三角形外角说课稿
《三角形的外角》教案(1) (1)

《三角形的外角》教案教材:(人教版)八年级上册第十一章三角形第二节第二课时一、教学目标:1、知识与技能:理解三角形的外角概念和三角形外角的性质,初步学会数学说理。
2、数学思考:能剪剪拼拼,动手操作,探索发现相关结论。
3、解决问题:通过小组学习等活动经历得出三角形的外角概念和三角形的外角性质。
学会使用简单的说理来计算三角形相关的角。
4、情感与态度目标:通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯。
二、教学重点与难点:重点:三角形的外角及其性质难点:使用三角形外角性质实行相关计算时能准确地表达推理的过程和方法。
三、教材分析:教材由学生已经熟悉的三角形的内角和定理引入,然后探索三角形外角的性质。
在表现方式上改变了以往"结论-例题-练习"的陈述模式,而是采用"问题-探究-发现"的研究模式,并采用了拼图和数学说理两种方法,一方面,让学生通过剪剪拼拼,动手操作,探索发现相关结论,另一方面又加以简单的数学说理,使学生初步体会,要得到一个数学结论,能够采用观察实验的方法,还能够采用数学推导说理的方法,观察实验只能给我们带来一个直观形象的数学结论,而推导说理才能使我们确信这个数学结论是否准确,当然对于这个点的理解还有待于以后学习。
五、教学过程设计作与交流意识问题与情境师生行为设计意图[活动2]问题1:图中那个角是三角形的外角?(多媒体显示图形)问题2:三角形的外角有什么特点?根据这些特点,谁能说说什么叫做三角形的外角?学生观察图形找出三角形的外角引出本节课题。
学生仔细观察图形和学生间交流,师生共同得出:1、三角形外角的特点:①顶点在三角形的一个顶点上。
②一条边是三角形的一条边。
③另一条边是三角形的某条边的延长线。
2、三角形的外角的概念:本次活动中,教师应重点注重:1、学生能否主动参与数学学习活动。
2、学生是否敢于发表个人观点。
《三角形的外角》 教学设计【初中数学人教版八年级上册】

《三角形的外角》教学设计教材由学生已经熟悉的三角形的内角和定理引入,然后探索三角形外角的性质.在呈现方式上改变了以往“结论—例题—练习”的陈述模式,而是采用“问题—探究—发现”的研究模式,并采用了拼图和数学说理两种方法,一方面,让学生通过剪剪拼拼,动手操作,探索发现有关结论,另一方面又加以简单的数学说理,使学生初步体会,要得到一个数学结论,可以采用观察实验的方法,还可以采用数学推导说理的方法,观察实验只能给我们带来一个直观形象的数学结论,而推导说理可以使我们进一步确信这一数学结论是否正确.掌握三角形的外角性质和外角和定理及其说理;让学生经历观察、思考、猜想、归纳、推理的活动过程;通过分析问题、解决问题、证实结论,从而通晓数学知识的发生与形成过程.【教学重点】三角形外角性质及外角和定理的探索.【教学难点】灵活应用三角形的外角性质解决问题.ppt课件、三角尺、钉子板.一、复习回顾,提出问题〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?是∠A、∠B、∠C,它们的和是1800.若延长BC至D,则∠ACD是什么角?这个角还是三角形的内角吗?这个角与△ABC 的三个内角有什么关系?◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程二、合作交流,探究新知(一)三角形外角的概念∠ACD叫做△ABC的外角.也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角.想一想,三角形的外角共有几个?共有六个.注意:每个顶点处有两个外角,它们是对顶角.研究与三角形外角有关的问题时,通常每个顶点处取一个外角.(二)三角形外角的性质容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?性质一:三角形的一个外角与它相邻内角的关系是互为邻补角.你能用文字语言叙述这个结论吗?性质二:三角形的一个外角等于与它不相邻的两个内角之和.由加数与和的关系你还能知道什么?性质三:三角形的一个外角大于与它不相邻的任何一个内角.即∠ACD >∠A,∠ACD >∠B .