函数对称性总结
抽象函数的对称性常用结论

抽象函数的对称性常用结论知识与方法1.轴对称:如果函数()y f x =满足122x x a +=,就有()()12f x f x =,则()f x 的图象关于直线x a =对称.记法:自变量关于a 对称,函数值相等.例如,()()2f x f x +=-表示()f x 关于1x =对称,()()f m x f n x +=-表示()f x 关于2m n x +=对称.2.中心对称:若函数()y f x =满足122x x a +=,就有()()122f x f x b +=,则()f x 关于点(),a b 对称.记法:自变量关于a 对称,函数值关于b 对称.例如,()()112f x f x ++-=表示()f x 关于()1,1对称,()()f m x f n x a ++-=表示()f x 关于,22m n a +⎛⎫ ⎪⎝⎭对称.3.常用结论(视频中有推导这些结论):(1)如果函数()f x 有两条对称轴,则()f x 一定是周期函数,周期为对称轴距离的2倍.(2)如果函数()f x 有一条对称轴,一个对称中心,则()f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)如果函数()f x 有在同一水平线上的两个对称中心,则()f x 一定是周期函数,周期为对称中心之间距离的2倍.典型例题【例1】已知函数()y f x =满足()()20f x f x --=()x ∈R ,且在[)1,+∞上为增函数,则()A.()()()112f f f ->> B.()()()121f f f >>-C.()()()121f f f ->> D.()()()211f f f >->【解析】()()()()()202f x f x f x f x f x --=⇒=-⇒的图象关于直线1x =对称,所以()()13f f -=,因为123<<,且()f x 在[)1,+∞上为增函数,所以()()()123f f f <<,从而()()()121f f f ->>【答案】C【例2】己知函数()f x 满足()()2f x f x =-()x ∈R ,若函数()1y x f x =--共有3个不同的零点1x 、2x 、3x ,则123x x x ++=_________.【解析】()()()2f x f x f x =-⇒的图象关于1x =对称,()()101x f x x f x --=⇒-=,由于1y x =-的图象也关于1x =对称,故它们的交点关于1x =对称,设123x x x <<,则必有1312x x +=且21x =,故1233x x x ++=.【答案】3【例3】已知函数()f x 满足()()22f x f x -=-()x ∈R ,若()()104f f -+=,则()()23f f +=_______.【解析】()()()()2222f x f x f x f x -=-⇒-+=,分别取3x =和2x =得:()()()()132022f f f f ⎧-+=⎪⎨+=⎪⎩,两式相加得:()()()()13024f f f f -+++=,又()()104f f -+=,所以()()230f f +=.【答案】0【例4】偶函数()y f x =的图象关于直线2x =对称,若()33f =,则()1f -=_______.【解析】由题意,()f x 周期为4,故()()133f f -==.【答案】3【反思】对称轴+对称轴=周期,周期为对称轴之间距离的2倍.【例5】(2018·新课标Ⅱ卷)若()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()1250f f f +++ =()A.50- B.0 C.2 D.50【解析】因为()f x 是奇函数,且()()11f x f x -=+,所以()()11f x f x +=--,故()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即()f x 是以4为周期的周期函数,故()()()3112f f f =-=-=-,在()()11f x f x -=+中取1x =-知()()200f f ==,又()()400f f ==,所以()()()()()123420200f f f f +++=++-+=,故()()()1250f f f +++ ()()()()()()()()145845484950f f f f f f f f =+++++++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()()()()4950122f f f f =+=+=.【答案】C【反思】对称轴+对称中心=周期,周期为二者之间距离的4倍,熟悉这一结论,可直接得出本题()f x 的周期为4.【例6】定义在R 上的奇函数()f x 满足()()20f x f x ++-=,当[]1,0x ∈-时,()f x x =,则92f ⎛⎫ ⎪⎝⎭=_______.【解析】由题意,()f x 有对称中心()0,0和()1,0,故其周期为2,所以91112222f f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】12【反思】若()f x 有位于同一水平线上的两个对称中心,则()f x 为周期函数,周期为二者之间距离的2倍.强化训练1.已知函数()y f x =满足()()40f x f x +--=()x ∈R ,且()f x 在[)2,+∞上为减函数,则()A.()()()22log 3log 5.13f f f >> B.()()()22log 5.1log 33f f f >>C.()()()22log 5.13log 3f f f >> D.()()()22log 33log 5.1f f f >>【解析】()()()40f x f x f x +--=⇒的图象关于2x =对称,结合()f x 在[)2,+∞上为减函数知当自变量与2的距离越大时,函数值越小,如图,而22234log 32log log 43-==,225.1log 5.12log 4-=,321-=,所以225.14log log 143<<,故()()()223log 3log 5.1f f f <<.【答案】B2.函数()y f x =满足()()2f x f x =-,且当[)1,x ∈+∞时,()1122x x f x e e x --=--+,则()A.()()()121f f f <<- B.()()()211f f f <-<C.()()()121f f f -<< D.()()()112f f f -<<【解析】()()()()213f x f x f f =-⇒-=,当1x ≥时,()11220x x f x e e --'=+-≥-=,所以()f x 在[)1,+∞上单调递增,故()()()()1231f f f f <<=-.【答案】A3.已知函数()f x 满足()()20f x f x ---+=()x ∈R ,若函数()22y x x f x =+-共有3个零点1x ,2x ,3x ,则123x x x ++=________.【解析】()()()()()202f x f x f x f x f x ---+=⇒-=-+⇒的图象关于1x =-对称,()()22202x x f x x x f x +-=⇔+=,而22y x x =+的图象也关于1x =-对称,故它们的交点也关于1x =-对称,所以1233x x x ++=-.。
函数图象的对称性

