中国剩余定理matlab代码

中国剩余定理matlab代码
中国剩余定理matlab代码

function CHN_Rem_Thm

a=input('输入数组a:');

m=input('输入数组m:');

%a=[2 8 5];

%m=[17 11 19];

if length(a)~=length(m)

error('Length of a and length of m must agree!');

return;

end

if flg==0

error('不互素');

return;

end

M=prod(m)

u=ones(size(m));

for k=1:length(m)

u(k)=inver(M/m(k),m(k));

end

x=a*u';

x=mod(x,M)

function d=inver(m,n)

for k=0:(n-1)

if mod(k*m,n)==1

d=k*m;break;

end

end

function flg=coprime_chk(m) flg=1;

n=length(m);

for k=1:n-1

for p=(k+1):n

if gcd(m(k),m(p))~=1

flg=0;

break;

end

end

end

实验四-使用matlab实现卷积的运算

一 实验目的 1、 学习MATLAB 语言的编程方法及熟悉MATLAB 指令; 2、 深刻理解卷积运算,利用离散卷积实现连续卷积运算; 二 实验内容 1、 完成)(1t f 与)(2t f 两函数的卷积运算 其中:)4()()(), ()(221--==-t u t u t f t u e t f t 在一个图形窗口中,画出)(1t f 、)(2t f 以 及卷积结果。要求每个坐标系有标题、坐标轴名称。 p = ; %定义时间间隔 t= 0:p:10; %定义时间向量 f1=exp(-2*t).*u(t); %将f (t )表示出来 f2=u(t)-u(t-4); f=conv(f1,f2); subplot(1,2,1); plot(t,f1,t,f2); title('f1=e^-2t*u(t)'' / ''f2=u(t)-u(t-4)'); xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f(t)'); grid on ; subplot(1,2,2); plot(f); title('f=f1*f2'); xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f') grid on

2、 若系统模型为: )(3)()(4)(4)(' ' ' 't f t f t y t y t y +=++ 其中 )()(t u e t f t -= 求零状态响应,画出波形(函数本身画出一幅图,自己再画出一幅输入波形图)。 零状态响应: a= [1 4 4]; %将y (t )各阶导数的系数放在向量a 中 b= [1 3]; %将f (t )各阶导数的系数放在向量b 中 sys = tf(b, a); %求系统函数sys td = ; %定义时间间隔 t = 0 : td : 10; %定义时间向量 f = exp(-t).*u(t); %将f (t )表示出来 y = lsim(sys, f, t); %求系统的零状态响应y plot(t, y); %绘出零状态响应的波形 xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('y(t)'); % 这行代码是给出y 坐标的标签 grid on

什么是中国剩余定理

什么是中国剩余定理?

剩余定理详细解法 中国数学史书上记载:在两千多年前的我国古代算书《孙子算经》中,有这样一个问题及其解法:今有物不知其数,三三数之剩二;五五数之剩三:七七数之剩二。问物几何? 意思是说:现在有一堆东西,不知道它的数量,如果三个三个的数最后剩二个,如果五个五个的数最后剩三个,如果七个七个的数最后剩二个,问这堆东西有多少个?你知道这个数目吗? 《孙子算经》这道著名的数学题是我国古代数学思想“大衍求一术”的具体体现,针对这道题给出的解法是:N=70×2+21×3+15×2-2×105=23 如此巧妙的解法的关键是数字70、21和15的选择: 70是可以被5、7整除且被3除余1的最小正整数,当70×2时被3除余2 21是可以被3、7整除且被5除余1的最小正整数,当21×3时被5除余3 15是可以被3、5整除且被7除余1的最小正整数,当15×2时被7除余2 通过这种构造方法得到的N就可以满足题目的要求而减去2×105 后得到的是满足这一条件的最小正整数。 韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。 刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 中国有一本数学古书「孙子算经」也有类似的问题: 「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」答曰:「二十三」术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。 中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

matlab实现卷积运算

2、试求下列图片的卷积波形12()()f t f t * 2() f t t 1 -1 1() f t t 1 -1 列出编程步骤: p=0.01; k1=0:p:1; f1=ones(1,length(k1)); k2=-1:p:1; f2= (k2+1).*(k2<0)+(-k2+1).*(k2>=0); [f,k]=sconv(f1,f2,k1,k2,p) function [f,k]=sconv(f1,f2,k1,k2,p) 3、试求下列图片的卷积波形12()()f t f t *

