面波勘探技术分析
弹性波成像方法面波勘探技术

弹性波传播时质点离开平衡位置的最大位移。
弹性波成像方法分类
80%
反射法
利用弹性波在地下不同层位的反 射特性进行成像,类似于地震勘 探中的反射地震法。
100%
折射法
利用弹性波在地下不同层位的折 射特性进行成像,通过观测和分 析折射波的传播时间和振幅等信 息来推断地下结构。
80%
面波法
利用地表或井中激发的面波进行 成像,面波沿地表传播,对浅层 地质结构具有较高的分辨率。
拓展应用领域
除了矿产资源勘查、工程地质调查和环境地质评 价等领域外,弹性波成像方法面波勘探技术还可 以拓展应用于地震工程、水文学与水资源等领域 。未来可以探索更多应用领域,并针对不同领域 的特点和需求进行定制化研发。
THANK YOU
感谢聆听
借助人工智能和机器学习技术, 实现数据处理流程的自动化和智 能化。
02
自动化解释系统
03
专家系统辅助决策
开发自动化解释系统,对处理后 的数据进行自动分析和解释,提 高解释效率和准确性。
构建专家系统,为勘探人员提供 决策支持,提高勘探成功率和经 济效益。
06
结论与展望
研究成果总结
弹性波成像方法
通过对面波信号进行采集、处理和分析 ,实现了对地下介质结构和物性的有效 成像。该方法具有非侵入性、高分辨率 和低成本等优点,为地质勘探提供了新 的技术手段。
通过瞬态冲击源激发面波,利用检波器接收面波信号,通过分析面波的传播特性和频散曲线,获取地下介质的结 构和物性信息。
稳面波法
通过稳态振动源激发面波,使地表产生连续振动的面波场,利用检波器接收面波信号,通过分析面波的振幅和相 位信息,获取地下介质的结构和物性信息。
面波勘探技术分析

面波勘探技术分析作者:张丽娟来源:《科技创新与应用》2013年第05期摘要:近年来,由于地震的频繁发生,对浅层地球物理勘探技术有了更高的要求,面波勘探技术就是在此情况下应运而生的新的勘探技术,其以简便、快速、高分辨率等特点而在许多领域得以应用,并取得了很好的效果。
本文对面波勘探技术进行了具体的介绍,同时分析了面波勘探技术在野外方法,以及面波勘探技术在工程及应用过程中存在的问题进行了具体的阐述。
关键词:面波;勘探;瞬态法1 概述随着近几年对浅层地震研究的深入,面波勘探随之发展起来,成为国内外在勘探浅层地震中普遍采取的一种方法。
在面波中有瑞利波(R波)和拉夫波(L波)之分,在进行面波勘探时通常称为R波,因其在同组波组中具有较强的能量、同时振幅也高于其他波,频率也处于最低点,在测量时很容易识别。
同时面波勘探技术对于面波还有另外一种分法,稳态法、瞬态法和无源法,这种分类法主要是根据产生面波的震源不同进行分类的,但其在测试时的原理是一样的。
2 面波勘探技术面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S波)不同,它是一种地滚波。
在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)出来,即P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。
综合分析表明R波具有如下特点:(1)在地震波形记录中振幅和波组周期最大,频率最小,能量最强。
(2)在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础。
(3)由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为:VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比;此关系奠定了R波在测定岩土体物理力学参数中的应用。
(4)R波在多道接受中具有很好的直线性,即一致的波震同相轴。
4实验四地震勘探实验(面波法)

实验四地震勘探实验(面波法)一、实验原理瑞雷面波法用于勘探,与以往的弹性波法(反射波法和折射波法)差别在于:它应用的不是纵波和横波,而是以前反射波法和折射波法视为干扰的面波。
其原理是:面波具有频散的特性,其传播的相速度随频率的改变而改变。
这种频散特性可以反映地下介质的特性。
瑞雷面波的特点:瑞雷面波速度低、瑞雷面波在介质中泊松比在0.4~0.5范围内,面波速度与横波速度关系基本接近、瑞雷面波对地层的分辨能力,决定于频率,频率高则分辨能力强。
上图为72道的面波采集记录:震源在左上角,同一震源下的直达波、折射波、反射波和面波遵循各自的传播规律,分布在不同的区域。
其中面波传播的特征:近震源处发育、震幅大、传播速度低。
上图为实际勘探过程中采集得到的面波记录:以近震源、小道距、长采样、宽频率激发、低频率接收。
