计算收敛后,可对结果进行查看。

1.显示流函数等值线图

操作:Display→Contour...

打开对话框如图17所示。

(1)在Contour Of下拉列表中选择Velocity...和Stream Function;

(2)点击Display。

图16 等值线设置对话框

流函数等值线图如图17所示,图示结果表明,靠近上边界等值线较密,红色表示流函数值较大,靠近下边界流函数线较疏。

图17流函数等值线图

2.显示速度矢量图

操作:Display→Vectors...

打开“Vectors”设置对话框如图19所示。

保留默认设置,点击Display。速度矢量如图20所示。

从图中可以看出,方腔内的流体随着顶盖的移动而发生了运动。图示结果表明流体流动方向,中心形成漩涡。

图18速度矢量设置对话框

图19速度矢量图

3.显示压力等值线图

操作:Display→Contour...

打开对话框如图17所示。

(1)在Contour Of下拉列表中选择Pressure和Static pressure;(2)点击Display。

图20 压力设置对话框

图21 压力等值线图

4.空腔中心线上的速度分量分布

(1)在Surface下拉列表中选择Iso-Surface;

(2)在Iso-Surface对话框中,Surface of Constant选择Grid/Y-Coordinate,单击Compute,这时在min和max将出现计算值,在Iso-Value框中输入0.383,在New Surface Name 中输入y=0.383,将创建水平中心线,同理可创建竖直中心线。

图22 Iso-Surface

Plot-XY plot,对话框设置如图:点击plot结果如图25

图23 Solution XY plot对话框

图24 水平中心线(y=0.383)上竖直速度分量(v)分布

V-x

同理可得竖直中心线(x=0.383)上水平速度分量(u)分布。如图26.

图25 竖直中心线(x=0.383)上水平速度分量(u)分布

U-y

二.Re=1000 的物理模型

1. 物理模型

在一个正方形的二维空腔中充满等密度的空气

由Re=ud/ν,又ν=1.789 ×10﹣5m2/s,顶盖驱动流的速度u=3.0m/s,求得d=5.96mm,方腔每边长为l=5.96mm,即其顶板以3.0m/s的速度向右移动,同时带动方腔内流体的流动,流场内的流体为紊流。计算区域示意图如图1所示。

l=5.96mm

图1 计算区域示意图

2.在Gambit中建立模型

在Gambit中建立模型的操作步骤如下:

Step1:启动Gambit并选择求解器为Fluent5/6。

Step2:创建面

操作:→→

打开对话框如图2所示。输入长度和宽度25,在Direction中选择XY Centered。

图2 创建面设置对话框

Step3:划分面网格

操作:→→

打开对话框如图3所示,Shift+鼠标左键选择正方形面,Internal count=100,其它保留默认,点击Apply确认。划分后的网格如图4所示。

图3 网格划分设置对话框图4 计算区域网格图

Step4:设置边界类型

操作:→

●在Name栏输入边界名称wall-1,将Type栏选为Wall,在Entity栏选取

Edges,并选中方腔顶部边线。

●在Name栏输入边界名称wall-2,将Type栏选为Wall,在Entity栏选取

Edges,并选中方腔其它三条边线。

Step5:输出网格文件

操作:Fil m→export→mesh

打开对话框如图5所示,选中Export 2-D mesh 前面的复选框,输出网格文件。

图5 网格文件输出对话框

3.求解计算

求解计算的操作步骤如下:

Step1:启动Fluent

选择2d单精度求解器,点击Run,如图6所示。

Step2:设置Fluent运算模式

操作:define→models→viscous models...设置如图7所示:

图6 启动求解器图7 设置运算模式

Step3:导入并检查网格

1.读入网格文件

操作:Fil e→Read→Case...

找到文件后,单击OK按键确认。

2.检查网格

操作:Grid→Check

3.网格比例设置

操作:Grid→Scale...

在Gambit中,生成网格使用的单位是mm,在Grid Was Created In下拉菜单中,选取mm,如图8所示,然后单击Scale,关闭对话框。

图8 网格尺寸设置对话框

4.显示网格

操作:Display→Grid...如下图所示:

图9显示生成网格

Step4:选择计算模型

设置求解器

操作:Define→Models→solve.

保留默认设置。点击OK确认。

操作:Define→Models→viscous model,选k-epsilon模型。

Step5:定义流体材料性质

操作:Define→Materials...

