高中数学 第四讲 4.1数学归纳法(一)教案 新人教A版选修4-5

合集下载

新人教A版选修4-5高中数学数学归纳法教案

新人教A版选修4-5高中数学数学归纳法教案

数学归纳法一、教学目标:理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题,会用归纳、猜想、证明这种探索思想解决一些数学问题.二、教学重点:数学归纳法及其原理的理解,归纳、猜想、证明这一探索思想的应用.三、教学过程:(一)主要知识:数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.1.归纳法及其分类2.数学归纳法及其原理3.数学归纳法的基本步骤4.归纳、猜想、证明的探索思想(二)知识点详析1.归纳是一种有特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

2.数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。

它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n0且n∈N)结论都正确”。

由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。

运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

3.数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.4.数学归纳法的应用:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、整除性问题、几何中计算问题,数列的通项与和等等。

人教数学选修4-5全册精品课件:第四讲一数学归纳法

人教数学选修4-5全册精品课件:第四讲一数学归纳法

第四讲数学归纳法证明不等式一数学归纳法学习目标1 •理解并掌握数学归纳法的概念,运用数学归纳法证明等式问题;2.学会运用数学归纳法证明几何问题、证明整除性等问题.数学归纳法课前自主学案1.数学归纳法适用于证明一个与无限多个正整数有关的命题.2.数学归纳法的步骤是: (1)(归纳奠基)验证当〃=必(必为命题成立的起始自然数)时命题成立:(2)(归纳递推)假设当n=k(k^N+,且&$必)时命题成立,推导1时命题也成圭.(3)结论:由(1)(2)可知,命题对一切MM%的自然数都成立.思考感悟在数学归纳法中的必是什么样的数?提示:弘是适合命题的正整数中的最小值,有时是兀0=1或必=2,有时兀0值也比较大,不一定是从1开始取值.课堂互动讲练考点突破用数学归纳法证明等式问题用数学归纳法证明:用N+时,穆++ '''+(2n-l)(2n + l)=2n + V【证明】⑴当〃 =1时,左边=吉,右边= 左边=右边,.••等式成立.(2)假设n = k(k^l)时,等式成立,即有石+亦------- H1_ k(2k-i)(2k-\-r)=2k-\-r则当n=k-\r\时,丄+丄p -------------- ------- + -------- --------1・3 丁3・5丁^(2k- 1)(2氐+1)(2氐+ 1)(2氐+3)k | 1 氐(2 氐+3)+1 ---- + -------------- ---------------2k+r(2k+l)(2k+3) (2&+l)(2k+3) 2/+3&+1 &+1 (2k+l)(2k+3)=2k+3&+12伙+1)+1;.\n=k+1时,等式也成立.由(1)(2)可知,对一切MWN+等式都成立.【名师点评】运用数学归纳法证明时,两个步骤缺一不可,步骤(1)是证明的归纳基础,步骤(2)是证明的主体,它反映了无限递推关系.变式训练1 求证:(n + l)(n + 2)・•(n + n)= 2,te 1*3*5 (In—l)(n EN+).证明:⑴当兀=1时,等式左边=2, 等式右边=2X1=2,・•・等式成立.(2)假设兀=k(k G N+)等式成立,即仇+1)仇+2)…仇+Q=2忍1・3・5・・・・(2&—1)成立.那么n=k+l时,(k + 2)(* + 3)…仇+切(2& +1)(2* + 2) = 2(k +1)仇+ 2)仇+3)…仇+肪(2氐 + 1)=2*+1・1・3・5 (2k —1)-[2(^+1)-1]・即〃=&+1时等式也成立.由⑴⑵可知对任何7/ WN+等式均成立.3平面上有兀个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,求证:这n个圆把平面分成~Tf(n)=n2—n+2部分.【思路点拨】用数学归纳法证明几何问题,主要是搞清楚当n=k + l时比n=k时分点增加了多加了几块,本题中第&+1个圆被原来的&弧,而每一条弧把它所在部分分成了两部分,此时共增加了个部分,问题就得到了解决.【证明】⑴当兀=1时,一个圆把平面分成两部分,且/⑴=1 —1 + 2 = 2,因此,〃=1时命题成立.(2)假设兀=k(k^l)时,命题成立,即&个圆把平面分成«切=护一&+2部分.