发光二极管光照度与工作电流的关系
光电二极管 三极管基本特性和主要参数

光电二极管三极管基本特性和主要参数光电二极管基本特性和主要参数类别:显示与光电①电压·电流特性。
光电二极管的电压—电流特性在无光照时,它的特性与一般二极管一样。
受光后,它的特性曲线沿电流轴向下平移,平移的幅度与光照强度成正比例。
特性曲线在第三象限时,表达了管子在加有反向电压并受光照时的反向特性。
此特性表明:a.反向电流随入射光照度的增加而增大,在一定的反向电压范围内,反向电流的大小几乎与反向电压高低无关。
b.在入射照度一定时,光电二极管相当于一个恒流源,其输出电压与负载电阻增大而升高。
如只R1~>R2,则输出电压URl>Uc,其中URl=Uc—Ul,UR2=Uc—U2。
特性曲线在第四象限时,它呈光电池特性,光照强度越大,负载电阻越小,电流越大。
即R1>R2时,则I2>I1。
②反向工作电压UR。
在无光照时,光电二极管中反向电流≤0.2—0.31μA时,允许的最高反向电压一般不大于10V,最高可达50V。
③暗电流ID。
在无光照时,加一定反向电压时的反向漏电流与暗电流。
通常在50V反压下的暗电流小于100nA。
④光电流IL。
在受到一定光照及一定反压条件下,流过管子的电流为光电流。
一般光电流为几十μA,并且与照度成线性关系。
⑤光谱响应特性。
硅光电二极管的光谱范围为400~1100nm,其峰值波长为880~900nm,这与GaAs红外发光二极管的波长相匹配,可获得较高的传输效率。
光电三极管的特性类别:显示与光电光电三极管也是靠光的照射量来控制电流的器件。
它可等效看作一个光电二极管与一只晶体三极管的结合,所以它具有放大作用。
其最常用的材料是硅,一般仅引出集电极和发射极,其外形与发光二极管一样(也有引出基极的光电三极管,它常作温度补偿用)。
它的光谱范围与光电二极管相同。
(1)输出特性其输出特性与一般晶体三极管特性相同,差别仅在于参变量不同:三极管的参变量为基极电流,而光电三极管的参变量是入射的光照度。
LED发光原理及光电参数

LED发展史
1962年,GE用气相外延(VPE)制成发出红光的的磷砷化镓半导体化 合物 1968年,LED灯的研发取得突破性进展,利用氮掺杂工艺达到1流明/ 瓦,LED并且发出红光、橙光和黄光 1971年,业界推出相同效率的GaP绿色芯片LED灯 80年代早期重大技术突破开发了AlGaAsLED灯,以每瓦10流明的发 光效率发出红光 1990年,美国HP和日本东芝成功研制InGaAlP LED器件 1993年,日本日亚公司的中村修二在GaN基片上研制成第一只蓝色 LED 20世纪90年代后期,研制成蓝光激发YAG产生白光的LED灯 2000年以后LED器件进入照明用的功率器件阶段 2008年12月,CREE 1W功率LED达到161流明/瓦 LED节能灯发展像计算机一样,遵守摩尔定律,每18个月亮度翻一 番
光强度(Luminous Intensity) 测量单位: 坎德拉candela,或者烛光。 通常,一个 光源在各个方向上有着不同的照射强度。 在特定方向角 上发出的可见光的强度称之为光强度。 光通量(Luminous Flux) 光通量:发光强度为1cd的均匀点光源在单位立体角 (1sr)内发出的光通量,单位流明(lm)。 总光通量用于测量一个非方向性的光源,在任意时刻, 任意方向上输出可见光的总和. 光照度:相当于lm的光通量均匀地照在1m2 面积上所 产生的光照度,单位勒克斯(lx)
背 金 熔 合
LED工作原理
发光二极管是少数载流子在P-N结区 的注入和复合而产生发光的一种半导体 光源 LED的發光顏色取決於電子與空穴 結合所釋放出來的能量高低,主要是由 半導體材料的能隙大小、量子效應、應 力、與壓電效應等特性所決定。
工作原理
发光二极管特性参数(精)