工程检测方面的应用实例:上图采集地点为:云南某高速公路的路基检测,检测深度为4米。
由图中的“频散曲线”分层可以看出:每层的厚度约在0.3米-0.5米。
填筑路基施工是分层进行,松散料经过压实,达到压实度后再进行下一层的填料。
图中频散曲线的拐点清晰,分析的层厚度在0.35米-0.5米之间。
二、实验目的1.了解面波法的原理;2.了解面波法工作布置及观测方法;3.掌握面波法数据采集、处理和解释,熟练操作相关软件。
三、实验仪器SWS型多波列数字图像工程勘察与工程检测仪。
该系统由主机、多芯电缆、检波器、触发器、震源(大锤或炸药)、铁板、直流电源、直流电源线以及数据采集、处理和解释软件等组成。
四、实验步骤1.在工区布设测线在工区布设测线,原则:由南向北、由西向东测线号与测点号依次增大。
使用皮尺标注检波器位置与激发点位置。
2.连接仪器的各个部分将主机、电源、多芯电缆、检波器、大锤、触发器按正确的方式一一连接起来。
注意:各接口均使用“防呆”设计,电缆插头与对应的插槽才能连接,电缆插头与非对应的插槽不能连接。
禁止暴力插拔各插头、插槽,以防仪器损坏。
面波勘探技术分析(一)

面波勘探技术分析(一)摘要:面波勘探是近年起来的一种新的浅层地球物理勘探,具有简便、快速、分辨率高、成果直观、适用场地小等优点,已在许多领域得到,并取得了良好的应用效果。
文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及存在的作了说明,并给出一个应用实例。
主题词:面波勘探瞬态法一、概述面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。
面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。
人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。
它们的测试原理是相同的,只是产生面波的震源不同罢了。
二、面波勘探技术面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S波)不同,它是一种地滚波。
在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)出来,即P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。
综合分析表明R波具有如下特点:⑴在地震波形记录中振幅和波组周期最大,频率最小,能量最强;⑵在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础;⑶由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为:VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比;此关系奠定了R波在测定岩土体物理力学参数中的应用;⑷R波在多道接受中具有很好的直线性,即一致的波震同相轴;⑸质点运动轨迹为逆转椭圆,且在垂直平面内运动;⑹R波是沿地表传播的,且其能量主要集中在距地表一个波长(λR)尺度范围内。
依据上述特性,通过测定不同频率的面波速度VR,即可了解地下地质构造的有关性质并计算相应地层的动力学特征参数,达到岩土工程勘察之目的。
电力工程勘察中面波技术的应用

电力工程勘察中面波技术的应用摘要:随着我国经济体量的快速增长,城市区域开发活动的深入进行,电力工程项目开发规模扩大,数量增长,为了适应不同施工环境的电力资源输送配置能力,满足经济发展与社会生活过程中对于电力资源的使用需求,电力深入开展工程勘察工作,构建起现代化的勘察工作新模式,文章从面波技术的角度出发,在理论原则的引导下,从多个维度出发,对面波技术全面探索,推动其与电力工程勘察的有效衔接,确保电力工程勘察工作在实践中的有序开展。
关键词:电力工程勘察;面波技术;原则;应用方式面波技术又可以称为多道瞬态面波勘察技术,作为一种全新的物探技术工艺,其借助于频散特性以及传播速度的差异,对多种地质环境信息进行获取、分析,为后续工程开发活动开展提供了必要的数据支持。
电力工程勘察在实际运行的过程中,由于会遇到各类问题,从而导致电力工程勘察结果不够准确,无法真正满足电力项目设计施工工作的客观需求。
而面波技术与电力工程勘察工作的结合,使得断裂带、岩溶等不良地质环境勘察工作得以顺利进行,增强了电力工程勘察工作的完整性与整体性,满足复杂地质环境下,电力项目规划施工活动建设的客观要求。