如果增加一个满足条件的任一个圆,则这个圆必与前&个圆交于2&个点.这个点把这个圆分成%段弧,每段弧把它所在的原有平面分成为两部分.因此,这时平面被分割的总数在原来的基础上又增加了2&部分,即有f(k^l)=f(k)+2k=k2-k+2+2k = (k+^-(lc+1)+2.即当n=k+l时,f(n)=n2—n+2也成立.根据(1)、(2),可知兀个圆把平面分成了弘)=兀+2部分.【名师点评】有关诸如此类问题的论证,关键在于分析清楚兀=比与〃=无+1时二者的差异,这时常常借助于图形的直观性,然后用数学式子予以描述,建立起AQ与张+1)之间的递推关系.变式训练2平面内有EN+)条直线,其中任何两条不平行,任何三条不共点,求证:这n条直线Z/2 —I—Ji—(― 2把平面分成/(〃)=——个部分.证明:(1)当〃=1时,一条直线把平面分成两部分, 而/(1)=乎+;+2=2,・・・命题成立.(2)假设当n=k(k刃时命题成立,即k条直线把平面分成/(Q= 2「个部分• 则当兀=&+1时,即增加一条直线2,因为任何两条直线不平行,所以2与&条直线都相交,有&个交点;又因为任何三条直线不共点,所以母个交点不同于&条直线的交点,且&个交点也互不相同,如此& 个交点把直线2分成& + 1段,每一段把它所在的平面区域分为两部分,故新增加了& + 1个平面部分.z +a +^+z a +M Z +為+Z+4+Z41+4+ z+r+d I+4+Q)m +4)J ・・考点三報用数学归纳法证明整除性用数学归纳法证明(工+ 1)" + 1 + (工+2)2”-1(〃WN+)能被严+3兀+3整除.【思路点拨】证明多项式的整除问题,关键是在考点三報用数学归纳法证明整除性(工+1)"+1+(工+2)2"—1 中凑出x2+3x+3.【证明】⑴当兀=1时,(x + l)1+1+(x+2)2X1_1=x2+3x+3 能被工2+3工+3 整除,命题成立.(2)假设当兀=尤仇$1)时,a+iy+i+a+2)2—1能被屮+3兀+3整除,那么 (工 + 1)仇+1)+1+(工+2)2 仇+D—1=(工 + l)(x+1)“+1+(x+2)2, (x+2严—1= (x+l)(x + l)fc+1+(x + l)(x+2)2A:_1—(x+l)-(x +2)2ET + (工 + 2)2(" + 2)2RT= (x + l)[(x + lRi + (x+2)^-i] + (^ + 3x + 3)-(x +2严—1.因为(兀+1)*+1+(工+2严-1和0+3兀+3都能被0+ 3卄3整除,所以上面的式子也能被兀2+3兀+3整除. 这就是说,当〃=尤+1时,(兀+ 1)伙+1)+1 + (工+ 2严+1)—1也能被於+ 3工+ 3整除.根据⑴⑵可知,命题对任何MWN+都成立.【名师点评】 用数学归纳法证明数或式的整除 的方法很多,关键是凑成〃=尤时假设的形式. 变式训练3 求证:d" +1 + (° +1)2" T 能被/ +a + 1整除(neN +)・ 证明:⑴当兀=1 时,a1+1+(«+l)2X1_1=a 2+a+ 1,命题显然成立. 性问题时,常釆取加项、减项的配凑法,而配凑⑵假设当n=k(k^l)时,a k+i + (a + l)2k~1能被0 +° + 1整除,则当n=k+l时,a k+2+(a+l)2k^~l=a9a k^~l+(a+l)2(a+l)2k~l=a\a k+1 + (a + 1)2A:_1] + (a + l)2(a + l)2Ar_1~a(a +=a [a k+l+(a+1)2^-1]+(a2+a+l)(a + l)2k~l, 由归纳假设,以上两项均能被a^+a + 1整除,故当〃=氐+1时,命题也成立.由(1)、(2)可知,对〃GN+命题都成立.误区警示・・+戸+予=1—予(其中底N+).【错证】⑴当n = l时,左边=;,右边=—;=* 等式成立.(2)假设当n=k(kM\)时,等式成立,就是这就是说,当n=k+1时,等式也成立. 根据(1)和⑵可知,等式对任何n e N+都成立.【错因】从形式上看,会认为以上的证明是正确的,过程甚至是完整无缺的,但实际上以上的证明却是错误的.错误的原因在第⑵步,它是直接利用等比数列的求和公式求出了当n=k-\-l时式子;+$+§+••• +2-1丁2"丁2"打的和,而没有利用“归纳假设”,这是在用数学归纳法证题时极易犯的一种错误,要引以为戒,一定要引起同学们的足够重视.【自我校正】(1)当〃=1时,左边=亍右边=1 (2)假设当时,等式成立,就是等式成立.这就是说,当M=k+1时,等式也成立• 根据⑴和⑵可知,等式对任何兀UN+都成立.1.数学归纳法的两个步骤缺一不可,第一步中验证〃的初始值至关重要,它是递推的基础,但〃的初始值不一定是1,而是兀的取值范围内的最小值.2.第二步证明的关键是运用归纳假设.在使用归纳假设时,应分析卩的与卩仇+1)的差异与联系,利用拆、添、并、放、缩等手段,或从归纳假设出发, 如仇+1)中分离出卩⑹再进行局部调整.3.在研究探索性问题时,由特例归纳猜想的结论不一定是真命题,这时需要使用数学归纳法证明, 其一般解题步骤是:归纳一猜想一证明.。