1() f t t 1 0.5- 2() f t t 12 1 p=0.01; k1=-0.5:p:1; f1=ones(1,length(k1)); k2=0:p:2; f2= 0.5*k2; [f,k]=sconv(f1,f2,k1,k2,p) 4、试求下列图片的卷积波形12()()f t f t *

1() f t t 2 2 - 2() f t t 3-2 -3 21 p=0.01; k1=-2:p:2; f1= (k1==-2)+(k1==2); k2=-3:p:3; f2=(k2+3).*(k2<-2)+(-k2-1).*(k2>=-2).*(k2<=-1)+(k2-1).*(k2>=1).*(k2<=2)+(-k2+3).*(k2>2); [f,k]=sconv(f1,f2,k1,k2,p); 5、试求下列图片的卷积波形12()()f t f t *

1() f t t 5 -5 33 -2() f t t 3 -2 -3 21 p=0.01; k1=-10:p:10; f1=(k1>=-5).*(k1<=-3)+(k1>=3).*(k1<=5); k2=-3:p:3; f2=(k2+3).*(k2<-2)+(-k2-1).*(k2>=-2).*(k2<=-1)+(k2-1).*(k2>=1).*(k2<=2)+(-k2+3).*(k2>2); [f,k]=sconv(f1,f2,k1,k2,p);

中国剩余定理(孙子定理)

中国剩余定理(孙子定理) 问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何? 简单点说就是,存在一个数x,除以3余2,除以5余三,除以7余二,然后求这个数。上面给出了解法。再明白这个解法的原理之前,需要先知道一下两个定理。 定理1:几个数相加,如果存在一个加数,不能被整数a整除,那么它们的和,就不能被整数a整除。 定理2:两数不能整除,若除数扩大(或缩小)了几倍,而被除数不变,则其商和余数也同时扩大(或缩小)相同的倍数(余数必小于除数)。 以上两个定理随便个例子即可证明! 现给出求解该问题的具体步骤: 1、求出最小公倍数 lcm=3*5*7=105 2、求各个数所对应的基础数 (1)105÷3=35 35÷3=11......2 //基础数35 (2)105÷5=21 21÷5=4 (1) 定理2把1扩大3倍得到3,那么被除数也扩大3倍,得到21*3=63//基础数63 3、105÷7=15 15÷7=2 (1) 定理2把1扩大2倍得到2,那么被除数也扩大2倍,得到15*2=30//基础数30 把得到的基础数加和(注意:基础数不一定就是正数) 35+63+30=128 4、减去最小公倍数lcm(在比最小公倍数大的情况下) x=128-105=23 那么满足题意得最小的数就是23了。一共有四个步骤。下面详细解释每一步的原因。 (1)最小公倍数就不解释了,跳过(记住,这里讨论的都是两两互质的情况) (2)观察求每个数对应的基础数时候的步骤,比如第一个。105÷3=35。显然这个35是除了当前这个数不能整除以外都能够被其他数整除,就是其他数的最小公倍数。相当于找到了最小的起始值,用它去除以3发现正好余2。那么这个基础数就是35。记住35的特征,可以整除其他数但是不能被3整除,并且余数是2。体现的还不够明显,再看下5对应的基础数。21是其他数的最小公倍数,但是不能被5整除,用21除以5得到的余数是1,而要求的数除以5应该是余1的。所以余数被扩大,就得到了相应的基础数63。记住这个数的特征,可以被其他数整除但是被5除应该余三。同理,我们得到了第三个基础数23,那么他的特征就是:可以被其他数整除,但是不能被7整除,并且余数为2。 (3)第三步基础数加和,为什么要这样做呢?利用就是上面提到的定理1。 35+63+30=128。对于3来说,可以把63+30的和看作一个整体,应该他们都可以被3整除。看着上面写出的三个数的特征,运用定理1来说,就是在35的基础上加上一个可以被3整除的倍数,那么得到的结果依然还是满足原先的性质的,就是128除以同样还是余2的。同理,对于5还说,这个数被除之后会剩余3;对于7来说,被除之后剩余2。所以说,我们当前得到的这个数是满足题目要求的一个数。但是这个数是不是最小的,那就不一定了。 (4)应该不能确定是不是最小的数,这个时候就要用到他们的最小公倍数了。最小公倍数顾名思义,一定是一个同时被几个数整除的最小的一个数,所以减去它剩余下来的余数还是符合题