3、函数的周期性、图像对称性的相互关系:
(1)若x a和x b是函数f ( x)的对称轴,则函数的周 期为T ?
f (2a x) f ( x)
f (2b x) f ( x) T 2(b a)
f (2a x) f (2b x)
(2)若(a,0)和(b,0)是函数f ( x)的对称中心,则函数的 周期为T ?
2 、函数图像关于点 (a, 0) 对称的定义:
奇函数f (0 x) f (0 x) 图像关于点 0,0)对称 (
f (a x) f (a x) 或f (2a x) f ( x)
到(a,0)距离相等的点的函数值 互为相反数 sin( x) sin( x)
函
数
——函数图像的对称性
1、函数图像关于直线 x=a 对称的定义:
特例:偶函数 (0 x) f (0 x) 图像关于直线 0对称 f x
f (a x) f (a x) 或f (2a x) f ( x)
到直线x a距离相等的点的函数值 相等 cos( x) cos( x)
“双对称函数一定是周期函数”
3、函数的周期性、图像对称性的相互关系:
T (3) 若函数 f ( x)周期为 T , 对称轴为 x a, 则x) f ( x)
f (2a x) f ( x)
2a T T x a 2 2
f (2a x) f (T x)
T (4) 若函数 f ( x)周期为 T , 对称中心 (a,0), 则(a ,0)是对称中心 2
《天府高考》 24 P (3) y f ( x 2)是偶函数, y f ( x)关于x 1对称
抽象函数周期性对称性相关定理全总结

抽象函数周期性对称性相关定理全总结1. Fourier级数定理:Fourier级数定理是抽象函数周期性对称性的基本理论定理之一、它表明,任何以L为周期的可积函数f(x)都可以展开成正弦函数与余弦函数的无穷级数形式,即Fourier级数。
这个级数可以表示为:f(x) = a0 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,L是函数周期,a0是常数项,an和bn分别是系数。
2.奇偶周期性与对称性:奇周期性与对称性是周期性对称性的两种特例。
如果一个函数满足f(x) = -f(-x),则称其为奇函数。
奇函数可以展开成sin函数的Fourier级数形式。
如果一个函数满足f(x) = f(-x),则称其为偶函数。
偶函数可以展开成cos函数的Fourier级数形式。
3. 对称函数的Fourier级数展开与傅里叶定理:对称函数的Fourier级数展开是指将一个以L为周期的对称函数展开成cos函数的Fourier级数形式。
傅里叶定理表明,对于一个以L为周期的函数f(x),如果f(x)是一个对称函数,则其Fourier级数展开只包含cos函数;如果f(x)是一个奇函数,则其Fourier级数展开只包含sin函数。
4. 函数的周期拓展与周期函数的Fourier级数:函数的周期拓展是指将一个以L为周期的函数f(x)拓展成以2L为周期的函数。
周期拓展后的函数可以用以L为周期的函数的Fourier级数展开。
具体而言,如果将f(x)的周期拓展后的函数记作F(x),则对于周期拓展后的函数F(x),存在一个以L为周期的函数g(x),使得F(x) = g(x)在[-L, L]上成立。
所以,F(x)的Fourier级数展开实际上是以L为周期的函数g(x)的Fourier级数展开。
综上所述,抽象函数周期性对称性相关定理涉及四个方面:Fourier级数定理、奇偶周期性与对称性、对称函数的Fourier级数展开与傅里叶定理、函数的周期拓展与周期函数的Fourier级数。
高三对称函数知识点