4[1].1《数学归纳法》教案(新人教选修4-5)[修改版]

4[1].1《数学归纳法》教案(新人教选修4-5)[修改版]

第一篇:4[1].1《数学归纳法》教案(新人教选修4-5)数学归纳法教学目标1.了解归纳法的意义,培养学生观察、归纳、发现的能力.2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤.3.抽象思维和概括能力进一步得到提高.教学重点与难点重点:归纳法意义的认识和数学归纳法产生过程的分析.难点:数学归纳法中递推思想的理解.教学过程设计(一)引入师:从今天开始,我们来学习数学归纳法.什么是数学归纳法呢?应该从认识什么是归纳法开始.(板书课题:数学归纳法)(二)什么是归纳法(板书)师:请看下面几个问题,并由此思考什么是归纳法,归纳法有什么特点.问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?(可准备一袋白球、问题用小黑板或投影幻灯片事先准备好)生:把它倒出来看一看就可以了.师:方法是正确的,但操作上缺乏顺序性.顺序操作怎么做?生:一个一个拿,拿一个看一个.师:对.问题的结果是什么呢?(演示操作过程)第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.a2,a3,a4。

的值,再推测通项an的公式.(问题由小黑板或投影幻灯片给出)师:同学们解决以上两个问题用的都是归纳法,你能说说什么是归纳法,归纳法有什么特点吗?生:归纳法是由一些特殊事例推出一般结论的推理方法.特点是由特殊→一般(板书).师:很好!其实在中学数学中,归纳法我们早就接触到了.例如,给出数列的前四项,求它的一个通项公式用的是归纳法,确定等差数列、等比数列通项公式用的也是归纳法,今后的学习还会看到归纳法的运用.在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.还应该指出,问题1和问题2运用的归纳法还是有区别的.问题1中,一共12个球,全看了,由此而得到了结论.这种把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.对于问题2,由于自然数有无数个,用完全归纳法去推出结论就不可能,它是由前4项体现的规律,进行推测,得出结论的,这种归纳法称为不完全归纳法.(三)归纳法的认识(板书)归纳法分完全归纳法和不完全归纳法(板书).师:用不完全归纳法既然要推测,推测是要有点勇气的,请大家鼓起勇气研究问题3.问题3:对于任意自然数n,比较7n-3与6(7n+9)的大小.(问题由小黑板或投影幻灯片给出)(给学生一定的计算、思考时间)生:经过计算,我的结论是:对任意n∈N+,7n-3<6(7n+9).师:你计算了几个数得到的结论?生:4个.师:你算了n=1,n=2,n=3,n=4这4个数,而得到的结论,是吧?生:对.师:有没有不同意见?生:我验了n=8,这时有7n-3>6(7n+9),而不是7n-3<6(7n+9).他的结论不对吧!师:那你的结论是什么呢?(动员大家思考,纠正)生:我的结论是:当n=1,2,3,4,5时,7n-3<6(7n+9);当n=6,7,8,…时,7n-3>6(7n+9).师:由以上的研究过程,我们应该总结什么经验呢?首先要仔细地占有准确的材料,不能随便算几个数,就作推测.请把你们计算结果填入下表内:师:依据数据作推测,决不是乱猜.要注意对数据作出谨慎地分析.由上表可看到,当n依1,2,3,4,…变动时,相应的7n-3的值以后一个是前一个的7倍的速度在增加,而6(7n+9)相应值的增长速度还不到2倍.完全有理由确认,当n取较大值时,7n-3>6(7n+9)会成立的.师:对问题3推测有误的同学完全不必过于自责,接受教训就可以了.其实在数学史上,一些世界级的数学大师在运用归纳法时,也曾有过失误.资料1(事先准备好,由学生阅读)费马(Fermat)是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.但是,费马曾认为,当n∈N时,22n+1一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.18世纪伟大的瑞士科学家欧拉(Euler)却证明了225+1=4 294 967 297=6 700 417×641,从而否定了费马的推测.师:有的同学说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!再请看数学史上的另一个资料(仍由学生阅读):资料2f(n)=n2+n+41,当n∈N时,f(n)是否都为质数?f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,f(5)=71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,f(10)=151,…f(39)=1 601.