发光二极管特性参数IF 值通常为 20mA 被设为一个测试条件和常亮时的一个标准电流,设定不同的值用以测试二极管的各项性能参数,具体见特性曲线图。
IF 特性:1. 以正常的寿命讨论,通常标准 IF 值设为 20 - 30mA ,瞬间( 20ms )可增至100mA。
2. IF 增大时 LAMP 的颜色、亮度、 VF 特性及工作温度均会受到影响,它是正常工作时的一个先决条件, IF 值增大:寿命缩短、 VF 值增大、波长偏低、温度上升、亮度增大、角度不变,与相关参数间的关系见曲线图;1.VR ( LAMP 的反向崩溃电压)由于 LAMP 是二极管具有单向导电特性,反向通电时反向电流为 0 ,而反向电压高到一定程度时会把二极管击穿,刚好能把二极管击穿的电压称为反向崩溃电压,可以用“ VR ”来表示。
VR 特性:1. VR 是衡量 P/N 结反向耐压特性,当然 VR 赿高赿好;2. VR 值较低在电路中使用时经常会有反向脉冲电流经过,容易击穿变坏;3. VR 又通常被设定一定的安全值来测试反向电流( IF 值),一般设为 5V ;4. 红、黄、黄绿等四元晶片反向电压可做到 20 - 40V ,蓝、纯绿、紫色等晶片反向电压只能做到 5V 以上。
2.IR (反向加电压时流过的电流)二极管的反向电流为 0 ,但加上反向电压时如果用较精密的电流表测量还是有很小的电流,只不过它不会影响电源或电路所以经常忽略不记,认为是 0 。
IR 特性:1. IR 是反映二极管的反向特性, IR 值太大说明 P/N 结特性不好,快被击穿; IR 值太小或为 0 说明二极管的反向很好;2. 通常 IR 值较大时 VR 值相对会小, IR 值较小时 VR 值相对会大;3. IR 的大小与晶片本身和封装制程均有关系,制程主要体现在银胶过多或侧面沾胶,双线材料焊线时焊偏,静电亦会造成反向击穿,使 IR 增大。
3.IV ( LAMP 的光照强度,一般称为 LAMP 的亮度)指 LAMP 有流过电流时的光强,单位一般用毫烛光( mcd )来衡量,由于一批晶片做出的 LAMP 光强均不相同,封装厂商会将其按不同的等级分类,分为低、中、高等多个等级,而 LAMP 的价格也与其亮度大小有关系。
简述发光二极管判断方法

发光二极管(LED)是一种半导体发光元器件,具有小巧、耐久、节能、环保等优点。
在使用过程中,有时候需要判断发光二极管是否正常工作。
常用的判断方法有以下几种:
1.电流检测法:使用电流表或电流二极管测量LED的电流值,如果LED的电流值与标准值
相差较大,则可能是LED出现故障。
2.光强度检测法:使用光照度计测量LED的光强度值,如果LED的光强度值与标准值相差
较大,则可能是LED出现故障。
3.电压检测法:使用万用表测量LED的正极电压和负极电压,如果LED的正极电压和负极
电压相差较大,则可能是LED出现故障。
4.光色检测法:观察LED的光色是否与标准值相符,如果光色与标准值相差较大,则可能
是LED出现故障。
通过以上方法可以判断发光二极管是否正常工作,并且在发现问题后及时处理,以保证LED 的正常使用。
发光二极管工作原理

发光二极管工作原理发光二极管通常称为LED,它们虽然名不见经传,却是电子世界中真正的英雄。
它们能完成数十种不同的工作,并且在各种设备中都能找到它们的身影。
它们用途广泛,例如它们可以组成电子钟表表盘上的数字,从遥控器传输信息,为手表表盘照明并在设备开启时向您发出提示。
如果将它们集结在一起,可以组成超大电视屏幕上的图像,或是用于点亮交通信号灯。
本质上,LED只是一种易于装配到电子电路中的微型灯泡。
但它们并不像普通的白炽灯,它们并不含有可烧尽的灯丝,也不会变得特别烫。
它们能够发光,仅仅是半导体材料内的电子运动的结果,并且它们的寿命同普通的晶体管一样长。
在本文中,我们会分析这些无所不在的闪光元件背后的简单原理,与此同时也会阐明一些饶有趣味的电学及光学原理。
二极管是最简单的一种半导体设备。
广义的半导体是指那些具有可变导电能力的材料。
大多数半导体是由不良导体掺入杂质(另一种材料的原子)而形成的,而掺入杂质的过程称为掺杂。
就LED而言,典型的导体材料为砷化铝镓 (AlGaAs)。
在纯净的砷化铝镓中,每个原子与相邻的原子联结完好,没有多余的自由电子(带负电荷的粒子)来传导电流。
而材料经掺杂后,掺入的原子打破了原有平衡,材料内或是产生了自由电子,或是产生了可供电子移动的空穴。
无论是自由电子数目的增多还是空穴数目的增多,都会增强材料的导电性。
具有多余电子的半导体称为N型材料,因其含有多余的带负电荷的粒子。
在N型材料中,自由电子能够从带负电荷的区域移往带正电荷的区域。
拥有多余空穴的半导体称为P型材料,因为它在导电效果上相当于含有带正电荷的粒子。
电子可以在空穴间转移,从带负电荷的区域移往带正电荷的区域。
因此,空穴本身就像是从带正电荷的区域移往带负电荷的区域。
一个二极管由一段P型材料同一段N型材料相连而成,且两端连有电极。
这种结构只能沿一个方向传导电流。
当二极管两端不加电压时,N型材料中的电子会沿着层间的PN结(junction)运动,去填充P型材料中的空穴,并形成一个耗尽区。
光电二极管的工作原理、参数解析与检测方法