叠加定理的验证实验报告

叠加定理的验证实验报告

电子科技大学UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 电子技术基础实验报告 Electronic Technology Basic Experiment Report 报告内容:叠加定理的验证

学院: 作者姓名: 学号: 指导教师: 实验:叠加定理的验证 一、实验目的 1.进一步掌握直流稳压电源和万用表的使用方法。 2.掌握直流电压和直流电流的测试方法。 3.进一步加深对叠加定理的理解。 4.通过Multisim仿真软件进行实验仿真,了解Multisim的使用方法。 二、实验原理 叠加定理: 叠加定理指出,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和。 三、实验内容 叠加定理的验证 在仿真实验中根据图1所示电路对电路中电压源共同作用时的电流进行测量,根据图2所示电路对电压进行测量:

(图1) (图2) 根据所绘制的电路,在Multisim中进行电路仿真,分别将两电压源置零,即将电压源短路,得到下列所示电路。图3、图4所示电路,对支路电流进行测量,图5、图6所示电路,对支路电压进行测量。 (图3)(图4) 参数I R1(mA)I R2 (mA) I R3 (mA) U R1 (V) U R2 (V) U R3 (V) V1单独 作用 7.2 2.4 4.8 7.2 4.8 4.8 V2单独 作用 -2.4 -4.8 2.4 -2.4 -9.6 2.4 共同作 用时的 测量值 4.8 -2.4 7.2 4.8 -4.8 7.2

浅析中国剩余定理及其应用

浅析中国剩余定理及其应用 李辉 (井冈山学院数理学院信息与计算科学 343009) 指导老师颜昌元 [摘要]:本文阐述了中国剩余定理的由来,介绍了它的几种解法,及其它在多项式,现代密码学,生活方面的应用. [关键词]:中国剩余定理;解法;多项式;现代密码学 引言在中国,以剩余定理为代表的同余理论源远流长,可追溯到《周易》中的卜筮古法.秦九韶说:“圣有大衍,微寓于《易》”,即指此意.另外,同余理论的另一个来源是古代制定历法的需要.实际上,从汉末到宋末1000余年的时间中,有很多天文学家熟悉一次同余式的解法,他们在编制历法时利用它来推算“上元积年”.中国剩余定理对现代数学的研究有很强的启迪意义.特别是在多项式,密码学中的应用非常关键. 一中国剩余定理的由来 我国古代《孙子算经》中有一著名而又重要的问题:“今有物不知其数,三三数之剩二、五五数之剩三,七七数之剩二,问物几何.答曰:二十三”.这一问题可译为:一个数除以3余2,除以5余3,除以7余2.求适合条件的最小的数.题中还介绍了它的解法:“术曰:三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之,得二百三十三,以二百十减之,即得.”意即:物数W=70×2+21×3+15×2-2×105=23.接下来又给出了这类题的一般解法(余数为一的情况):术文说:“凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五.一百六以上,以一百五减之,即得.”这个问题及其解法,在世界数学史上占有重要的地位,因此,中外数学家都尊称为“孙子定理”或“中国剩余定理”. 为了比较清楚地了解“中国剩余定理”这一名称的由来,我们不妨先引进同余定义:一般地,若两个整数a、b被同一个大于1的整数m除有相同的余数,那么称a、b对于模m同余.记作: a≡b (mod m)应用同余原理,我们把“物不知其数”问题用整数的同余式符号表达出来,是:设N≡2 (mod 3)≡3 (mod 5)≡2 (mod 7),求最小的数N.答案是N=23. 书中问题及其解法,建立起数学模型就是: 设a、b、c为余数, P为整数,则N≡a(mod 3)≡b(mod 5)≡c(mod 7) 的解是: N=70a+21b+15c-105P (1) 现在,我们把上述解法中的a,b,c作一分析:设M=3×5×7,则 70=2×5×7=2×(3×5×7)/3=2×M/3