但是f(40)=1 681=412是合数师:算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来.师:归纳法为什么会出错呢?生:完全归纳法不会出错.师:对!但运用不完全归纳法是不可避免的,它为什么会出错呢?生:由于用不完全归纳法时,一般结论的得出带有猜测的成份.师:完全同意.那么怎么办呢?生:应该予以证明.师:大家同意吧?对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.(四)归纳与证明(板书)师:怎么证明呢?请结合以上问题1思考.生:问题1共12个球,都看了,它的正确性不用证明了.师:也可以换个角度看,12个球,一一验看了,这一一验看就可以看作证明.数学上称这种证法为穷举法.它体现了分类讨论的思想.师:如果这里不是12个球,而是无数个球,我们用不完全归纳法得到,这袋球全是白球,那么怎么证明呢?(稍作酝酿,使学生把注意力更集中起来)师:这类问题的证明确不是一个容易的课题,在数学史上也经历了多年的酝酿.第一个正式研究此课题的是意大利科学家莫罗利科.他运用递推的思想予以证明.结合问题1来说,他首先确定第一次拿出来的是白球.然后再构造一个命题予以证明.命题的条件是:“设某一次拿出来的是白球”,结论是“下一次拿出来的也是白球”.这个命题不是孤立地研究“某一次”,“下一次”取的到底是不是白球,而是研究若某一次是白球这个条件能保证下一次也是白球的逻辑必然性.大家看,是否证明了上述两条,就使问题得到解决了呢?生:是.第一次拿出的是白球已确认,反复运用上述构造的命题,可得第二次、第三次、第四次、……拿出的都是白球.师:对.它使一个原来无法作出一一验证的命题,用一个推一个的递推思想得到了证明.生活上,体现这种递推思想的例子也是不少的,你能举出例子来吗?生:一排排放很近的自行车,只要碰倒一辆,就会倒下一排.生:再例如多米诺骨牌游戏.(有条件可放一段此种游戏的录相)师:多米诺骨牌游戏要取得成功,必须靠两条:(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒;(2)第一张牌被推倒.用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学归纳法.(五)数学归纳法(板书)师:用数学归纳法证明以上问题2推测而得的命题,应该证明什么呢?生:先证n=1时,公式成立(第一步);再证明:若对某个自然数(n=k)公式成立,则对下一个自然数(n=k+1)公式也成立(第二步).师:这两步的证明自己会进行吗?请先证明第一步.(应追问各步计算推理的依据)师:再证明第二步.先明确要证明什么?师:于是由上述两步,命题得到了证明.这就是用数学归纳法进行证明的基本要求.师:请小结一下用数学归纳法作证明应有的基本步骤.生:共两步(学生说,教师板书):(1)n=1时,命题成立;(2)设n=k时命题成立,则当n=k+1时,命题也成立.师:其实第一步一般来说,是证明开头者命题成立.例如,对于问题3推测得的命题:当n=6,7,8,…时,7n-3>6(7n+9).第一步应证明n=6时,不等式成立.(若有时间还可讨论此不等关系证明的第二步,若无时间可布置学生课下思考)(六)小结师:把本节课内容归纳一下:(1)本节的中心内容是归纳法和数学归纳法.(2)归纳法是一种由特殊到一般的推理方法.分完全归纳法和不完全归纳法二种.(3)由于不完全归纳法中推测所得结论可能不正确,因而必须作出证明,证明可用数学归纳法进行.(4)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的操作步骤必须是二步.数学归纳法在数学中有广泛的应用,将从下节课开始学习.(七)课外作业(1)阅读课本P112~P115的内容.(2)书面作业P115练习:1,3.课堂教学设计说明1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.即n=k+1时等式也成立.这是不正确的.因为递推思想要求的不是n=k,n=k+1时命题到底成立不成立,而是n=k时命题成立作为条件能否保证n=k+1时命题成立这个结论正确,即要求的这种逻辑关系是否成立.证明的主要部分应改为以上理解不仅是正确认识数学归纳法的需要,也为第二步证明过程的设计指明了正确的思维方向.第二篇:第四讲《数学归纳法证明不等式》教案(新人教选修4-5).1第四讲:数学归纳法证明不等式数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。