打开对话框如图10所示,在该对话框中可定义材料的物理属性,也可以从材料数据库中选择其它材料,或者创建新的材料。在本例中,选择二氧化碳。

图10 材料设置对话框

Step6:设置边界条件

操作:Define→Boundary Conditions...

打开“Boundary Conditions”设置对话框如图11所示。

图11 边界选择对话框

1.设置顶部壁面的边界条件

在Zone下面选择wall-1,它对应的边界条件类型为Wall,然后单击Set按键,打开wall-1边界条件设置的对话框如图12所示。

(1)在Wall Motion中选择Moving Wall,这样就可以把顶部壁面设置为运动的;

(2)在Speed中输入速度的大小1.0m/s;

(3)保留其它的默认设置;

(4)点击OK确认。

图12顶部壁面设置对话框

2.保留其它边界的默认设置(默认其它三面为静止壁面)。

Step7:求解方法的设置及其控制

1.求解参数的设置

操作:Solve→Controls→Solution...

本例只需保持默认的求解参数设置即可。

2.打开残差图

操作:Solve→Monitors→Residual...

打开残差设置对话框如图13所示,选择Option下面的Plot,计算时将动态的显示残差曲线。保留其它默认设置,点击OK确认。

图13残差设置对话框

3.流场初始化

操作:Solve→Initialize→Initialize...

打开初始化对话框如图14所示,依次点击Init、Apply和Close按键即可。

图14 初始化对话框图15迭代设置对话框4.保存case文件

操作:Fil e→Write→Case...

5.开始迭代

操作:Solve→Iterate...

打开对话框如图15所示,在Number of Iteration(迭代次数)栏内输入500;

点击Iterate开始计算,计算生成的迭代残差图如图16所示。

产品数据管理技术与计算流体力学课程介绍

〈〈产品数据管理(PDM技术》课程简介 课程代码:AM011 课程简介: 本门课程将讲授PDM技术的基本概念、理论方法、系统结构和PDM^r业实施案例以及典型PDM^统介绍等相关专题,以满足我国企业信息化工程对大量复合型人才的需求 本课程的主要任务是: 1、掌握PDMJ术的发展与应用; 2、掌握PDMJ术的基本理论和方法; 3、掌握PDMK统体系结构和主要功能; 4、掌握PD"对象的建模方法和对象模型; 5、了解PDMK统实施方法; 6、了接国内外著名PDMS用系统。 本课程是一门实用性和系统性很强的课程,包含了机械工程和工业工程等领域高级技术 人员必须掌握的基本知识和内容。课程学习的目的是使学生掌握 PD M 基本理论知识和方法,为今后从事企业信息化工作,特别是从事产品数字化设计、制造与管理工作打下坚实的理论基础。 This course is the basic course on product development, it covers the following topics: Development and applications of PDM technology, Supporting technologies of PDM, Product data management technology, Product development lifecycle management technology, PDM implementation methodology, Introduction to SIPM/PDM.

院(系)公章: 撰写人:

高等计算流体力学讲义(2)

高等计算流体力学讲义(2) 第二章 可压缩流动的数值方法 §1. Euler 方程的基本理论 0 概述 在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。 1非线性守恒系统和Euler 方程 一维一阶非线性守恒系统(守恒律)可写为下列一般形式 =??+??x F t U ,0,>∈t R x (1) 其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即: 0)(lim =→U F U 即通量是对守恒变量的输运,守恒变量为零时,通量也为零。 守恒律的物理意义 设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R R 。即此时虽然(,)U x t 的分布可以随时 间变化,但其总量保持守恒。 多维守恒律可以写为 )(=++??+??k H j G i F t U (2) 守恒律的空间导数项可以写为散度形式。 守恒系统(1)可以展开成所谓拟线性形式

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

计算流体力学课程大作业

《计算流体力学》课程大作业 ——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟 张伊哲 航博101 1、 引言和综述 2、 问题的提出,怎样使用涡量-流函数方法建立差分格式 3、 程序说明 4、 计算结果和讨论 5、 结论 1引言 虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。 考虑不可压缩流动的N-S 方程: 01()P t νρ??=? ? ??+??=-?+???? U U UU f U (1.1) 其中ν是运动粘性系数,认为是常数。将方程组写成无量纲的形式: 01()Re P t ??=?? ??+??=-?+????U U UU f U (1.2) 其中Re 是雷诺数。 从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。 如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。 目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。其中涡量-流函数法是解决二维不可压缩流动的有效方法。作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。 本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。第3节介绍程序的结构。第4节对于不同雷诺数下的计算结果进行分析,并且与U.GHIA 等人【1】的经典结论进行对比,评述本