利用MATLAB实现循环卷积.doc

一、实验目的 1.利用MATLAB 实现循环卷积。 2.比较循环卷积与线性卷积的区别。 二、实验条件 PC 机,MATLAB7.0 三、实验内容 1)循环卷积的定义:两个序列的N 点循环卷积定义为: )0()()()]()([1 0N n m n x m h n x n h N k N N <≤-=?∑-= 利用MATLAB 实现两个序列的循环卷积可以分三个步骤完成: (1)初始化:确定循环点数N ,测量输入2个序列的长度。 (2)循环右移函数:将序列x(n)循环右移,一共移N 次(N 为循环卷积的循环次数),最后将每次循环成的新序列组成一个矩阵V 。 (3)相乘:将x(n)移位后组成的矩阵V 与第二个序列h(n)对应相乘,即得循环卷积结果。程序如下: 程序一: clear;close all ; N=10; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1); stem(xxn1,x1); subplot(3,1,2); stem(xxn2,x2); x11=fft(x1,N);

x12=fft(x2,N); y11=x11.*x12; y1=ifft(y11,N); subplot(3,1,3); n=0:length(y1)-1; stem(n,y1,'.'); title('循环卷积的结果'); xlabel('n');ylabel('y1(n)'); 运行后所得图形如下: 观察所得的循环卷积结果发现并没有呈现周期性的序列,因此将程序做下列改变。程序二: clear;close all; N=40; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; x2=[x2,x2,x2,x2]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1);

小学奥数:中国剩余定理

在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式。 ① 有一个数,除以3余2,除以4余1,问这个数除以12余几? 解:除以3余2的数有:2, 5, 8, 11,14, 17, 20,23… 它们除以12的余数是:2,5,8,11,2,5,8,11… 除以4余1的数有:1, 5, 9, 13, 17, 21, 25,29… 它们除以12的余数是:1, 5, 9, 1, 5, 9,…. 一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案. ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。 解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20, 23,26… 再列出除以5余3的数:3, 8, 13, 18, 23,28… 这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23,30… 就得出符合题目条件的最小数是23. 事实上,我们已把题目中三个条件合并成一个:被105除余23. 那么韩信点的兵在1000-1500之间,可能是105×10+23=1073人 问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三”术曰: 三三数剩一置几何?答曰:五乘七乘二得之七十。 五五数剩一复置几何?答曰,三乘七得之二十一是也。 七七数剩一又置几何?答曰,三乘五得之十五是也。 三乘五乘七,又得一百零五。 则可知已,又三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数

实验一 叠加定理的验证

实验一 叠加定理的验证 一、实验目的 验证线性电路叠加定理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加定理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。 四、实验内容 实验线路如图1-1所示,用DG05挂箱的“基尔夫定律/叠加定理”线路。 图 1-1 1. 将两路稳压源的输出分别调节为12V 和6V ,接入U 1 和U 2处,K3合至330Ω。 2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2 投向短路侧)。用直流数字电压表和毫安表(接电流插头) 测量各支路电流及各电阻元件两端的电压,数据记入表1-1。 电流插座

3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表1-1。 4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表1-1。 5. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~4的测量过程,数据记入表1-2。 表1-2 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 在叠加定理实验中,要令U1、U2分别单独作用,应如何操作?可否直接将不作用的电源(U1或U2)短接置零? 2. 实验电路中,若有一个电阻器改为二极管,试问叠加定理的迭加性还成立吗?为什么? 七、实验报告 1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠加性。 2. 各电阻器所消耗的功率能否用叠加定理计算得出?试用上述实验数据,进行计算并作结论。 3. 通过实验步骤5及分析表格1-2的数据,你能得出什么样的结论? 4. 心得体会及其他。

数学运算“中国剩余定理”的应用

数学运算“中国剩余定理”的应用 例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几? 题中3、4、5三个数两两互质。 则…4,5?=20;…3,5?=15;…3,4?=12;…3,4,5?=60。 为了使20被3除余1,用20×2=40; 使15被4除余1,用15×3=45; 使12被5除余1,用12×3=36。 然后,40×1+45×2+36×4=274, 因为,274>60,所以,274-60×4=34,就是所求的数。 例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几? 题中3、7、8三个数两两互质。 则…7,8?=56;…3,8?=24;…3,7?=21;…3,7,8?=168。 为了使56被3除余1,用56×2=112; 使24被7除余1,用24×5=120。 使21被8除余1,用21×5=105; 然后,112×2+120×4+105×5=1229, 因为,1229>168,所以,1229-168×7=53,就是所求的数。 例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