4.1数学归纳法-教案(优秀经典公开课比赛教案)

4.1数学归纳法-教案(优秀经典公开课比赛教案)

课题:4.1数学归纳法一、教材分析:本节内容是人教A 版选修4-5《不等式选讲》的最后一章内容,数学归纳法在讨论涉及正整数无限性的问题时是一种重要的方法,它的地位和作用可以从以下三方面来看:1.中学数学中的许多重要结论,如等差数列,等比数列的通项公式与前n 项和公式,二项式定理等都可以用数学归纳法进行证明.由归纳猜想得出一些与正整数有关的数学命题,用数学归纳法加以证明,可以使学生更深层次地掌握有关知识.2.运用数学归纳法可以证明许多数学命题(不等式、数列、等式、整除),既可以开阔学生的眼界,又可以使他们受到推理论证的训练.3.数学归纳法在进一步学习数学时要经常用到,因此掌握这种方法为今后的学习打下了基础.二、教学目标:1、知识与技能:(1)了解数学归纳法的原理,能用数学归纳法证明一些与正整数有关的数学命题;(2)能以递推思想为指导,规范数学归纳法证明中的2个步骤,1个结论。

2、过程与方法:(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想到证明的数学方法;(2)进一步发展学生的抽象思维能力和创新能力,让学生经历知识的建构过程,体会类比的数学思想。

3、情感、态度与价值观:感受逻辑证明在数学以及日常生活中的作用,体会数学来源于生活,养成言之有理、论证有据的习惯。

三、教学重点:能用数学归纳法证明一些简单的数学命题.四、教学难点:学归纳法中递推思想的理解.五、教学准备1、课时安排:1课时2、学情分析:学生在学习本节之前已经学习过归纳推理,以及一些简单的数学证明方法,并且已经开始使用与正整数有关的结论(例1的公式),但学生只是停留在认知阶段;另外高二学生经过了一年半的高中学习之后,已初步具有了发现和探究问题的能力,这为本节学习数学归纳法奠定了一定基础。

3、教具选择:多媒体六、教学方法:运用类比启发探究的数学方法进行教学;七、教学过程1、自主导学:复习回顾引入:<师>(1)请同学们回顾学习过的证明方法有哪些?<生> 请一名学生回答该问题。

一数学归纳法-人教A版选修4-5不等式选讲教案

一数学归纳法-人教A版选修4-5不等式选讲教案

数学归纳法-人教A版选修4-5 不等式选讲教案一、教学内容本次课程将主要讲解数学归纳法及其在不等式证明中的应用。

具体内容如下:1. 数学归纳法•介绍数学归纳法的思想和原理;•给出数学归纳法的三个步骤:基础步骤、归纳假设步骤和归纳步骤;•解释数学归纳法的证明过程;•练习数学归纳法的应用。

2. 不等式选讲•讲解不等式基本定义及常见不等式;•给出不等式证明的基本方法;•练习不等式证明的例题。

二、教学目标学生通过本次课程学习,将能够:1.掌握数学归纳法的思想和原理;2.熟练掌握数学归纳法的证明过程;3.能够运用数学归纳法证明一些数学结论;4.熟练掌握不等式基本定义及常见不等式;5.能够使用不等式证明的基本方法证明一些不等式。