高三对称函数知识点函数是数学中的重要概念,而对称函数则是函数中的一种特殊形式。
在高三数学学习中,对称函数是一个重要的知识点。
它具有独特的性质和应用,对于理解和解决数学问题有着重要的作用。
本文将介绍高三数学中对称函数的概念、性质和常见应用。
一、对称函数的概念对称函数是指在数学中,对于自变量的某种变化,函数值也发生相应的对应变化,呈现某种对称性质的函数。
简而言之,就是函数图像关于某一轴线对称。
二、对称函数的性质1. 关于y轴对称:若有函数f(x) = f(-x),则可以得出函数图像关于y轴对称。
例如,f(x) = x^2就是一个关于y轴对称的函数。
2. 关于x轴对称:若有函数f(x) = -f(-x),则可以得出函数图像关于x轴对称。
例如,f(x) = sin(x)就是一个关于x轴对称的函数。
3. 关于原点对称:若有函数f(x) = -f(x),则可以得出函数图像关于原点对称。
例如,f(x) = x^3就是一个关于原点对称的函数。
4. 其他对称形式:还有一些函数的对称性不仅仅表现在对称轴上,具体形式可以是折线对称、旋转对称等。
三、对称函数的应用1. 图像对称性的判断:通过对称性,我们可以判断一个函数的图像是否对称于某一轴。
这在解析几何或图像处理等领域中,具有重要的应用意义。
2. 函数性质的分析:对称函数的性质能够帮助我们更好地理解函数本身的特点。
比如,通过观察对称函数的导数,可以判断函数的凸凹性质。
3. 函数的求解:对称函数在解决一些数学问题时也起到了关键作用。
比如,通过对称性,我们可以简化函数的求导过程,从而快速求得函数的极值点。
四、对称函数的例子1. 指数函数:f(x) = 2^x是一个关于y轴对称的函数。
2. 正弦函数:f(x) = sin(x)是一个关于x轴对称的函数。
3. 偶数次多项式函数:例如f(x) = x^2是一个关于y轴对称的函数。
4. 奇数次多项式函数:例如f(x) = x^3是一个关于原点对称的函数。
函数对称性

函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。
例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。
函数的对称性公式推导1.对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a原函数与反函数的对称轴是y=x.而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R.f(x)=|X|他的对称轴则是X=0,还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了.如f(x-3)=x-3。
令t=x-3,则f(t)=t。
可见原方程是由初等函数向右移动了3个单位。
同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T)注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键.同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX,T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T =π.y1=(sinx)^2=(1-cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T =π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3对称函数在对称函数中,函数的输出值不随输入变数的排列而改变。
函数对称性5个结论的推导

函数对称性5个结论的推导1.奇函数的推导:奇函数是指函数关于原点对称。
设函数f(x)是奇函数,那么有f(x)=-f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=-f(x)。
这表明,当自变量的符号发生变化时,函数值也会发生变化,并保持相反的正负号。
例如,f(2)=-f(-2),f(3)=-f(-3)等等。
因此,奇函数关于原点对称。
2.偶函数的推导:偶函数是指函数关于y轴对称。
设函数f(x)是偶函数,那么有f(x)=f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=f(x)。
这表明,当自变量的符号发生变化时,函数值保持不变。
例如,f(2)=f(-2),f(3)=f(-3)等等。
因此,偶函数关于y轴对称。
3.半个周期对称的推导:半个周期对称是指函数的两个相邻的波峰或波谷关于y轴对称。
设函数f(x)是半个周期对称,那么有f(x)=f(x+T/2),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/2得到f(x+T/2)=f(x+T/2+T)=f(x+T)=f(x),即f(x)=f(x+T/2)。
这表明,函数在每个周期的半个周期上关于y轴对称。
4.四分之一周期对称的推导:四分之一周期对称是指函数的四个相邻的波峰或波谷关于y轴对称。
设函数f(x)是四分之一周期对称,那么有f(x)=f(x+T/4),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/4得到f(x+T/4)=f(x+T/4+T)=f(x+T)=f(x),即f(x)=f(x+T/4)。
这表明,函数在每个周期的四分之一周期上关于y轴对称。
5.中心对称的推导:中心对称是指函数关于一些点对称,该点称为中心。
设函数f(x)是中心对称,那么有f(x)=f(2a-x),其中a表示中心点的横坐标。
为了推导这个结论,我们考虑将自变量x替换成2a-x,得到f(2a-x)=f(x)。
知识点:函数的对称性总结

知识点:函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的根底。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个根本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分表达了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来讨论函数与对称有关的性质。
一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:〔必要性〕设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'〔2a-x,2b-y〕也在y = f (x)图像上, 2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
〔充分性〕设点P(x0,y0)是y = f (x)图像上任一点,那么y0 = f (x0)∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P'〔2a-x0,2b-y0〕也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) 〔证明留给读者〕推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①假设函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称〔ab〕,那么y = f (x)是周期函数,且2| a-b|是其一个周期。
高一数学《函数的对称性》知识点总结