三、运用新知如图,∠1,∠2,∠3是三角形ABC的三个外角,它们的和是多少?分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC,ABC,∠ACB 有什么关系?解法一:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400又∠BAC+∠ABC+∠ACB=1800∴∠1+∠2+∠3==3600.解法二:由∠1 +∠BAE =180°,∠2 +∠CBF =180°,∠3 +∠ACD =180°,得∠1 +∠2 +∠3 + ∠BAE +∠CBF +∠ACD = 540°.由∠1 + ∠2 + ∠3 =180°,得∠BAE + ∠CBF + ∠ACD = 540°- 180° =360°.你能用语言叙述本例的结论吗?三角形外角的和等于3600.四、巩固新知1. 如图,口答:(1)∠1 = + ;(2)∠2 = + .2. 如图,说出图形中∠1 的度数.3. 如图所示,在△ABC中,∠A = 60°,BD,CE分别是AC,AB上的高,H是BD,CE的交点,求∠BHC的度数.五、归纳小结1.什么是三角形的外角?2.三角形的外角有哪些性质?(1)三角形的一个外角与它相邻内角的关系是互为邻补角.(2)三角形的一个外角等于与它不相邻的两个内角的和.(3)三角形的一个外角大于任何一个与它不相邻的内角.3.三角形的外角和是多少?◆教学反思略.。
《三角形的内角和外角》优质教案教学设计(省优)

本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
2.1.3 三角形的外角和预设目标 1.使学生在操作活动中,探索并了解三角形的外角的两条性质以及三角形的外角和。
2.会利用“三角形的一个外角等于和它不相邻的两个内角的和”进行有关计算。
教学重难点 1.重点:掌握三角形外角的性质以及其外角的和。
2.难点:三角形外角的性质证明的过程。
教具准备三角尺、纸片教法学法讲授、讨论、练习教学过程一、复习提问1.什么叫三角形的外角?三角形的外角和它相邻的内角之间有什么关系?2.三角形的内角和等于多少?二、新授我们已经知道三角形的内角和等于180°。
1.现在我们探索三角形的外角及外角和。
如图所示,一个三角形的每一个外角对应一个相邻的内角和两个不相邻的内角,不相邻的两个内角是与这个外角不同顶点的两个内角。
∠DAC是三角形的一个外角,内角BAC与它相邻,内角∠B、∠C与它不相邻。
A DB C问:三角形的外角与和它相邻内角有什么关系?(互补)探索三角形的一个外角与它不相邻的两个内角之间的关系。
请同学们拿出一张白纸,在白纸上画出如教科书图2-15所示的图形,然后把∠ACB、∠BAC剪下拼在一起放到∠CBD上,使点A、C、B重合,看看会出现什么结果,与同伴交流一下,结果是否一样。
请你用文字语言叙述三角形的一个外角与它不相邻的两个内角间的关系。
如图: D是△ABC边BC上一点,则有 A∠ADC=∠DAB+∠ABD B D C∠ADC>∠DAB,∠ADC>∠ABD问:∠ADB=∠( )+∠( )2.探索证明“三角形的一个外角等于和它不相邻的两个内角和”的方法。
三角形的外角_教案 初中八年级上册数学教案教学设计课后反思 人教版

教材、基础训练、校内作业本
教学设计
1.手动操作、练习; 2.讨论、分析。
教学内容
本课重点解决问题(至少一课时重点解决一个问题): 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角。 本课学生所得(至少一课时有一得): 三角形的一个外角等于与它不相邻的两个内角的和。
三角形的外角
教学目标
1.知识与能力目标: 使学生在操作活动中,探索并了解三角形的外角的两条性质。 2.过程与方法目标: 利用学过的定理论证这些性质。 3.情感态度与价值观目标(含德育目标): 能利用三角形的外角性质解决实际问题。
教学重点
1.三角形的外角的性质; 2.三角形外角和定理。
教学难点
三角形外角的定义及定理的论证过程。
教学准备
1.学生的学习准备:
1/3
作图工具:铅笔、直尺…… 2.教师的教学准备: 作图工具:直尺……
教学过程
一、想一想。 1.三角形的内角和定理是什么?