三、教学过程1. 导入(5分钟)•介绍本次课程的主要内容;•引导学生回忆数学归纳法的定义和应用。

2. 讲解(25分钟)2.1 数学归纳法•介绍数学归纳法的定义和思想;•解释数学归纳法的证明过程;•给出一些使用数学归纳法证明的例题。

2.2 不等式选讲•介绍不等式的基本定义和常见不等式;•给出不等式证明的基本方法;•练习使用不等式证明法证明一些不等式。

3. 练习(25分钟)3.1 数学归纳法练习•练习使用数学归纳法证明一些数学结论;•班级分组练习,检查答案。

3.2 不等式证明练习•练习使用不等式证明法证明一些不等式;•班级分组练习,检查答案。

4. 总结(5分钟)•总结数学归纳法和不等式证明的重点;•引导学生思考,如何进一步提高数学归纳法和不等式证明的能力。

四、教学评价本次课程教学内容丰富,课程设计合理,注重理论联系实际,符合教学大纲和教学要求。

在教学中,我采用了多种教学方法,如导入、讲解、练习等。

通过多种教学方法的组合使用,能够有效提高学生的学习兴趣和参与度。

不过作为老师,我在教学中需要进一步提高自己的授课效率和能力,例如在课堂管理上需要更加严格,以确保学生专注于课堂内容的学习。

人教A版选修4-5 4.1 数学归纳法 学案

人教A版选修4-5 4.1 数学归纳法 学案

一 数学归纳法 第12课时 数学归纳法一般地,当要证明一个命题对于不小于某个正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:(1)证明当n =n 0时命题成立;(2)假设n =k (k ∈N +,且k ≥n 0)时命题成立,证明n =k +1时命题也成立. 在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立,这种证明方法称为数学归纳法.知识点一 用数学归纳法证明恒等式1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:观察分母知,首项为n ,末项为n 2,公差为1,共有n 2-n +1项,且f (2)=12+13+14.答案:D2.(2019·江西师大附中模拟)用数学归纳法证明:⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝⎛⎭⎪⎫1-1n 2=n +12n (n ≥2,n ∈N +).证明:①当n =2时,左边=1-14=34,右边=2+12×2=34.∴等式成立.②假设当n =k (k ≥2,k ∈N +)时,等式成立,即⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1k 2=k +12k (k ≥2,k ∈N +).当n =k +1时,⎝⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1k 2⎣⎢⎡⎦⎥⎤1-1k +12=k +12k ·k +12-1k +12=k +1k ·k +22k ·k +12=k +22k +1=k +1+12k +1, ∴当n =k +1时,等式成立.根据①和②知,对n ≥2,n ∈N +时,等式成立. 知识点二 用数学归纳法证明整除问题3.(2019·湖南邵东一中月考)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析:假设n =k 时,即k 3+(k +1)3+(k +2)2能被9整除,那么当n =k +1时,则(k +1)3+(k +2)3+(k +3)3=(k +1)3+(k +2)3+(k 3+3k 2×3+3k ×32+33)=k 3+(k +1)3+(k +2)3+(9k 2+27k +27).故只需展开(k +3)3即可,故选A.答案:A4.用数学归纳法证明“5n -2n 能被3整除”时,在第二步中,当n =k +1时,为了使用归纳假设应将5k +1-2k +1变形为________.解析:假设n =k 时,应有5k -2k 能被3整除,当n =k +1时,应变形为5k+1-2k +1=5(5k -2k )+3·2k . 答案:5(5k -2k )+3·2k知识点三 用数学归纳法证明几何问题5.(2019·福清东张中学期中)平面内原有k 条直线,他们的交点个数记为。

高中数学人教版A版选修4-5教学课件:4-1《 数学归纳法》


=x2(x2k-y2k)+y2k(x2-y2) ∵x2k-y2k与x2-y2都能被x+y整除, ∴x2(x2k-y2k)+y2k(x2-y2)能被x+y整除. 即n=k+1时,x2k+2-y2k+2能被x+y整除. 由(1)(2)可知,对任意正整数n命题均成立.
利用数学归纳法证明整除时,关键是整理出除
n+1 1 1 1 1 (1- )(1- )(1- )…(1- 2)= . 4 9 16 n 2n
[思路点拨] 注意到这是与正整数 n 有关的命题,可
考虑用数学归纳法证明.
[证明] 3 = . 4
2+ 1 1 3 (1)当 n=2 时, 左边=1- = , 右边= 4 4 2× 2
∴当 n=2 时,等式成立.
=[(3k+1)· 7k-1]+18k· 7k+6· 7k+21· 7k
=[(3k+1)· 7k-1]+18k· 7k+27· 7k,
由归纳假设(3k+1)· 7k-1能被9整除,又因为 18k· 7k+
27· 7k也能被9整除,所以[3(k+1)+1]· 7k+1-1能被9整除,
即n=k+1时命题成立.
(3)数学归纳法证明与正整数有关的数学命题步骤:
①证明当n取 第一个值n0 (如取n0=1或2等)时命题正 确; ②假设当n=k(k∈N+,k≥n0)时结论正确,证明当 n=k+1 时命题也正确. 由此可以断定,对于任意 不小于n0 的正整数n,命 题都正确.
[例 1]
证明:当 n≥2,n∈N+时,
则①②可知对所有正整数n命题成立.
4.用数学归纳法证明:
当n为正奇数时,xn+yn能被x+y整除. 证明:(1)当n=1时,x+y能被x+y整除. (2)假设n=2k-1时,x2k-1+y2k-1能被x+y整除,当n= 2k+1时,x2k+1+y2k+1=x2k+1+y2k+1+x2y2k-1-x2y2k-1

