测量坐标方位角计算

合集下载

计算坐标与坐标方位角的基本公式

计算坐标与坐标方位角的基本公式

二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的.下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式.一、坐标正算和坐标反算公式1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。

如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为AB A B ABA B y y y x x x ∆+=∆+= }(5—1) 式中 AB x ∆ 、AB y ∆——坐标增量。

由图5—5可知AB AB AB AB AB AB S y S x ααsin cos =∆=∆ }(5—2)式中 AB S ——水平边长; AB α-—坐标方位角.将式(5-2)代入式(5—1),则有AB AB A B ABAB A B S y y S x x ααsin cos +=+= }(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。

式(5—2)是计算坐标增量的基本公式,式(5-3)是计算坐标的基本公式,称为坐标正算公式.从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。

而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5-6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3.图5-5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x ⊿y0~9090~180180~270270~ⅠⅡⅢⅣ+--+++--例1 已知A 点坐标A x =100。

测量坐标方位角公式

测量坐标方位角公式

测量坐标方位角公式引言坐标方位角是地理测量中常用的一个概念,用于描述一个点相对于参考方向的角度。

测量坐标方位角是确定一个点相对于某一基准点的相对位置的重要步骤。

本文将介绍测量坐标方位角的公式和计算方法。

坐标方位角的定义坐标方位角可以理解为从参考方向逆时针旋转的角度,以度数或弧度表示。

参考方向通常以正北或正东为基准,具体取决于实际应用场景。

方位角的取值范围为0°至360°或0至2π弧度。

坐标方位角的计算要计算一个点相对于参考方向的方位角,需要知道两者之间的水平方向角和距离。

水平方向角是指从参考方向到目标点方向的角度。

公式下面是计算坐标方位角的公式:方位角 = atan2(y2 - y1, x2 - x1) * 180 / π其中,(x1, y1)是参考点的坐标,(x2, y2)是目标点的坐标,atan2是求反正切的函数,π是数学常量π。

计算步骤1.确定参考点和目标点的坐标(x1, y1)和(x2, y2);2.计算水平方向角,即参考点指向目标点的角度。

可以借助数学库或计算工具来计算反正切;3.使用公式计算坐标方位角,将水平方向角转换为度数。

示例假设有一个参考点A的坐标为(2, 3),目标点B的坐标为(5, 7)。

我们来计算点B相对于点A的坐标方位角。

1.点A的坐标为(2, 3),点B的坐标为(5, 7);2.计算水平方向角:atan2(7 - 3, 5 - 2) = atan2(4, 3)≈ 51.34°;3.使用公式计算坐标方位角:51.34°。

因此,点B相对于点A的坐标方位角约为51.34°。

结论测量坐标方位角是地理测量中的一项重要任务。

通过计算水平方向角和距离,我们可以轻松计算出点相对于参考方向的方位角。

在实际的地理测量和导航应用中,坐标方位角的计算是不可或缺的步骤,能够帮助我们准确确定物体或位置相对于参考点的方向关系。

以上是测量坐标方位角的公式和计算方法的介绍,希望对您有所帮助。

测量坐标方位角计算公式

测量坐标方位角计算公式

测量坐标方位角是指测量中使用坐标系进行测量时,测量点与参考点的方位角。

坐标方位角的计算公式如下:
坐标方位角=tan^(-1)(纵坐标差/横坐标差)
其中,纵坐标差指测量点的纵坐标与参考点的纵坐标之差,横坐标差指测量点的横坐标与参考点的横坐标之差。