文章将从面波技术入手,从多个维度出发,对面波技术原理进行客观分析,在理论原则的框架下,对电力工程勘察活动中面波技术的应用方式进行全面探索,确保其在实践中的科学高效应用。
1.面波技术原理分析对面波技术原理进行客观分析,使得技术人员进一步明确面波技术的核心运行模式与关键操作流程,为其在电力工程勘察工作的应用准备了条件。
面波作为一种弹性波,是由于弹性界面在波的干预下形成的一种特殊形式,有着较为显著的特征,在均匀介质下,面波的传播速度VR与振动频率没有关系,并且面波在均匀介质内部不表现出频散性。
在不均匀的介质内,面波传播速度VR 与频率呈现出一定的函数关系,二者呈现出一定的相关性变化,而面波在不均匀介质内表现出的频散性,则是面波技术参与地质勘察工作的基础。
天然源面波勘探技术规程

天然源面波勘探技术规程1. 引言天然源面波勘探技术是一种非破坏性地球物理勘探方法,主要用于获取地下介质的结构和性质信息。
本规程旨在规范天然源面波勘探技术的应用,确保勘探数据的准确性和可靠性。
2. 技术原理天然源面波勘探技术利用地震波在地表上传播时产生的表面波进行勘探。
这些表面波具有较长的传播距离和较低的频率,能够穿透较深的地层,并且受到地下介质结构和性质的影响。
通过对表面波进行分析,可以推断出地下介质的速度、密度、弹性模量等参数。
3. 仪器设备天然源面波勘探需要使用特定的仪器设备进行数据采集和处理。
常用的设备包括:•地震记录仪:用于记录地震信号,并将其转换为数字信号。
•加速度计:用于测量地震信号中加速度成分。
•表面波传感器:用于接收地震波的表面波成分。
•数据处理系统:用于对采集到的数据进行处理和分析。
4. 勘探方法天然源面波勘探主要包括数据采集、数据处理和解释三个步骤。
4.1 数据采集在进行天然源面波勘探前,需要选择合适的勘探区域,并布设观测点。
观测点应均匀分布,以覆盖整个勘探区域。
在每个观测点上,需要设置地震记录仪、加速度计和表面波传感器,并确保其正确运行。
通过激发地震源(如爆破源或地震仪)产生地震波,观测并记录传播到各观测点上的表面波信号。
为了提高数据质量,应考虑以下因素:•观测时间:选择适当的时间段进行观测,以避免干扰因素(如交通噪声)对数据质量的影响。
•观测参数:根据地下介质特性选择合适的观测参数(如频率范围、取样率等)。
•数据品质控制:及时检查数据品质,并排除可能存在的问题。
4.2 数据处理数据处理是天然源面波勘探的关键步骤,其目的是提取表面波信号并进行分析。
常用的数据处理方法包括:•数据去噪:利用滤波等方法去除噪声,以提高信号质量。
•数据校正:对采集到的数据进行校正,消除仪器响应和传播路径效应。
•数据叠加:将多个观测点上记录到的表面波信号叠加在一起,增强信号强度。
•频率分析:对叠加后的信号进行频率分析,得到频率谱信息。
天然源面波勘察方法介绍

根据处理后的数据,对地质构造、岩性特征等进行解释和分析。
成果解释与报告编写
编写报告
根据处理结果和解释结论,编写勘察报告,详细描述地质条件、岩 性特征和面波速度结构等信息。
成果展示
将报告中的信息以图表、表格等形式进行展示,便于理解和分析。
结果应用
将勘察成果应用于相关工程设计和建设中,为项目提供可靠的地质依 据。
天然源面波勘察方 法介绍
目录
• 天然源面波勘察方法概述 • 天然源面波勘察方法技术 • 天然源面波勘察方法流程 • 天然源面波勘察方法优缺点 • 天然源面波勘察方法案例分析 • 天然源面波勘察方法前景展望
01
CATALOGUE
天然源面波勘察方法概述
定义与特点
定义
天然源面波勘察是一种利用天然地震 波在地表传播产生的面波信号进行地 下介质结构和地球物理参数探测的方 法。
成果分析
地层结构分析
地质构造分析
根据面波速度分布和地层结构特征,将地 层划分为若干层,并分析各层的岩性、厚 度和分布范围等信息。
通过分析面波的传播路径和速度变化,推 断地质构造特征,如断层、褶皱等。
工程地质评价
设计建议
根据地层结构和岩性特征,评估工程地质 条件,预测可能存在的工程地质问题,如 滑坡、泥石流等。
勘察深度有限
由于天然地震波的传播特性,天然源 面波勘察方法的勘察深度相对较浅, 难以探测较深层的地下结构。
改进方向
提高信号处理技术
通过改进信号处理技术,降低噪声干扰,提 高信号的信噪比和分辨率。
加强数据解释研究
深入研究数据解释方法,提高数据解释的准 确性和可靠性。
发展多参数探测技术
结合其他勘察方法和技术,发展多参数探测 技术,提高勘察结果的精度和可靠性。
浅析复杂地质条件下的面波探测技术应用

浅析复杂地质条件下的面波探测技术应用我国幅员辽阔,地质复杂,如何在众多的复杂环境、深厚覆盖层条件下,使用面波探测技术,是我们需要有效解决的问题。