4.1 数学归纳法 课件(人教A选修4-5)


[研一题]
[例 3] 平面上有 n(n≥2,且 n∈N+)条直线,其中任意两
条直线不平行,任意三条不过同一点, nn-1 求证:这 n 条直线共有 f(n)= 个交点. 2
[精讲详析]
本题考查数学归纳法在证明几何命题中的
应用,解答本题应搞清交点随 n 的变化而变化的规律,然后 采用数学归纳法证明. (1)当 n=2 时, ∵符合条件是两直线只有 1 个交点, 1 又 f(2)= ×2×(2-1)=1. 2 ∴当 n=2 时,命题成立.
1 1 1 = + +…+ (n∈N+). 2n n+1 n+2 [精讲详析] 本题考查数学归纳法在证明恒等式中的应
用,解答本题需要注意等式的左边有2n项,右边有n项,由 k到k+1时,左边增加两项,右边增加一项,而且左、右两 边的首项不同,因此由“n=k”到“n=k+1”时,要注意项的
合并.
1 1 1 (1)当 n=1 时,左边=1- = ,右边= ,命题成立. 2 2 2 (2)假设当 n=k(k≥1,且 k∈N+)时命题成立,即有 1 1 1 1 1 1- + - +…+ - 2 3 4 2k-1 2k 1 1 1 = + +…+ . 2k k+1 k+2 则当 n=k+1 时, 1 1 1 1 1 1 1 左边=1- + - +…+ - + - 2 3 4 2k 2k+1 2k+2 2k-1
10b1=16,故等式成立; (2)假设当n=k时等式成立,即Tk+12=-2ak+10bk,则 当n=k+1时有: Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1 =ak+1b1+q(akb1+ak-1b2+…+a1bk) =ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12) =2ak+1-4(ak+1-3)+10bk+1-24 =-2ak+1+10bk+1-12. 即Tk+1+12=-2ak+1+10bk+1. 因此n=k+1时等式也成立.

高中数学人教A版选修4-5 4-1 数学归纳法 导学案 精品

4.1 数学归纳法一、学习目标:1、通过具体问题加深对数学归纳法的理解及应用。

2、会用数学归纳法证明一些与正整数有关的命题。

二、重点:数学归纳法的应用。

难点:“归纳推理”环节的应用。

三、自学指导:导读:阅读课本46-49页探究(一):数学归纳法的感性认识导思: 1.有若干块骨牌竖直摆放,若将它们全部推倒,有什么办法?一般地,多米诺骨牌游戏的原理是什么?探究(二):数学归纳法的基本原理2.一般地,用数学归纳法证明一个与正整数n 有关的命题,其证明步骤:1)(归纳奠基):2)(归纳递推):四、导练:1.用数学归纳法证明:1)2)12(7531n n =-++++2))(53+∈+N n n n 能够被6整除。

2、平面上有()3,n ≥∈+n N n 个点 ,其中任意三个点都不在同一条直线上,过这些点中的任意两点作直线,这样的直线共有多少条?证明你的结论。

五、达标训练1.设n 为正整数,()()111123f n n N n+=++++∈ ,计算知()()()()()3572,42,8,163,32222f f f f f =>>>>,据此可以猜测得出一般性结论为 ( ) A. ()2122n f n +> B. ()222n f n +> C. ()222n n f +> D. 以上都不对 2.欲用数学归纳法证明对于足够大的正整数n ,总有32n n >,0n 为验证的第一个值,则( ) A. 01n = B. 0n 为大于1小于10的某个整数 C. 010n ≥ D. 02n =3.用数学归纳法证明1111127124264n -++++>,n 的起始值至少应取为4、 课本50页1。