在计算坐标方位角时,需要注意以下几点:
1.坐标系的方向。

坐标方位角的计算是基于坐标系的方向的,因此在计算时需要确定
坐标系的方向。

2.纵坐标差和横坐标差的正负。

坐标方位角的计算中,纵坐标差和横坐标差的正负会
影响计算结果。

3.弧度和角度的转换。

坐标方位角的计算结果通常是弧度制的,如果需要将计算结果
转化为角度制,可以使用弧度和角度之间的转换公式进行转换。

在使用坐标方位角计算公式时,需要注意以上几点,以便得到准确的计算结果。

坐标,方位角计算公式

坐标,方位角计算公式

坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。

方位角是卫星接收天线,在水平面上转0°-360°。

设定方位角时,抛物面在水平面上左右移动。

方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。

它是从点的北方向顺时针方向和目标方向之间的水平角度。

一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。

αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。

2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。

3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。

当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。

根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。

导线测量方位角计算方法

导线测量方位角计算方法

+90.66 +84.71 +90.64 +84.73
5 -2
+116.68
6 -2
+3 +115.39
+3
+116.66
+115.42
1321.52 1438.18
758.18 873.60
7 +178.85 +107.23+178.83 +107.26
-1 +2
1617.01 980.86
8 +81.79 -2
+46.70 +2
+81.78
+46.72
1698.79 1027.58
C +146.92 +12.38 +146.90 +12.40 1845.691039.98
4 16 00
D
-9 +12
1119 00 24 1119 01 12
738.33
+614.90
+614.81+366.53 +366.41
3、坐标反算公式
X
由A、B两点坐标来计算αAB、DAB
DAB
x
2 AB
y
2 AB
tg AB
y AB x AB
YAB
XAB AB
DAB
A
0
B
y
αAB旳详细计算措施如下: (1)计算:xAB xB xA
y AB yB y A
文档仅供参考,如有不当之处,请联系改正。
y AB
(2)计算: arctg AB锐
5、坐标增量闭合差(closing error in coordination increment)计算与调整 1

测量学坐标方位角计算例题

测量学坐标方位角计算例题

测量学坐标方位角计算例题引言在测量学中,坐标方位角是指一个点相对于参考线的方位角度。

通过计算坐标方位角,可以确定点在平面直角坐标系中的位置。

本文将介绍一个测量学的坐标方位角计算例题,帮助读者更好地理解和运用坐标方位角的计算方法。

问题描述假设在平面直角坐标系中,有两个点A和B,已知点A的坐标为(2, 3),点B的坐标为(5, 6),求点B相对于点A的方位角。

计算步骤为了求解点B相对于点A的方位角,需要进行以下步骤的计算:1.计算两个点的坐标差值,得到点B相对于点A的坐标差(ΔX, ΔY)。

根据给定的数据,可以计算得到ΔX = 5 - 2 = 3,ΔY = 6 - 3 = 3。

2.根据坐标差值计算点B相对于点A的方位角。

方位角可以通过以下公式进行计算:方位角(θ) = arctan(ΔY / ΔX)其中,arctan表示反正切函数。

将ΔY和ΔX代入公式中,可以得到:方位角(θ) = arctan(3 / 3)3.计算反正切值。

通过数学计算或使用计算器,可以计算得到反正切值为1。

为了得到方位角的度数表示,需要将弧度转换为度数。

由于正切值1对应的弧度为π/4或45度,可以得出:方位角(θ) = 45度结论根据以上计算步骤,可以得出点B相对于点A的方位角为45度。

方位角的计算方法可以在测量学中应用于确定点在平面直角坐标系中的位置关系。

总结本文介绍了一个测量学的坐标方位角计算例题,通过计算两个点的坐标差值和应用反正切函数,得出了点B相对于点A的方位角为45度。

坐标方位角的计算对于确定点在平面直角坐标系中的位置非常重要,掌握这一计算方法对于测量学的学习和实践具有重要意义。

以上是关于测量学坐标方位角计算的例题说明,希望能够对读者理解和运用坐标方位角的计算方法有所帮助。

方位角的计算方法

方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。

要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。

测量坐标方位角计算课件


误差积累规律
随着测量次数的增加,误 差会逐渐积累,导致最终 结果精度下降。
提高测量精度的措施
01
02
03
04
选择高精度仪器
使用高精度测量仪器,可以降 低仪器本身带来的误差。
提高观测技术水平
通过培训观测者,提高其技术 水平和经验,可以降低观测误
差。
多次测量求平均值
通过多次测量并取平均值,可 以减小随机误差的影响。
观测误差
由于观测者技术水平、 经验等因素导致的误差

环境误差
由于大气折射、地球曲 率等因素引起的误差。
计算误差
在数据处理过程中,由 于舍入误差、算法限制
等因素引起的误差。
误差传播规律
01
02
03
线性传播规律
当多个测量值相互关联时 ,任何一个测量值的误差 都会传递到其他测量值中 。
非线性传播规律
某些情况下,测量值的误 差之间存在非线性关系, 误差传递规律较为复杂。
在矿山测量中,除了坐标方位角外,还需要测量矿体的长 度、宽度、高度等信息,以及矿岩的物理性质和采矿工程 的设计和施工。同时,需要考虑矿山的特殊环境和安全要 求,采取相应的测量技术和措施。
04
坐标方位角计算中的存在的误 差,如望远镜、水准器
等部件的精度限制。
实例二
已知点A(x1, y1)和点B(x2, y2)的坐标 ,求两点间的边长d和方位角α。
03
测量中坐标方位角的应用
测量控制网布设
测量控制网是进行各种测量的基础,而坐标方位角是确定测 量控制点位置的重要参数之一。在控制网布设中,需要根据 测量任务和要求,计算出各个控制点的坐标方位角,以确保 测量结果的准确性和可靠性。