题中5、8、11三个数两两互质。 则…8,11?=88;…5,11?=55;…5,8?=40;…5,8,11?=440。 为了使88被5除余1,用88×2=176; 使55被8除余1,用55×7=385; 使40被11除余1,用40×8=320。 然后,176×4+385×3+320×2=2499, 因为,2499>440,所以,2499-440×5=299,就是所求的数。 例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人? 题中9、7、5三个数两两互质。 则…7,5?=35;…9,5?=45;…9,7?=63;…9,7,5?=315。 为了使35被9除余1,用35×8=280; 使45被7除余1,用45×5=225; 使63被5除余1,用63×2=126。 然后,280×5+225×1+126×2=1877, 因为,1877>315,所以,1877-315×5=302,就是所求的数。 例5:有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人? 题中9、7、5三个数两两互质。 则…7,5?=35;…9,5?=45;…9,7?=63;…9,7,5?=315。 为了使35被9除余1,用35×8=280; 使45被7除余1,用45×5=225;

中国剩余定理问题的解题技巧

【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少? 这种问题称为“中国剩余定理”问题。 我一般用两种方法解决这类问题。 第一种是逐步满足法,方法麻烦一点,但适合所有这类题目。 第二种是最小共倍法,方法简单,但只适合特殊类型的题目。 还有“中国剩余定理”的方法,但它不完善且解法较为复杂,普及应用有一定难度,还不稳定。所以一般不用。 下面分别介绍一下常用的两种方法。 通用的方法:逐步满足法 【问题】一个数,除以5余1,除以3余2。问这个数最小是多少? 把除以5余1的数从小到大排列:1,6,11,16,21,26,…… 然后从小到大找除以3余2的,发现最小的是11. 所以11就是所求的数。 先满足一个条件,再满足另一个条件,所以称之为“逐步满足法”。 好多数学题目都可以用逐步满足的思想解决。 特殊的方法:最小公倍法 情况一 【问题】一个数除以5余1,除以3也余1。问这个数最小是多少?(1除外) 除以5余1:说明这个数减去1后是5的倍数。 除以3余1:说明这个数减去1后也是3的倍数。 所以,这个数减去1后是3和5的公倍数。要求最小,所以这个数减去1后就是3和5的最小公倍数。即这个数减去1后是15,所以这个数是15+1=16. 情况二

【问题】一个数除以5余4,除以3余2。问这个数最小是多少? 这种情况也可以用特殊法。 数除以5余4,说明这个数加上1后是5的倍数。 数除以3余2,说明这个数加上1后也是3的倍数。 所以,这个数加上1后是3和5的公倍数。要求最小,所以这个数加上1后就是3和5的最小公倍数。即这个数加上1后是15,所以这个数是15-1=14. 多个数的,比如3个数的,有时候其中两个可以用特殊法,那就先用特殊法,用特殊法求出满足两个条件的数后再用通用的方法求满足最后一个条件的数。 所以有时候特殊法和通用法混合使用。在使用的过程中如果能灵活运用余数问题的技巧,会非常有利于解题。 我们接下来分析最开始的那个问题。 【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少? 这道题目不能用特殊法,我们用通用法,解题过程中注意余数知识的运用。 除以7余2的数可以写成7n+2。 7n+2这样的数除以8余4,由于2除以8余2,所以要求7n除以8余2。(余数知识) 7n除以8余2,7除以8余7,要求n除以8余6(余数知识),则n最小取6。 所以满足“除以7余2,除以8余4”的最小的数是7×6+2=44. 所有满足“除以7余2,除以8余4”的数都可以写成44+56×m。(想想为什么?) 要求44+56×m除以9余3,由于44除以9余8,所以要求56×m除以9余4。(余数知识) 56×m除以9余4,由于56除以9余2,所以要求m除以9余2(余数知识),则m最小取2。 所以满足“除以7余2,除以8余4,除以9余3”的最小的数是44+56×2=156.