2022学年人教A版选修4-5数学归纳法第1课时数学归纳法教案

重点目标
了解归纳法、不完全归纳法、完全归纳法、数学归纳法及其原理、范围和基本步骤,理解数学归纳法是完全归纳法
难点目标
初步理解数学归纳法证明数学命题的两个步骤一个结论
导入示标
目标三导
学做思一:
自学探究
问题1.学习教材(P46-47),理解数学归纳法概念:
1、归纳法:由一些特殊事例推出一般结论的推理方法特点:特殊→一般
学做思二
问题2.数学归纳法:
对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kN*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法
问题3.数学归纳法的基本思想:
即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立 (这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立
2、不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法
3、完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法,完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法与不完全归纳法不同,用完全归纳法得出的结论是可靠的通常在事物包括的特殊情况数不多时,采用完全归纳法
2、用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为
A2k+1 B2(2k+1)C D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳奠基归纳递推
4、应用数学归纳法要注意以下几点:
11.第一步是基础,没有第一步,只有第二步就如空中楼阁,是不可靠的;
12.第二步是证明传递性,只有第一步,没有第二步,只能是不完全归纳法;
13.n0是使命题成立的最小正整数,n0不一定取1,也可取其它一些正整数;
14.第二步的证明必须利用归纳假设,否则不能称作数学归纳法。
[证明]: .当 时,13+5×1=6能被6整除,命题正确;
.假设 时命题正确,即 能被6整除,
∴当 时,

∵两个连续的整数的乘积 是偶数, 能被6整除,
能被6整除,即当 时命题也正确,
由 知命题时 都正确.
即:当 时,等式成立。
根据(1)和(2),可知等式对任何 都成立。
注:上例可让学生独立完成,教师板书写现完整过程,以突出数学归纳法证题的一般步骤。
情境一:(播放多米诺骨牌视频)
问:怎样才能让多米诺骨牌全部倒下?
二、讲授新课:
探究一:让所有的多米诺骨牌全部倒下,必须具备什么条件?
条件一:第一张骨牌倒下;
条件二:任意相邻的两张骨牌,前一张倒下一定导致后一张倒下。
探究二:同学们在看完多米诺骨牌视频后,是否对怎样证明 有些启发?
得出结论:证明 的两个步骤:
(2)完全归纳法:
一个火柴盒,里面共有五根火柴,抽出一根是红色的,抽出第二根也是红色的,请问怎样验证五根火柴都是红色的呢?
(将火柴盒打开,取出剩下的火柴,逐一进行验证。)
注:对于以上二例的结果是非常明显的,教学中主要用以上二题引出数学归纳法。
结论:不完全归纳法→结论不可靠;
完全归纳法→结论可靠。
问题:以上个与此有关的问题,就可靠性而言,应该选用第几种方法?(完全归纳法)
六、布置作业:P50练习题第1、2、3题
四、巩固练习:P50练习题第1、2题
五、课堂小结:
问:今天我们学习了一种很重要的数学证明方法,通过本节课的学习,你有哪些收获?(学生总结,教师整理)
1、数学来源于生活,生活中有许多形如“数学归纳法”这样的方法等着我们去发现。
2、数学归纳法中蕴含着一种很重要的数学思想:递推思想;
3、数学归纳法一般步骤:
数学归纳法证明不等式
数学归纳法(一)
教学目标:
1.了解数学归纳法的原理,能用数学归纳法证明一些简单的与正整数有关的数学命题;
2.进一步发展猜想归纳能力和创新能力,经历知识的构建过程,体会类比的数学思想。
教学重点:数学归纳法产生过程的分析和对数学归纳法的证题步骤的掌握。
教学难点:数学归纳法中递推思想的理解。
(1)证明当 时,命题成立;
(2)假设当 时命题成立,证明当 时命题也成立。一般地,证明一个与正整数 有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当 取第一个值 时命题成立;
(2)(归纳递推)假设 时命题成立,证明当 时,命题也成立。
只要完成以上两个步骤,就可以判定命题对从 开始的所有正整数 都成立。
教学过程:
一、创设情境,引出课题
(1)不完全归纳法:
今天早上,我曾疑惑,怎么一中(永昌一中)只招男生吗?因为清晨我在学校门口看到第一个进校园的是男同学,第二个进校园的也是男同学,第三个进校园的还是男同学。于是得出结论:学校里全部都是男同学,同学们说我的结论对吗?
(这显然是一个错误的结论,说明不完全归纳的结论是不可靠的,进而引出第二个问题)
上述方法叫做数学归纳法。
三、应用举例:
例1用数学归纳法证明:
证明:(1)当 时,左边 ,右边 ,等式成立;
(2)假设当 (k≥1,k N*)时, ,那么:
,则当 时也成立。
根据(1)和(2),可知等式对任何 都成立。
注:①对例1,首先说明在利用数学归纳法证题时,当 时的证明必须利用 的归纳假设,
例2:用数学归纳法证明求证: 能被6整除.
相关文档
最新文档