光电二极管的工作原理、参数解析与检测方法光电二极管的工作原理光电二极管是一种特殊的二极管,它将光信号转化为电流或电压信号,其结构与传统二极管基本相同,都有一个PN结,但是光电二极管在设计和制造时,尽量使PN结的面积较大,以便于接收入射光。
它的基本原理是:当光线照射到光电二极管时,吸收的光能转化为电能。
光电二极管工作在反向电压下,只经过很弱的电流(一般小于0.1微安),称为暗电流,有光照时,带能量的光子进入PN结后,将能量传递给共价键上的电子,使某些电子脱离共价键,产生电子-空穴对,称为光生载流子,因为光生载流子的数量有限,而光照前多子的数量远大于光生载流子的数量,所以光生载流子对多子的影响很小,但少子的数量较少,有较大的影响,这就是为什么光电二极管工作在反向电压下,而非正向电压下。
在光生电子在反向电压下,在光生载流子的作用下,为促使少子参与漂流运动,在P区内,光生电子在PN区内扩散,若P区厚度小于电子扩散长度,则光生电子将能穿过P区到达PN结。
光电二极管的工作是一种吸收过程,它将光的变化转化为反向电流的变化,光电流和暗电流的合成是光电流,所以光电二极管的暗电流使器件对光的灵敏度降到最低,光的强度与光电流成正比,从而能将光信号转化为电信号。
图片来源于网络光电二极管选型中的参数解析实际上,光电二极管的“响应速度”和“探测下限”是研究中经常提到的两个参数,该参数会对光电二极管选型产生何种影响呢?今天我们主要来了解一下这两个参数。
一、响应速度通常用上升时间和截止频率来描述响应速度。
响应速度主要受以下三个主要因素影响:1、由终端电容(Ct)和负载电阻(RL)决定的电路特性;2、耗尽层外载流子的扩散时间;3、载流子在耗尽的层渡越时间。
与短波长光相比,长波长光往往激发出耗尽层外的载流子,因而扩散时间延长,响应速度变慢。
除此之外,以下三种提高光电二极管响应速度的方法更为普遍:1、选用较低端电容(Ct)的光电二极管;2、降低电路中负载电阻(RL);3、通过增加反向电压(VR),还可以降低终端电容值(Ct),最终获得更快的响应速度。
光电技术综合实验指导 - (下)

实验2.5 光电二极管的特性参数及其测量1. 实验目的:硅光电二极管是最基本的光生伏特器件,掌握了光电二极管的基本特性参数及其测量方法对学习其他光伏器件十分有利。
通过该实验,要熟悉光电二极管的光电灵敏度、时间响应、光谱响应等特性。
2. 实验仪器:① GDS-Ⅲ型光电综合实验平台1台; ② LED 光源1个; ③ 光电二极管1只;④ 通用光电器件实验装置2只; ⑤ 通用磁性表座2只; ⑥ 光电器件支杆2只; ⑦ 连接线20条;⑧ 40MHz 示波器探头2条;3. 基本原理:光电二极管是典型的光生伏特器件,它只有一个PN 结。
参考“光电技术”第3章3.1节的内容,光电二极管的全电流方程为I =⎪⎭⎫ ⎝⎛-1kT qUD e I λαλη,e )1(Φe hcq d --- (2.5-1) 式中前一项称为扩散电流,也称为暗电流,用I d 表示;后一项为光生电流,常用I P 表示。
显然,扩散电流I d 与加在光电二极管上的偏置电压U 有关,当U =0时,扩散电流为0。
扩散电流I d 与偏置电压U 的关系为⎪⎭⎫ ⎝⎛-=1kT qUD d e I I (2.5-2) 式中,I D 为PN 结的反向漏电流,与材料中的杂质浓度有关;q 为电子电荷量,k 为波尔兹曼常数,T 为环境的绝对温度。
显然,式(2.5-2)描述了光电二极管的扩散电流与普通二极管没有什么区别。
而与入射辐射有关的电流I p 为 λe,p )1(Φe hcq I d αλη---= (2.5-3)式中, h 为普朗克常数,α为硅材料的吸收系数,d 为光电二极管在光行进方向上的厚度,λ为入射光的波长。
显然,对单色辐射来讲,当光电二极管确定后,上述参数均为常数。
因此,结论为光电二极管的光电流随入射辐射通量Φe ,λ线性变化,式中的负号表明光生电流的方向与扩散电流的方向相反。
图2.5-1 光电二极管偏置电路4. 实验内容:1、 光电二极管光照灵敏度的测量2、 光电二极管伏安特性的测量3、 光电二极管时间响应特性的测量5. 实验步骤:(1)搭建实验电路① 认识光电二极管从外形看,光电二极管、光电三极管和φ5“子弹头”式LED 发光二极管的外形非常相似,它们均有两个电极(管脚),且,一长一短,较长电极定义为正极,较短电极为负极。
线性光耦隔离电路