中国剩余定理及应用

“中国剩余定理”算理及其应用 “中国剩余定理”算理及其应用: 为什么这样解呢?因为70是5和7的公倍数,且除以3余1。21是3和7的公倍数,且除以5余1。15是3和5的公倍数,且除以7余1。(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。 用歌诀解题容易记忆,但有它的局限性,只能限于用3、5、7三个数去除,用其它的数去除就不行了。后来我国数学家又研究了这个问题,运用了像上面分析的方法那样进行解答。 例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几? 题中3、4、5三个数两两互质。 则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。 为了使20被3除余1,用20×2=40; 使15被4除余1,用15×3=45; 使12被5除余1,用12×3=36。 然后,40×1+45×2+36×4=274, 因为,274>60,所以,274-60×4=34,就是所求的数。 例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几? 题中3、7、8三个数两两互质。 则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。 为了使56被3除余1,用56×2=112; 使24被7除余1,用24×5=120。 使21被8除余1,用21×5=105; 然后,112×2+120×4+105×5=1229, 因为,1229>168,所以,1229-168×7=53,就是所求的数。 例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。 题中5、8、11三个数两两互质。 则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。 为了使88被5除余1,用88×2=176; 使55被8除余1,用55×7=385; 使40被11除余1,用40×8=320。 然后,176×4+385×3+320×2=2499, 因为,2499>440,所以,2499-440×5=299,就是所求的数。 例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目) 题中9、7、5三个数两两互质。 则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。 为了使35被9除余1,用35×8=280; 使45被7除余1,用45×5=225; 使63被5除余1,用63×2=126。

基于Matlab实现线性卷积等

线性卷积与循环卷积 一、作品目的 通过matlab的强大功能展示线性卷积和循环卷积过程中方方面面的计算和变化,让大家对这两种卷积有一个更加完美的认识。 二、概念简介 卷积是一种典型的乘累加运算。 1.线性卷积 线性卷积是对线性移不变(LSI)系统的输入输出关系的描述,体现系统的特性。 线性卷积的表达式为 一般情况,现实的系统为因果系统,有k<0时,恒有h(k)=0,则 若x(n)是一个N点序列,h(n)是一个m点序列,则卷积的结果y(n)将是L=N+M-1点的序列。 2.循环卷积

设x1(n) 和x2(n) 是两个长度为L、M的有限长序列,它们的N 点循环卷积x3(n) 定义为: 注意:其中N>=Max{L,M}如果其中一个序列(或者两个序列)的长度没有所求N点循环卷积的长度长,那在该序列后面补零,直到长度达到N。 三、设计思路及程序 1. 线性卷积: (1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。 (2)计算输入序列和脉冲响应的长度。 (3)画出补零后的输入序列和脉冲响应 (4)设计一个循环,在循环中实现反转、位移和计算。并画出反转后的图像变化和卷积图像,将每一次移位结果保存为fig图。(5)最后将上一步所生成的所有fig图合起来生成一张gif图 程序展示: clear; clc; close all; (1)(2)

xn=[5,4,3,2,1]; M=length(xn);%输入任意序列并计算长度M hn=[1,1,1,1]; N=length(hn);%输入任意脉冲响应并计算长度N m=[-(M-1):M+N-2];%设置代换变量的范围以便x(m)翻转和移位(3) xm=[zeros(1,M-1),xn,zeros(1,N-1)];%补零以便与m对应绘图 subplot(2,2,1);stem(m,xm,'r.');%%绘输入序列x(m) ylabel('x(m)'); grid on; title('(a)输入序列x(m)'); hm=[zeros(1,M-1),hn,zeros(1,M-1)];%补零以便与m对应绘图 subplot(2,2,2);stem(m,hm,'r.');%绘脉冲响应 ylabel('h(m)'),grid,title('(b)脉冲响应h(m)');%%加标签网格和标题 yn=zeros(1,2*M+N-2);%卷积输出初始化 (4) for n=0:M+N-2;%逐个计算卷积输出 if n==0; xmfy=[fliplr(xn),zeros(1,M+N-2)];%实现翻转 else for k=M:-1:1;