两相流体力学研究综述

两相流体力学研究综述 1. 引言 两相流是以工程热物理学为基础,为满足能源、动力、化工、石油、航空、电子、医药等工业进步的要求,而与数学、力学、信息、生物、环境、材料、计算机等学科相互融合交叉而逐步形成和发展起来的一门新兴交叉学科。两相流早日形成统一的学术理论和成熟的应用技术,对21世纪全球所面临的生态环境和能源资源两个焦点问题的解决将有很大的推动作用,是人类在21世纪可持续发展中面临的重大技术问题之一。该工程领域的突破能促进全球能源与环境经济的进步。 在瓦特(Watt)发明蒸汽机以后,随着工业技术的发展,两相流的研究开始得到重视。1877年Boussines系统研究了明渠水流中泥沙的沉降和输运问题,1910年,Mallock研究了声波在泡沫液体介质中传播时强度的衰减过程。20世纪40年代前,一些有价值的气液两相流不稳定性以及锅炉水循环中气液两相流问题的经典论文,以及研究成果分散在各工业部门,很少系统研究成果。两相流的术语在20世纪30年代首先出现于美国的一些研究生论文中;1943年,苏联首先将这一术语应用于正式出版的学术刊物上;其后1949年在J.Ap-pl.Phys杂志上也出现了两相流(two-phase flow)这一名词。中国对于两相流的研究起步于20世纪60年代。20世纪80年代以来,除相关论文以外,陆续出版了一些关于两相流的教材和专著,如陈之航(1983)、佟庆理(1982)、陈学俊、林宗虎、张远君等(1987)、方丁酉(1988)、周强泰(1990)、周力行、李海青(1991)、吕砚山(1992)、刘大猷(1993)、郭烈锦(2002)、林建忠(2003)等。 虽然有如此多的文献和著作,但两相流的研究历史还不是很长,对于两相流的理论研究尚处于发展阶段,大量的问题还是靠试验和经验来解决,严格地从数学角度建立数学模型来解决问题,是两相流成为系统的科学还需要一个过程。 2. 两相流分类 相是具有相同成分和相同物理、化学性质的均匀物质部分,即相是物质的单一状态,如固态、液态和气态。在两相流动的研究中通常称为固相、液相和气相。一般来说,各相有明显的分界面。两相流就是指物质两相同时并存且具有明显相界面的混合流动。相的概念在不同学科中界定有所不同。 在物理学中:物质分固、液、气和等离子体四相或四态。单相物质及两相混合均匀的气体或液体的流动都属于单相流;同时存在两种或两种以上相态的物质混合体的流动称为两相或多相流。 在多相流体力学中:从力学的观点来看,不同速度、不同温度和不同尺寸的颗粒、液滴或气泡具有不同的力学特性,因此可以是不同的相。对于颗粒相大小很分散的两相流,可以按颗粒大小相近的原则分组而使其动力学性质相似,不同的组用不同的动力学方程来描述,这样的两相流也称为多相流。从物态的角度来看,不同物态、不同化学组成、不同尺寸和形状的物质也可能属于不同的相。 两相流动中,把物质分为连续介质和离散介质。气体和液体属于连续介质,称为连续相或流体相;固体颗粒、液滴和气泡属于离散介质,称为分散相或颗粒相。流体相和颗粒相组成的流动称为两相流。这里颗粒相可以是不同物态、不同化学组成和不同尺寸的颗粒,从而使复杂的多相流动简化。两相及多相流广泛存在于自然界和工程中,常见的分为气液两相流、气固两相流、液固两相流、液液两相流及多相流。 3. 两相流的研究方法 两相流的研究方法同单相流体力学的研究方法一样,也分为理论研究、实验研究和数值计算三种方法。对于两相流体力学而言,由于许多两相流动现象、机理和过程目前还不甚清

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。 这里 这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。 在CFD常把这个程写成矢量形式 这里 进一步可以写成散度形式