本篇文章阐述了面波探测技术的有关内容以及现状,探索了面波探测技术在铁帽覆盖区、粘土覆盖区、工程探测中的应用,通过对这些应用实例的分析,以期提升面波探测技术在复杂地质环境中应用的能力。
标签:地质;覆盖层;面波探测;应用前言:随着经济的快速发展,我国各项资源和工程不断开发并深入,天然的优良地基正在逐渐减少,所以需要我们在复杂的地质条件下开发资源和建设工程,然而复杂的地质会影响到资源的开发和工程的选址及安全,而面波探测技术是在这种情况下最佳的探测技术,能在最大程度上探测出工程地质的情况,降低前期勘察选址的成本。
一、面波探测技术的概述我国工程地质勘察比较常用的探测方法有直流电阻率法、大地电磁法、地震折射法以及面波法。
相比较其他几种探测方法,面波探测法以其快速、经济、易激发和场地影响较小等优势,成为工程地质勘察中最常用的工程物探技术。
面波法主要有两大分支,分别是被动源面波法及主动源面波法。
被动源面波法的探测深度比较深,但是探测采集信息的时间过长,探测效率较低;主动源面波法易被震源影响,探测深度较浅。
这两种探测方法都有利有弊,近些年来才出现了结合二者优点的面波探测技术,即场源补偿情况下的面波探测技术。
场源补偿后的天然源面波有效信号更为丰富,频散谱逐渐收敛,连续性更好。
二、面波探测技术的现状面波探测技术得到广泛的应用,主要是它具有以下几个优点:面波探测技术更加方便、效率较高、准确度较高,在同一种介质中,相比其他类型的弹性波传播速度小,具有更高的分辨能力;面波探测技术的设备比较轻便,而且操作简单,操作速度快,可以在现场实时处理信息,效率很高;面波探测技术可以对复合地基检测并根据地基承载力的经验公式,计算出的地基承载力与静载荷实验结果符合。
面波技术在得到大力推广和应用的同时,在实际工作中也存在着甚多问题需要研究解决:面波探测法的震源问题,震源频率和相互碰撞材料的硬度有关,与碰撞的速度、碰撞物的质量和碰撞接触面积也有关,也就是说震源的频率和能量能够影响到面波采集的质量;复杂面波的识别和提取问题,面波数据处理过程中,应如何识别并提取面波、体波及其他各种干扰波;面波频散曲线的正反演问题,面对边界条件复杂的探测环境,对这方面的研究较少,不能满足实际工作的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面波勘探技术分析
面波勘探是近年起来的一种新的浅层地球物理勘探,具有简便、快速、分辨率高、成果直观、适用场地小等优点,已在许多领域得到,并取得了良好的应用效果。
文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及存在的作了说明,并给出一个应用实例。
主题词:面波勘探瞬态法
一、概述
面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。
面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。
人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。
它们的测试原理是相同的,只是产生面波的震源不同罢了。
二、面波勘探技术
面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S 波)不同,它是一种地滚波。
在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)出来,即P波占7%、S 波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。
综合分析表明R波具有如下特点:
⑴在地震波形记录中振幅和波组周期最大,频率最小,能量最强;
⑵在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础;
⑶由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为:
VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比;
此关系奠定了R波在测定岩土体物理力学参数中的应用;
⑷R波在多道接受中具有很好的直线性,即一致的波震同相轴;
⑸质点运动轨迹为逆转椭圆,且在垂直平面内运动;
⑹R波是沿地表传播的,且其能量主要集中在距地表一个波长(λR)尺度范围内。
依据上述特性,通过测定不同频率的面波速度VR,即可了解地下地质构造的有关性质并计算相应地层的动力学特征参数,达到岩土工程勘察之目的。
三、野外工作方法