二、做一做。 把△ABC 的一边 AB 延长到 D,得∠ACD,它不是三角形的内角,
那它是三角形的什么角?
它是三角形的外角。 定义:三角形一边与另一边的延长线组成的角,叫做三角形的 外角。 想一想:三角形的外角有几个? 每个顶点处有两个外角,但这两个是对顶角。 三、议一议。 ∠ACD 与△ABC 的内角有什么关系? 再画三角形 ABC 的外角试一试,还会得到这个性质吗? 同学用几何语言叙述这个性质: 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角。 你能用学过的定理说明这些定理的成立吗? 已知:∠ACD 是△ABC 的外角 说明: (1)∠ACD=∠A+∠B (2)∠ACD>∠A, ∠ACD>∠B 结合下面图形给予说明
三角形的外角【公开课教案】

7.5 三角形内角和定理第2课时三角形的外角第一环节:情境引入活动内容:在证明三角形内角和定理时,用到了把△ABC的一边BC延长得到∠ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.活动目的:引出三角形外角的概念,并对其进行研究,激发学生学习兴趣。
注意事项:教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考。
第二环节:探索新知活动内容:①三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角,结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上.(2)一条边是三角形的一边.(3)另一条边是三角形某条边的延长线.②两个推论及其应用由学生探讨三角形外角的性质:问题1:如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,能由∠A、∠B求出∠ACD吗?如果能,∠ACD与∠A、∠B有什么关系?问题2:任意一个△ABC的一个外角∠ACD与∠A、∠B的大小会有什么关系呢?由学生归纳得出:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.例1、已知:∠BAF,∠CBD,∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°分析:把每个外角表示为与之不相邻的两个内角之和即得证.证明:(略).例2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC度数;(2)∠BFD度数.解:(略).活动目的:通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考.注意事项:新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖。
第三环节:课堂练习活动内容:①已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B =21∠EAC (等式的性质) ∵AD 平分∠EAC (已知)∴∠DAE =21∠EAC (角平分线的定义) ∴∠DAE =∠B (等量代换)∴AD ∥BC (同位角相等,两直线平行) 想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC =∠B +∠C (三角形的一个外角等于和它不相邻的两个内角的和)∠B =∠C (已知)∴∠C =21∠EAC (等式的性质) ∵AD 平分∠EAC (已知)∴∠DAC =21∠EAC (角平分线的定义) ∴∠DAC =∠C (等量代换)∴AD ∥BC (内错角相等,两直线平行) 还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC =∠B +∠C (三角形的一个外角等于和它不相邻的两个内角的和)∠B =∠C (已知)∴∠C =21∠EAC (等式的性质) ∵AD 平分∠EAC (已知) ∴∠DAC =21∠EAC ∴∠DAC =∠C (等量代换) ∵∠B +∠BAC +∠C =180° ∴∠B +∠BAC +∠DAC =180° 即:∠B +∠DAB =180°∴AD ∥BC (同旁内角互补,两直线平行)BACDE② 已知:如图,在三角形ABC 中,∠1是它的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE .求证:∠1>∠2.证明:∵∠1是△ABC 的一个外角(已知)∴∠1>∠ACB (三角形的一个外角大于任何一个和它不相邻的内角)∵∠ACB 是△CDE 的一个外角(已知)∴∠ACB>∠2(三角形的一个外角大于任何一个和它不相邻的内角) ∴∠1>∠2(不等式的性质) ③.如图,求证:(1)∠BDC >∠A .(2)∠BDC =∠B +∠C +∠A .如果点D 在线段BC 的另一侧,结论会怎样?[分析]通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD ,并延长AD ,如图,则∠1是△ABD 的一个外角,∠2是△ACD 的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角) ∴∠1+∠2>∠3+∠4(不等式的性质) 即:∠BDC >∠BAC .(2)连结AD ,并延长AD ,如图.则∠1是△ABD 的一个外角,∠2是△ACD 的一个外角.A BC D E1F2∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
三角形的外角教案4篇 .doc

三角形的外角教案4篇11。
2。
2三角形的外角〔知识与技能〕理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。
〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。
一、导入新课〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?是∠A、∠B、∠C,它们的和是1800。
若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?二、三角形外角的概念∠ACD叫做△ABC的外角。
也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。
想一想,三角形的外角共有几个?共有六个。
注意:每个顶点处有两个外角,它们是对顶角。
研究与三角形外角有关的问题时,通常每个顶点处取一个外角。
三、三角形外角的性质容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、∠B的关系吗?∵CE∥AB,∴∠A=∠1,∠B=∠2又∠ACD=∠1+∠2∴∠ACD=∠A+∠B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。
由加数与和的关系你还能知道什么?三角形的一个外角大于与它不相邻的任何一个内角。
即,。
四、例题〔投影3〕例如图,∠1、∠2、∠3是三角形ABC的三个外角,它们的和是多少?分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC、ABC、∠ACB有什么关系?解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400又∠BAC+∠ABC+∠ACB=1800∴∠1+∠2+∠3==3600。
第4套人教初中数学八上 第5课时 三角形的外角课件 【通用,最新经典教案】
三角形外角的性质 容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?