流体力学综述

流体力学综述 奇妙的流体力学:流体力学是研究流体在受到一系列力和边界条件作用时流体的运动和内部应力的科学。生活中我们与流体力学息息相关,很多貌似很奇怪、很难理解的现象,如河流中沙丘的形成、浴帘效应、杯中水的涡旋等现象,都可以用流体力学的只是来解释 流体力学的特点: 1、研究对象范围广:大到宇宙中的天体星云,小到人体内的毛细血管大气运动、沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动,都属于流体力学的研究范畴。 2、研究历史悠久:流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。公元前2000余年中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等,这都是人们对于自然的探索与改造。箭弩的发明反映了原始人对箭头的流线型降低摩阻及尾翅的稳定性问题的探索。 3、对整个自然科学贡献大:流体力学为自然科学的研究提供里一个完整的体系,并且对整个自然科学的一些根本性的东西产生了重要的影响。作为与量子力学、相对论相齐名的一个重大科学理论,混沌理论自产生以来产生的巨大影响同时也被广泛应用于各领域。 流体力学的研究内容: 1、流体静力学:主要研究流体处于静止状态时的力和平衡关系。 ? 浮力规律的探讨—阿基米德(十七世纪以前) 对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,静力学和流体静力学的奠基人,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。他的著作《论浮体》相当详细地讨论了正回旋抛物体在流体中的稳定性,研究了不同的高与底的比、具有不同的比重及在流体中处于不同位置时这种立体的性态。 ? 帕斯卡原理(静压传递原理)(1651-1654) 其基本内容是加在密闭液体任何一部分上 const 2g 2 =+g v p ρ 的压强,必然按照其原来的大小由液体向各个方向传递。帕斯卡的著作《论液体的平衡和空气的重力》代表了十七世纪力学发展的里程碑。静压传递原理是液压与气压传动的基础,在液压千斤顶、液压机等机械上有非常广泛的应用。 F1/F2(F 为施加的力)=S2/S2(S 指大小活塞的面积) 2、 理想流体的运动学和动力学 :流体动力学中主要研究无粘性不可压缩流体在绕过物体时的流动和管内流动规律的一个分支,又称经典流体动力学。这一学科分支的任务是求解流场中的速度、压力分布和物体受力。它忽略了真实流体的粘性和压缩性,也不考虑表面张力,从而大大简化了复杂的流体动力学问题,故常作为近似处理许多工程问题的依据。 牛顿、伯努利、欧拉、拉格朗日、拉普拉斯、纳维、柯西、泊松、圣维南、斯托克斯、雷诺等科学家对流体力学的发展都做出了巨大贡献。 ? 牛顿-站在巨人的肩上:他的著作《自然哲学的数学原理》发表于1687年,牛顿内摩擦定律-第一个系统研究流体力学的人。他所研究的流体我们定义为“牛顿流体”,是指在受力

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

流体力学文献综述

文献综述 题目流体力学概述 学院机电工程学院专业机械工程及自动化班级10机自本一学号10113003336 学生姓名徐石明任课教师李振哲 温州大学教务处制

一、前言部分: 1、前言 大千世界,被冠之以“流体”的流动介质无所不在.流体力学研究在各种力的作用下,流体的静止和运动状态以及流体和其他物体有相对运动时的相互作用和流动规律.流体力学既是探索自然规律的基础学科,也是解决工程实际问题的应用学科,它在现代科学中占有重要的地位。事实上,它已成为当今科学和工程技术的基础之一。 为了造就力学人才,我国许多理工科院校都开设了流体力学课程,因为在中国目前看来,还缺少这方面的拔尖人才。 2、相关概念及综述范围 2.1 概念:流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。 2.2 综述范围 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 二、主题部分: 1、历史 17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。之后,法国皮托发明了测量流速的皮托管;达朗贝尔证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名。欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。20世纪初,以儒科夫斯基、恰普雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。以这些理论为基础,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。1935年以后,人们概括了水力学

流体力学计算题综述

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分) 。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.1542 8.042.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分)。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1 222121-= -=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?=' =右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

流体力学试验

流體力學實驗 老師:A1班→李宗翰老師;B1班→楊龍杰老師 A2班→蔡欣正老師;B2班→邵德文老師 時間:A1班→星期五12、13、14節;B1班→星期三11、12、13節A2班→星期二11、12、13節;B2班→星期四12、13、14節 上課進度:

成績計算: 1.作業(30﹪):上課後10分鐘未交報告者扣總分3分! 當日無故未交者扣總分10分! 1.課堂(20﹪):分組合作精神,數據結果及隨堂口試小考。 2.口試(25﹪):於考前一週公告口試方式。 3.筆試(25﹪):於考前一週公告考場。 4.上課遲到10分鐘內扣總分3分! 無故缺課扣總分10分!缺課3次下學期再見! ※實驗前每組須備有空白數據表格一份,以方便記錄實驗數據※ 規定事項: 一、預習報告:(限用A4大小的紙書寫,不可用打字) 1.封面:包含實驗名稱、組別、班級、姓名、學號、座號。 2.內容:包含實驗目的、實驗原理、實驗步驟及空白數據表格。 3.每人一份,於實驗前由組長收齊交給助教簽章,並於批閱後取回。 二、結論報告:(限用A4大小的紙書寫) 1.個人結報:每人一份,含實驗心得和討論(心得須300字以上)。上課前將 個人結報及前一次實驗領回的預報合訂在一起,交給組長。 2.整組結報:每組一份,含數據、回歸分析結果,回歸分析圖表。 3.回歸分析須有電腦分析報表結果和座標曲線圖,圖可用手畫或電腦處理,若 用手畫請用方格紙,不可用工學院作業紙的背面。 4.未能及時繳交之作業,也一定要儘快繳交,不可缺交。 三、上課期間: 1.在實驗室內不可抽煙、進食及喝水,並注意安全。 2.不可無故離開實驗室,如有需要請先報備,助教會不定時的抽點。 3.組長負責整組的實驗操作、秩序及做完實驗後的清潔。 4.實驗後的數據表格,須在下課前交給助教檢查才算完成,嚴禁抄襲。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

计算流体力学实验报告

计算流体力学实验报告——热传导方程求解 姓名:梁庆 学号:0808320126 指导老师:江坤 日期:2010/12/30

基于FTCS格式热传导方程求解程序设计 摘要 计算流体力学是通过数值方法求解流体力学控制方程,得到流场的定量描述,并以预测流体运动规律的学科。在CFD中,我们将流体控制方程中积分微分项,近似的表示为离散的代数形式,使得积分或微分形式的控制方程转化为离散的代数方程组;然后通过计算机求解这些代数方程,从而得到流场在空间和时间点上的数值解。 基于以上思路,我们利用FTCS格式差分,工程上常用的热传导方程,并编制计算机求解程序,解出其数值解。并通过Matlab绘制,求解结果,分别以二维,三维的形式,给出求解结果,本实验通过求解的数值解,制作了1秒内长度为1的距离内,热传导情况动画,以备分析所用。 关键词FTCS 有限差分热传导方程

一、 问题重述 编制一个可以有限差分程序,实现求解热传导方程。 非定常热传导方程: 22(0) u u t t γγ??=>?? 初边值问题的有限差分求解。初始条件和边界条件为: (,0)() (0,)()0(1,)()0 u x f x u t a t u t b t =?? ==??==? 其中1γ=,初值条件为:000.3()1 0.30.71010 0.7 1.0 3 3x f x x x ? <

计算流体力学综述(附大涡模拟在水力机械中的应用)