高一数学《函数的对称性》知识点总结高一数学《函数的对称性》知识点总结一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P'(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。
故点P'(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P'关于点A(a,b)对称,充分性得征。
推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0 定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x)即f(x)=f(2a-x)(证明留给读者)推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)定理 3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2a-b是其一个周期。
②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2a-b是其一个周期。
③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4a-b是其一个周期。
①②的证明留给读者,以下给出③的证明:∵函数y=f(x)图像既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c,用2b-x代x得:f(2b-x)+f2a-(2b-x)]=2c………………(*)又∵函数y=f(x)图像直线x=b成轴对称,∴f(2b-x)=f(x)代入(*)得:f(x)=2c-f2(a-b)+x]…………(**),用2(a-b)-x代x得f2(a-b)+x]=2c-f4(a-b)+x]代入(**)得:f(x)=f4(a-b)+x],故y=f(x)是周期函数,且4a-b是其一个周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数对称性总结
函数的对称性
三角函数图像的对称性
三角函数包括y=sin x。
y=cos x。
y=tan x。
两个函数的图像对称性
1、y=f(x)与y=-f(x)关于x轴对称。
换句话说,如果y=f(x)和y=g(x)满足f(x)=-g(x),那么它们关于y=0对称。
2、y=f(x)与y=f(-x)关于y轴对称。
换句话说,如果y=f(x)和y=g(x)满足f(x)=g(-x),那么它们关于x=0对称。
3、y=f(x)与y=f(2a-x)关于直线x=a对称。
换句话说,如果y=f(x)和y=g(x)满足f(x)=g(2a-x),那么它们关于x=a对称。
4、y=f(x)与y=2a-f(x)关于直线y=a对称。
换句话说,如果y=f(x)和y=g(x)满足f(x)+g(x)=2a,那么它们关于y=a对称。
5、y=f(x)与y=2b-f(2a-x)关于点(a,b)对称。
换句话说,如果y=f(x)和y=g(x)满足f(x)+g(2a-x)=2b,那么它们关于点(a,b)对称。
6、y=f(a-x)与y=f(x-b)关于直线x=a+b/2对称。
单个函数的对称性
1、函数的轴对称:
定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=(a+b)/2对称。
推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图像关于直线x=a对称。
推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的
图像关于y轴对称。
特别地,推论2就是偶函数的定义和性质。
2、函数的点对称:
定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数
y=f(x)的图像关于点(a,b)对称。
推论3:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数
y=f(x)的图像关于点(a,0)对称。
推论4:如果函数y=f(x)满足f(x)+f(π-x)=π/2,则函数
y=f(x)的图像关于点(π/2,π/4)对称。
1.若f(-x)=f(x),则函数y=f(x)的图像关于y轴对称。
这是奇函数的定义和性质,是推论4的简化。
2.函数y=f(x)满足f(a+x)+f(b-x)=c时,函数y=f(x)的图像关于点((a+b)/2,c/2)对称。
3.两个函数的图像对称性可以用解析几何中的对称曲线轨迹方程理解。
具体来说:
曲线y=f(x)与y=-f(x)关于x轴对称。
曲线y=f(x)与y=f(-x)关于y轴对称。
曲线y=f(x)与y=f(2a-x)关于直线x=a对称。
曲线f(x,y)关于直线x=b对称的曲线为f(x,2b-y)。
曲线f(x,y)关于直线x+y+c=0对称的曲线为f(-y-c,-x-c)。
曲线f(x,y)关于直线x-y+c=0对称的曲线为f(y-c,x+c)。
曲线f(x,y)关于点P(a,b)对称的曲线为f(2a-x,2b-y)。
4.例1:由f(10+x)为偶函数可知f(-10-x)=f(10+x),结合f(5-x)=f(5+x),可得f(x)=f(20-x),故f(x)是偶函数。
又因为
f(5-x)=f(5+x),所以f(x)是以5为周期的周期函数,因此选项A正确。
5.例2:由f(1+x)=f(1-x)可得f(9.6)=f(7.6),又因为f(x)是
偶函数,所以f(8.6)=f(-8.6),故f(8.6)=-f(9.4)=-(-4.7)=4.7.
6.例3:设g(x)的图像为(x,y),则f(x)的图像为(x,3+log2x),根据对称性可知,g(x)的图像为(2-a-x,3+log2(2-a-x)),故
g(x)=3+log2(2-a-x)。
7.例4:设f(x)的图像为(x,y),则f(x-a)的图像为(x+a,y),
f(-x+a)的图像为(-x+a,y),根据对称性可知,f(x-a)与f(-x+a)的
图像关于直线x=a/2对称,故y=f(x-a)与y=f(-x+a)的图像关于
直线x=a/2对称。