如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、∠B的关系吗?
1.认识三角形的三条重要线段
一二
【例 1】 如图所示,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是
( ). A.在△ABC 中,AC 是边 BC 上的高 B.在△BCD 中,DE 是边 BC 上的高 C.在△ABE 中,DE 是边 BE 上的高 D.在△ACD 中,AD 是边 CD 上的高
S△DEC=12S△ADC.
由
D,E
分别是
BC,AC
的中点,可知△ADC
的面积等于△ABC
关闭
面积的一半,△DEC
的面积等于△ADC 面积的一半,所以△DEC 的面积等于△ABC 面积的1,即
4
S△DEC=14S△ABC=14×24=6(cm2).
答案 答案
1
2
3
4
5
1.在三角形的角平分线、中线、高线中,( ). A.每一条线都是线段 B.角平分线是射线,其余是线段 C.高线是直线,其余是线段 D.高线是直线,角平分线是射线,中线是线段
解析
答案
一二
2.等腰三角形的性质及其应用
一二
【例 2】如图,在△ABC 中,AB=AC,D 为 BC 的中点,DE⊥AB 于点 E,DF⊥AC 于点 F.求证:DE=DF.
连利接用A等D.腰三角形三线合一的性质及角平分线性质容易证明.
∵D 为 BC 的中点,AB=AC, ∴AD 平分∠BAC. 又∵DE⊥AB,DF⊥AC, ∴DE=DF.
八年级上册数学人教版教案《三角形的外角》
《11.2.2三角形的外角》教案一、教学目标1.了解三角形的外角概念和三角形外角的性质,初步学会数学说理。
2.通过实际的操作、度量、探索、归纳,直观确认三角形外角的三个特征:三角形的外角等于与它不相邻的两个内角的和,三角形的外角大于任何一个与它不相邻的内角,三角形的外角和等于360°。
二、教学重难点教学重点:1.理解三角形外角的概念,2.掌握“三角形的一个外角等于与它不相邻的两个内角的和”的性质,并应用之解决简单的实际问题。
教学难点:1.理解“三角形的一个外角大于与它不相邻的任何一个内角”及应用;2.探索“三角形的外角和等于360°”三、教学过程分析本节课的设计分为四个环节:情境引入——探索新知——课堂练习——课堂反思与小结第一环节:情境引入活动内容:在证明三角形内角和定理时,用到了把△ABC的一边BC延长得到∠ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.第二环节:探索新知活动内容:①三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角,结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上.(2)一条边是三角形的一边.(3)另一条边是三角形某条边的延长线.②两个推论及其应用由学生探讨三角形外角的性质:问题1:找出图形中∠1与∠2的不同点与相同点并判断哪个角是三角形的外角。
12由学生归纳得出:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.问题2(1)∠ACD是△ABC的一个外角,它与图中的其它角有什么关系?能证明你的结论吗?(2)∠ACD大于∠ACB吗?为什么?(3)∠ACD=∠B+∠ACB吗?为什么?例1、已知∠B=50°,∠CFD=80°,∠D=20°求:∠A的度数。