计算流体力学综述(附大涡模拟在水力机械中的应用) 摘要:本文简单介绍了计算流体力学的发展历程及其应用、湍流模型的数值模拟方法和湍流模型、并简要概述了SPH方法及其计算流体力学通常依赖的几种商业软件。 关键字:计算流体力学发展历程湍流模型 SPH 商业软件 一、计算流体力学的发展发展历程及其应用 1.计算流体力学的发展历程 20纪30年代,由于飞机工业的需要、要求用流体力学理论来了导飞机设计,此时流动模型的制方程为拉普拉斯方程,工作的重点是椭圆型数值解。同一时期许多数学家研究了偏微分方程的数学理论,Courant,Fredric等人研究了偏微分方程的基本特性、数学提法的适定性、物理波的传播特性等问题,发展了双曲型偏微分方程理论。 20世纪40年代,流体力学相关学者建立了非线性双曲型方程守恒定律的数值方法理论,为含有激波的气体流动数值模拟打下了理论基础。 20世纪50年代,仅采用当时流体力学的方法,研究比较复杂的非线性流动现象并不能满足工程需要,特别是不能满足高速发展起来的宇航飞行器绕流流场特性研究的需要。针对这种情况,一些学者开始将基于双曲型方程数学理论基础的时问相关方法用于求解宇航飞行器的气体的定常绕流场问题,这种方法虽然要求花费更多的计算机时,但因数学提法适定,又有较好的理论基础,且能模拟流体运动的非定常过程,所以在60年代这是应用范围较广的一般方法。 进人2O世纪80年代以后,随着计算机硬件技术突飞猛进的发展和人类生产实践活动的不断发展,科学技术的日新月异,一大批高新技术产业对计算流体力学提出了新的要求,同时也为计算流体力学的发展提供了新的机遇。在计算模型方面,又提出了一些新的模型,如新的大涡模拟模型、考虑壁面曲率等效应的新的湍流模式、新的多相流模式、新的飞行器气动分析与热结构的一体化模型等这就使得计算流体力学的计算模型由最初的Euler和Ⅳ—s方程,扩展到包括湍流、两相流、化学非平衡、太阳风等问题研究模型在内的多个模型。其中以考虑更多流动机制,如各向异性的非线性(应力/应变关系)湍流研究为重点。 目前,计算流体力学研究的热点是:研究计算方法,包括并行算法和各种新型算法;

计算流体力学简介

計算流體力學主要有以下幾個主要問題大家比較關心 1.關於瞬態計算的問題 2.關於建模的問題 3.關於網格化的問題 4.關於動畫顯示的問題 5.關於交變載荷的問題 一、關於第一個問題的解答: 計算瞬態設置參數與穩態不同,主要設置的參數爲: 1.FLDATA1,SOLU,TRAN,1設置爲瞬態模式 2.FLDATA4,TIME,STEP,0.02,自定義時間步時間間隔0.02秒 3.FLDATA4,TIME,TEND,0.1,設置結束時間0。1秒 4.FLDATA4,TIME,GLOB,10,設置每個時間步多少次運算 5.fldata4a,time,appe,0.02設置記錄時間間隔 6.SET,LIST,2查看結果 7.SET,LAST設爲最後一步 8.ANDATA,0.5,,2,1,6,1,0,1動態顯示結果 以上爲瞬態和穩態不同部分的設置和操作,特別是第五步。爲了動態顯示開始到結束時間內氣流組織的情況,還是花了我們很多時間來找到這條命令。如果你是做房間空調送風計算的,這項對你來說非常好,可以觀察到從開空調機到穩定狀態的過程。 二.關於建模的問題 大家主要關心的建模問題是模型的導入和導出,及存在的一些問題。這些問題主要體現在:1.AUTOCAD建模導出後的格式與ANSYS相容的只有SAT格式。PROE可以是IGES格式或SAT格式。當然還有其他格式,本人使用的限於正版軟體,只有上述兩種格式。SAT格式可由PROE中導出爲IGES格式。ANSYS默認的導入模型爲IGES格式的圖形模型。 2.使用AUTOCAD一般繪製介面比較複雜的拉伸體非常方便。如果是不規則體,用PROE和ANSYS都比較方便,當然本人推薦用ANSYS本身的建模功能。對於PROE,因爲它的功能強大,本人推薦建立很複雜的模型如變截面不規則曲線彎管(如血管)。 3.導入過程中會出現默認選項和自定義選項,一般本人推薦使用自定義選項,以避免一些操作帶來的問題。有時出現顯示只有線而沒有面顔色的問題,可以用命令: /FACET,NORML來解決這個問題。 三.關於網格化的問題。 網格化對結果影響很大,如果網格化不合理,出現的結果會不準確,或者計算時不收斂。更甚者,網格數量太大,減慢求解速度。對計算流體力學來說,實際應用中三維問題偏多,計算量一般非常大,由於ANSYS採用的是有限元,所以同有限差分比較來說,收斂慢,記憶體需要量大。但這並不是說水平不如有限差分的流體計算軟體。ANSYS的計算結果直觀性較好,特別對渦流的處理很形象很準確(其他軟體往往看不到該有的渦流,給人的感覺太粗糙)。當然對於稍大的模型,就有點力不從心的感覺。

相关文档
最新文档