线性光耦隔离电路线性光耦隔离电路的设计所设计的线性光耦隔离电路是由两个光电耦合器、两个偏置输入电路和一个差分放大电路组成,框图如图1所示。
因为光电耦合器有其特有的工作线性区,偏置输入是用来调节光电耦合器(1)的输入电流,使其工作在线性区。
而光电耦合器(2)和偏置输入(2)通过差分放大电路来耦合光电耦合器(1)的漂移和非线性。
差分放大电路还用来得到放大的模拟信号。
光耦隔离放大电路采用TLP521-2光电耦合器、LF356普通一路放大器和LF347普通四路放大器。
TLP521-2光电耦合器是集成了图1中光电耦合器(1)和(2),LF356主要用于信号输入前的信号处理,一方面保证光电耦合器工作在线性区,另一方面,对输入信号作简单的放大。
LF347则组成差分放大电路。
所以光耦隔离放大电路的结构图如图2所示。
线性光耦隔离电路的接线原理如图3所示。
图中,LF356为放大器(1),中间两个光电耦合器由TLP521-2构成,后面四个放大器由LF347构成。
线性光耦隔离电路的工作原理光电耦合器的工作特性TLP521-2光电耦合器是由两个单独的光电耦合器组成。
一般来讲,光电耦合器由一个发光二极管和一个光敏器件构成。
发光二极管的发光亮度L与电流成正比,当电流增大到引起结温升高时,发光二极管呈饱和状态,不再在线性工作区。
光电二极管的光电流与光照度的关系可用IL∝Eu表述。
其中,E为光照度,u=1±0.05,因此,光电流基本上随照度而线性增大。
但一般硅光电二极管的光电流是几十微安,对于光敏三极管,由于其放大系数与集电极电流大小有关,小电流时,放大系数小,所以光敏三极管在低照度时灵敏度低,而在照度高时,光电流又呈饱和趋势。
达不到线性效果。
因为不同的光电耦合器有不同的工作线性区,所以,在试验过程中,应该首先找到光电耦合器的线性区。
光电耦合器TLP521-2的电流线性区大约为1~10mA。
光电耦合器的偏置输入电路可以决定输入它的电流的范围,偏置电路设计的好,可以使得输入电流在很大范围内变化时,光电耦合器依然工作在线性区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发光二极管光照度与工作电流的关系
发光二极管(Light Emitting Diode,LED)是一种具有半导体特性的发光材料,是目前应用广泛的照明工具之一。
LED具有高效能、低耗能、寿命长等优点,被广泛应用于室
内外照明、汽车照明、信号指示、显示屏幕等领域。
在LED的工作过程中,电流是控制其
发光强度和亮度的重要因素之一。
本文将介绍发光二极管光照度与工作电流的关系。
一、发光二极管的发光机制
LED的发光机制是利用半导体材料的PN结特性,当外加正向电压时,电子从N区流向
P区,空穴从P区流向N区,在PN结附近产生复合作用,释放出光子,从而形成发光现象。
不同材料的LED在发光的波长和颜色上也有所不同。
二、工作电流对LED发光强度的影响
LED的发光强度与其工作电流成正比关系。
当LED的正向电流不断增大时,PN结附近
的载流子浓度也随之增大,使得更多的电子和空穴在PN结中复合,释放出更多的光子,从而增加LED的发光强度。
因此,LED的正向电流是控制其发光强度和亮度的重要因素。
光照度是用来描述一个表面单位面积上接受到的光通量的物理量,单位为勒克司(Lux,lx)。
LED的光照度与其发光强度、辐射角度、照射距离等因素都有关系。
但其中最主要的因素是LED的发光强度,而LED的发光强度与其工作电流成正比关系,因此可以得出LED
的光照度与其工作电流成正比的关系。
以一款白光LED为例,当其工作电流为20mA时,其光通量为20-30流明(Lm),照射距离为30cm时,其光照度约为900lx;当其工作电流为40mA时,其光通量为50-70流明(Lm),照射距离为30cm时,其光照度约为1800lx。
因此,通过控制LED的工作电流可以轻松地调节其照明强度和光照度。
四、结论
LED的光照度与其工作电流成正比关系,可以通过调节工作电流来控制LED的照明强
度和光照度。
虽然增加工作电流可以提高LED的发光强度和光照度,但同时也会增加LED
的发热量和功耗,因此需要合理控制工作电流,以达到最佳的照明效果和使用寿命。