例2、(1)∠AED 是____的外角 ∠ACD 是____的外角(2)∠AED =____+____ ∠ACD =____+____(3)∠AED >______ ∠ACD >______ (4)∠AFD 是 的外角(5)∠AFD =____+____(6)∠AFD >______(7)∠AFD =____+____+____例3、回答下列问题:(与上一题作对比,聪明的你有什么发现?)(1)求证:∠AFD=∠B+∠BAF+∠BDF 。
三角形的外角—教案
7.2.2三角形的外角授课教师:七年级温文石【教学目标】1、知识与技能:了解三角形外角的概念;探索三角形外角与内角的关系。
2、过程与方法:在探究过程中培养学生总结知识,使之条理化,以便加深理解和记忆,养成良好的学习习惯。
3、情感态度价值观:引导学生自主探究三角形外角的性质,培养学生独立思考的学习习惯。
【教学重点】了解三角形外角的概念和性质,并能利用三角形外角的性质解决简单的实际问题。
【教学难点】能够证明并应用“三角形的一个外角等于与它不相邻的两个内角之和”。
【教学方法与手段】在学生自主探究的基础上加以引导,培养学生的逻辑思维及发现问题和解决问题的能力。
【课前准备】学案、多媒体课件【教学过程】一、提出问题,引入概念问题1:请问下图中有多少个小于平角的角?它们分别是哪些角?讨论结果:图中共有4个角,分别为:∠A,∠B,∠ACB,∠ACD。
其中∠A,∠B,∠ACB是三角形的三个内角,∠ACD是在三角形的外面,我们称∠ACD为△ABC的一个外角。
问题2:根据∠ACD的构成,你能说明什么叫做三角形的外角吗?讨论结果:三角形的一边和另一边的延长线组成的角叫做三角形的外角。
二、探究新知,解决问题1、根据定义探究三角形外角的个数问题1:已知△ABC,根据定义,画出它的外角,你能画出多少个?讨论结果:如右图,可以画出6个外角。
问题2:△ABC 的这6个外角有什么关系?(位置关系和数量关系)讨论结果:∠1与∠2是对顶角、∠3与∠4是对顶角、∠5与∠6是对顶角,所以∠1=∠2、∠3=∠4、∠5=∠6. 教师点评:由于△ABC 的这6个外角是三对对顶角,且∠1=∠2、∠3=∠4、∠5=∠6,所以当我们说三角形的外角时,一般是从这三对对顶角中的每一对中取出一个,组成三个角。
因此,一般地,我们说一个三角形有三个外角。
2、探究三角形的外角的性质及外角和问题1:如图△ABC 中,∠ABC=650,∠ACB=400,求∠BAC 的度数及三角形的外角∠1的度数。
《三角形的外角》PPT教学课文课件
则∠ACB= 50 ° ,∠ACD= 130° .
B
3.什么是三角形的内角?其内角和等于多少?
CD
三角形相邻两边组成的角叫作三角形的内角, 它们的和是180 °.
合作探究---三角形的外角的概念
定义 如图,把△ABC的一边BC延长,得到∠ACD,像这样,三角形的一边与另 一边的延长线组成的角,叫做三角形的外角.
F
∠EFD是△BEF和△DCF的外角.
B
C
合作探究---三角形的外角的性质
那么对于任意一个三
在△ABC 中,∠A =70°,∠B =6角不0°形 相,的 邻一 的∠个 两AC外 个D是角 内与 角△它 是ABC的一个外 角,你能求出∠ACD的度数吗? ∠ACD否与都∠具A有,这∠种B 关的系大呢小?有什么关系?
B
A
C
1 P
N3
2M
F
D
E
综合演练
7、如图 ,试比较∠2 、∠1的大小; 如图 ,试比较∠3 、∠2、 ∠1的大小.
图 解:∵∠2=∠1+∠B,
∴∠2>∠1.