六下奥数1中国剩余定理

六下奥数1 论述中国剩余定理的形成及对教育的影响 摘要:“中国剩余定理”是由秦九韶从“孙子定理”的基础上推广而来的,本文从论述中国剩余定理的形成到中国剩余定理的主要方法和对现代教育的影响来写。中国剩余定理在高中有初步的基础应用,在大学中的初等数论中该定理得到了仔细的讲解。中国剩余定理的思想方法和原则不仅有光辉的历史意义,而且在近代数学中仍然有着重大影响和作用。 引言 随着数学学科的发展,数学方面的知识得到了不断的更新和强化。 在数学发展史上,剩余问题(即:在整数除法里,一个数同时除以几个数,整数商后,均有剩余;已知各除数及其对应的余数,要求适合条件的这个被除数。这类问题统称剩余问题)曾经困扰过人们很长一段时间。这个问题的解决,是我们中国人迈出了开拓性的第一步。 如果说,一部中国数学发展史像一条源远流长的河流,那么几千年来祖先们取得的辉煌成就,就是这河流中耀眼的浪花。在祖先取得的成就中有一个“中国剩余定理”。大家都知道,“勾股定理”最早是由我国西周时期的商高发现的,但国外却称其为“毕达哥拉斯定理”,法国称为“驴桥定理”,埃及称为“埃及三角形”等。还有“增乘开方法”,最早是由我国宋代的贾宪发明的,但现代数学却称其为“霍纳法”,贾宪的发明比霍纳早了800年。而中国剩余定理则是唯一一个以我国国名命名的定理,大家一定对这个定理很感兴趣,很想知道关于这个定理的故事。现在我就为大家简单介绍一下“中国剩余定理”。 1、中国剩余定理的简介及形成 在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。”这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。“孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》是算经十书之一,又作《孙子算术》。现有传本《孙子算经》分上、中、下共3卷。该书作者和确切成书年代均无法考证,大约成书于公元400年前后。中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国剩余定理。 一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以三余二,除以五余三,除以七余二,求这个数。《孙子算经》给出了一个非常有效的巧妙解法。术曰:“三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。以二百一十减之,即得。凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,则置十五。一百六以上,一百五减之,即得。 在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》对这类问题的研究只是初具雏形,还远远谈不上完整,其不足之处在于: (1 )没有把解法总结成文,致使后人研究多凭猜测;

用matlab实现两个离散序列的卷积(不使用conv函数)

作业2.用matlab实现离散序列的卷积. N=14; n=[1:N-1]; f=1/16; signal1=5*sin(2*pi*n/8); figure(1); subplot(3,1,1) stem(n,signal1);title( ' 信号1' );xlabel( 'n' );ylabel( axis([0 15 -6 6]) long_M=5; signal2=ones(1,long_M); subplot(3,1,2) stem(signal2);title( ' 信号2' );xlabel( 'n' );ylabel( axis([0 6 -2 2]); grid on; long_N=length(signal1); fk=zeros(0,long_N+long_M+10); if (long_N>long_M) for k=1:1:long_N+long_M-1 a=0; if (k<=long_N) for i=1:1:k if (i>long_M) fk(k)=a; else fk(k)=a+signal2(i)*signal1(k-i+1); a=fk(k); end end else for i=1:1:k if (k-long_N+i>long_M) fk(k)=a; else fk(k)=a+signal2(k-long_N+i)*signal1(long_N-i+1); a=fk(k); end end end end end subplot(3,1,3) stem(fk);title( ' 卷积函数的实现' );xlabel( 'n' );ylabel( 'y(n)' ); 'y(n)' ); 幅度' );

MATLAB实现卷积码编译码-

本科生毕业论文(设计) 题目:MATLAB实现卷积码编译码 专业代码: 作者姓名: 学号: 单位: 指导教师: 年月日

目录 前言----------------------------------------------------- 1 1. 纠错码基本理论---------------------------------------- 2 1.1纠错码基本理论 ----------------------------------------------- 2 1.1.1纠错码概念 ------------------------------------------------- 2 1.1.2基本原理和性能参数 ----------------------------------------- 2 1.2几种常用的纠错码 --------------------------------------------- 6 2. 卷积码的基本理论-------------------------------------- 8 2.1卷积码介绍 --------------------------------------------------- 8 2.1.1卷积码的差错控制原理----------------------------------- 8 2.2卷积码编码原理 ---------------------------------------------- 10 2.2.1卷积码解析表示法-------------------------------------- 10 2.2.2卷积码图形表示法-------------------------------------- 11 2.3卷积码译码原理---------------------------------------------- 15 2.3.1卷积码三种译码方式------------------------------------ 15 2.3.2V ITERBI译码原理---------------------------------------- 16 3. 卷积码编译码及MATLAB仿真---------------------------- 18 3.1M ATLAB概述-------------------------------------------------- 18 3.1.1M ATLAB的特点------------------------------------------ 19 3.1.2M ATLAB工具箱和内容------------------------------------ 19 3.2卷积码编码及仿真 -------------------------------------------- 20 3.2.1编码程序 ---------------------------------------------- 20 3.3信道传输过程仿真-------------------------------------------- 21 3.4维特比译码程序及仿真 ---------------------------------------- 22 3.4.1维特比译码算法解析------------------------------------ 23 3.4.2V ITERBI译码程序--------------------------------------- 25 3.4.3 VITERBI译码MATLAB仿真----------------------------------- 28 3.4.4信噪比对卷积码译码性能的影响 -------------------------- 28