应用瞬态法进行现场测试时一般采用多道检波器接收,以利于面波的对比和分析。
当锤子或落重在地表产生一瞬态激振力时,就可以产生一个宽频带的R 波,这些不同频率的R波相互迭加,以脉冲信号的形式向外传播。
当多道低频检波器接收到脉冲形振动信号后,经数据采集,频谱分析后,把各个频率的R 波分离出来,并求得相应的VR值,进而绘制面波频散曲线。
当选取两道检波数据进行反演处理时,应使两检波器接收到的信号具有足够的相位差,其间距△x应满足(λR/3)~λR,即在一个波长内采样点数要小于在间距△x内的采样点数的3倍,而大于在间距△x内的采样点数的1倍,该采集滤波原则对于不同的勘探深度及仪器分辨率和场地地层特性可作适当调整。
当采用多道检波数据进行反演处理时,虽然不受道间距公式的约束,但野外数据采集时也应考虑勘探深度和场地条件的。
一般来说,当探测较浅部的地层介质特性时,易采用小的△x值并用小锤作震源以产生较强的高频信号,即可获得较好的结果;当探测较深部的地层介质特性时,易采用较大的△x值,并用重锤冲击地面,以产生较低频率的信号,使其能反映地下更深处的介质信息,达到岩土工程勘察之目的。
震源点的偏移距从理论上讲越大越好,且易采用两端对称激发,有利于R 波的对比、分辨和识别,但偏移距增大就要求震源能量加大和仪器性能的改善。
一般来说,偏移距应根据试验结果选取。
就目前的仪器设备条件和反演技术水平,选用偏移距20~40m即可获得较好的测试结果。
由多道检波数据反演处理后可得一条频散曲线,一般把它作为接收段中点的解释结果。
实际上该曲线所反映的地层特性为接收段内地层性质的平均结果,故当探测场地地下介质水平方向变化较大时,只要能满足勘探深度的要求,尽量使反演所用的接收段减小,以使解释结果更具客观实际。
四、工程
某建筑物由主坝和副坝两部分组成,其中主坝拟选坝型为混凝土闸坝,最大坝高39.93m,坝长358.5m;副坝布置在河左岸Ⅰ级阶地,拟建坝型为土石坝,
坝高5m左右,坝长约1.5km。
测区地层岩性由上至下依次为:①覆盖层由全新统风积砂壤土、粉细纱和全新统冲洪积砂卵砾石组成;②下伏基岩由棕红色、紫红色砂质粘土岩组成,局部夹有砾岩。
为探测覆盖层厚度并进行地层划分,采用瞬态面波进行勘探。
实测使用美国R24工程地震仪和4Hz低频检波器。
室内数据处理使用SFKSWS软件,其流程为:输入面波记录文件→显示和检查实测曲线数据→圈定面波数据窗口→在F—K域搜索确定基阶面波频谱峰脊并拾取频散数据→按搜索确定的基阶面波频谱峰脊圈定出基阶面波频谱范围→生成面波频散曲线→地质分层(人工或自动)→绘制反演拟合曲线→打印输出结果。
R波在非均匀介质中传播具有频散特性,所以不同频率(波长)的R波具有不同的传播速度。
模型试验和实测结果表明,当探测的岩土层介质较为均一时,R波的相速度随深度的加大而按线性增加,只有出现不同介质的分界面时,频散曲线会出现一个所谓“Z”字型变化,该变化特征是由于地表接收到的波从上一层漏能型波转入下一层漏能型面波,且此转折点与两介质间的界面埋深有密切的关系,由此可依据实测频散曲线的“Z”字型变化点来划分地下岩性变化的分界面。
实测面波反演解释结果,其中各图的右侧为随深度变化的面波频散曲线,左侧为钻探揭露的地层柱状图,其层位的划分具有良好的一致性,即表层风积粉细砂—中部砂卵砾石层—下部基岩。
同时由图还可以得出:表层风积砂的瑞利波速度为150~250m/s,冲洪积砂卵砾石的瑞利波速度为300~400m/s,而下伏基岩(棕红色、紫红色砂质粘土岩、砾岩等)的瑞利波速度则为440~760m/s,说明瑞利波(剪切波)速度随深度的增加而升高。
五、面波探测存在的问题分析
虽然面波探测技术在工程中的应用已很广泛,但实际工作中还存在以下问题:
⑴关于实测面波频散曲线的“Z”字型现象,从模型的解析中还不能精确地解释此现象。
因为理论的频散曲线,在介质分界面处只出现折点,对此还需深入和数值模拟;
⑵对于面波勘探深度的确定,国内外大多采用半波长作为R波的勘探深度,此关系是一经验公式,但在实际工作中,应根据场地地质条件、探测对象以及孔旁测试对比结果等作适当调整;
⑶测试深度相对较浅,一般情况下可靠的测量深度为20~30m,最深不过50~60m。
当测试深度加大时,震源信号就必须具有足够的低频信号,目前尚难满足此要求。
⑷根据不同的勘测目的和要求,对产生R波的震源需作必要的改进和研究,以适应勘察的需要。
如用锤子作震源时其低频值为10~20Hz左右,而用砂袋作震源时低频值为3~10Hz左右。
面波勘探作为一种新的浅层地球物理勘探,具有简便、快速、分辨率高、适用场地小、应用范围广等优点,但对面波勘探理论的研究以及实际应用等有待进一步的深入和开拓,使之在生产实践中不断、完善和提高。