图 解:∵∠2=∠1+∠B, ∠3=∠2+∠D,
∴∠3>∠2>∠1.
综合演练
8.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D, 过D点作DE⊥AB于E.若∠AFD=150°,求∠EDF的度数.
A
B
C
D
∠ACD是△ABC的一个外角
合作探究---三角形的外角的概念
思考1 、如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是
△ABC的一个外角?
A
∠BCE是△ABC的一个外角,
∠DCE不是△ABC的一个外角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形外角说课稿
一、说教材
1、教材的地位与作用:
本节课位于《义务教育课程标准实验教科书》(人教实验版)七年级数学(下)第七章第二节。
其教学内容为三角形外角定义以及三角形外角性质,即:三角形的一个外角等于和它不相邻的两个内角的和,三角形的一个外角大于任何一个和它不相邻的内角。
它是对图形进一步认识的重要内容之一,也是在后面证明中用以研究角相等的重要方法之一。
本节课起着承上启下的作用。
2、教学目标:
(1)知识与技能:
了解三角形的外角概念、三角形外角的性质和三角形外角和,初步学会数学说理。
(2)数学思考:
能动手操作,探索发现有关结论。
(3)解决问题:
通过总结、观察等活动经历得出三角形的外角概念、三角形的外角性质以及三角形外角和。
学会运用简单的说理来计算三角形相关的角。
(4)情感与态度目标:
通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践的习惯。
3、教学重点与难点:
重点:三角形的外角及其性质
难点:运用三角形外角性质进行有关计算时能准确地表达推理的过程和方法。
二、说教法
1、采用观察总结等活动,引导学生点点深入、题题相扣,通过条件和结论的改变对题目进行改造,在学生体验一题多变的过程中,既强化了课本的基础知识,又提高了学生的空间想象能力和发散性思维。
2、师生互动,通过恰当的鼓励评价以调动他们对数学的学习兴趣,把“要我学”转变为“我要学”。
3、在教学过程中教师要始终扮演着引导者和合作者的角色。
三、说学法选择
归纳总结法:引导学生从解题过程中总结经验,寻找规律、联系点,从而达到灵活应用。
四、说教学过程设计
教学过程:
设计意图:(一)复习并引入新课。
1、复习三角形内角和定理。
2、学生观察图形找出三角形的外角引出本节课题。
本次活动中,教师应重点关注:
(1)学生能否主动参与数学学习活动。
(2)学生是否敢于发表个人观点。
培养学生仔细观察能力,和语言表达能力
例题一共有四道
例题1是找外角,目的是为了进一步让学生找出外角并让学生说出这个外角是哪个三角形的外角,为同学能找到相邻和不相邻的角做铺垫。
例题2是通过一道求角度计算题能找到:
三角形的外角与内角有几种关系?
(相邻、不相邻)
本次活动中,教师应重点关注:
(1)引导学生取实际数值代入验证,从而推广到一般。
(2)让学生试用语言表述,培养口语表达能力。
(3)探索用不同方法得到结论。
培养学生通过仔细观察,并进行大胆猜想,再操作确认,培养学生勤于动手,乐于探究的良好习惯。
例题三是进一步加深外角性质的应用,关注的主要是
①学生能否运用三角形外角性质解决问题。
②学生能否有条理地表达自己的思考过程。
例题四是为了引出第三个结论:三角形的外角和为360度,也为了学习多边形做了铺垫
最后小结
学生反思和解决问题的过程教师对学生的进步给予肯定,树立学生学好数学的自信心。
本次活动中,教师应重点关注:
①学生能否正确地分析问题和解决问题。
②学生能否用文字、字母符号等清楚的表达解决问题的过程。
③不同层次学生对本节知识的掌握情况。
学会总结反思,初步学会自我评价学习效果。
教师及时了解学生对本节知识的掌握情况,对教学进度和教学方法进行适当调整,并对有困难的学生给予适时的指导。
需要反思的是:对于七年级学生来说,推理还不够严谨,条理不够清晰,数学说理方面还有待于加强,有较多的学生“知其然而不知其所以然”,还有较多学生的口头表达能力有待提高。