叠加定理的验证实验报告

电子科技大学 UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 电子技术基础实验报告 Electronic Technology Basic Experiment Report 报告内容:叠加定理的验证 学院:

作者姓名: 学号: 指导教师: 实验:叠加定理的验证 一、实验目的 1.进一步掌握直流稳压电源和万用表的使用方法。 2.掌握直流电压和直流电流的测试方法。 3.进一步加深对叠加定理的理解。 4.通过Multisim仿真软件进行实验仿真,了解Multisim的使用方法。 二、实验原理 叠加定理: 叠加定理指出,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和。 三、实验内容 叠加定理的验证 在仿真实验中根据图1所示电路对电路中电压源共同作用时的电流进行测量,根据图2所示电路对电压进行测量: (图1)(图2) 根据所绘制的电路,在Multisim中进行电路仿真,分别将两电压源置零,即将电压源短路,得到下列所示电路。图3、图4所示电路,对支路电流进行测

量,图5、图6所示电路,对支路电压进行测量。 (图3)(图4) 四、实验结果 根据仿真实验我们可以得到,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和,验证了叠加定理。 五、实验收获与感悟 通过使用Multisim 仿真软件对叠加定理进行验证,证实了叠加定理的正确性,同时对该仿真软件的使用有了最初步的了解和认识。在绘制电路的过程中,感受电子实验的魅力所在。并且通过与亲手进行实验和电路仿真进行比较,感受

用MATLAB实现序列圆周卷积

数字信号处理实验报告 实验项目名称:用MATLAB实现序列的圆周卷积 实验日期: 2012-11-28 实验成绩: 实验评定标准: 一、实验目的 通过本实验,掌握一些基本而且重要的离散时间信号,熟悉基本离散时间信号的MATLAB实现方法。 二、实验器材 PC机,MATLAB软件。 三、实验内容 计算两序列x1(n)={1,2,3,4,5},x2(n)={1,2,3,4,5,4,3,2,1}的圆周卷积。 四、实验结果 实验代码: clear all close all clc x1=[1,2,3,4,5,6,7,8]; x2=[1,2,3,4,5,6,7,8,7,6,5,4,3,2, 1]; N=length(x1)+length(x2); n=0:N-1 n1=0:N-2; n2=0:N-3; y1=circonvt(x1,x2,N); y2=circonvt(x1,x2,N-1);

y3=circonvt(x1,x2,N-2); x1=[x1 zeros(1,N-length(x1))]; x2=[x2 zeros(1,N-length(x2))]; Xf1=dft(x1,N); Xf2=dft(x2,N); Xf=Xf1.*Xf2; x=idft(Xf,N); x=real(x); subplot(2,3,1) stem(n,x1); title('x1(n)'); subplot(2,3,2) stem(n,x2); title('x2(n)') subplot(2,3,3); stem(n,x); title('x(n)=IDFT(X(k))'); subplot(2,3,4); stem(n,y1); title('N点圆周卷积'); subplot(2,3,5); stem(n1,y2); title('N-1点圆周卷积'); subplot(2,3,6); stem(n2,y3); title('N-2点圆周卷积'); function y=circonvt(x1,x2,N) if length(x1)>N error('N 必须 >= x1的长度') end if length(x2)>N error('N 必须 >= x2的长度') end x1=[x1 zeros(1,N-length(x1))]; x2=[x2 zeros(1,N-length(x2))]; m=[0:1:N-1]; x2=x2(mod(-m,N)+1); H=zeros(N,N); for n=1:1:N H(n,:)=cirshift(x2,n-1,N); end y=x1*H; function y=cirshift(x,m,N) if length(x)>N error('N 必须 >= x的长度') end x=[x zeros(1,N-length(x))]; n=[0:1:N-1]; n=mod(n-m,N); y=x(n+1); function [Xk]=dft(xn,N) n=[0:1:N-1];k=[0:1:N-1]; WN=exp(-j*2*pi/N); nk=n'*k; WNnk=WN.^nk; Xk= xn * WNnk; function [xn]=idft(Xk,N) %计算逆离散傅里叶变换 %[xn]=idft(Xk,N) n=[0:1:N-1];

相关文档
最新文档