坐标方位角

坐标方位角1. 坐标方位角的定义坐标方位角是用来描述一个点相对于参考点的方位关系的数值。

在平面直角坐标系中,方位角通常用角度来表示,范围从0度到360度。

方位角是从参考点指向待确定点的线段与正x轴之间的夹角。

2. 坐标方位角的计算方法要计算坐标方位角,可以使用三角函数来辅助计算。

假设参考点的坐标为(x₀, y₀),待确定点的坐标为(x, y)。

1.首先,计算两点之间的水平距离dx和垂直距离dy。

dx = x - x₀,dy =y - y₀。

2.然后,计算方位角θ。

如果dx和dy都为0,则说明参考点和待确定点重合,此时方位角无意义。

否则,可以通过以下公式来计算方位角:θ = atan2(dy, dx)其中,atan2是一个数学函数,用于计算给定坐标的反正切值。

该函数的返回值范围为-π到π。

3.最后,将计算得到的方位角θ转换为度数形式,以得到最终的坐标方位角。

3. 坐标方位角的例子以下是一个使用坐标方位角计算两点之间方位关系的例子:假设参考点的坐标为(1, 1),待确定点的坐标为(3, 4)。

首先,计算dx和dy的值:dx = 3 - 1 = 2dy = 4 - 1 = 3然后,计算方位角θ:θ = atan2(3, 2) ≈ 56.31°因此,参考点到待确定点的方位角约为56.31°。

4. 坐标方位角的应用坐标方位角在很多领域中都有广泛的应用。

以下列举了几个常见的应用场景:•地理导航:通过计算两个地点之间的方位角,可以确定前往目的地所需的方向。

•天文学:在天文观测中,坐标方位角用于描述天体位置的方位关系。

•机器人及无人驾驶:在自动导航系统中,坐标方位角用于确定机器人或无人驾驶车辆与目标位置之间的关系。

•建筑与工程:在建筑设计和工程测量中,坐标方位角用于确定建筑物或结构物之间的位置关系。

5. 总结坐标方位角是描述一个点相对于参考点的方位关系的数值。

通过计算两个点之间的水平距离和垂直距离,然后使用三角函数进行计算,可以得到方位角的数值。

测量方位角计算公式


方法2(*):
(1)计算角度闭合差:
fβ = ∑ β测 β ∑

其中, 理的计算公式如下:
左角: 右角:
α终 =α始 +Σβ 理(左) ±n × 180° ⇒Σβ 理(左) =α终 α始 ±n × 180°
α终 = α 始
Σβ 理(右) ±n × 180° ⇒Σβ 理(右) =α始 α终 ±n × 180°
A1 484318 A
1
970300
1051706 2
1
A
2
(2)计算限差:
XA=536.27m YA=328.74m
1122224
fβ允 =±40" n
4
1233006 1014624 4
3
3
(3)若在限差内,则平均分配原则,计算改正 数:
Vβ = fβ n
48 43 18
115.10 100.09 108.32
+75.93 +86.50 +75.91 +86.52 -66.54 +74.77 -66.56 +74.79 -97.04 -48.13 -97.06 -48.11
-2
+2
A 1
-2
+2
-2
+2
2
3 4 A
94.38 +23.80 -91.33 +23.78 -91.32 67.58
4、按坐标正算公式,计算各边坐标增量。 5、坐标增量闭合差(closing error in coordination increment)计算与调整
A1 484318 A
1
970300
1051706 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

90ls q ) 90ls )
p
R
xZ
xZH
yZ
yZH
x2
y2
c os (1
arc tan
y x
)
x2
y2
sin(1
ቤተ መጻሕፍቲ ባይዱ
arc tan
y x
)
A
15
带缓和曲线线路中边桩坐标计算
xZ
边桩坐标:
yZ
xZ yZ
d cos(1 d sin(1
180(Z 180(Z
ZZH
R
ZZH
R
) )
90ls 90ls
90) 90)
( z >0 为“+”,<0 为“-”)
A
16
带缓和曲线线路中边桩坐标计算
5、YH 点与 HZ 点间缓和曲线段坐标计算( ZYH < Z < Z HZ )
中桩坐标:
y
x
2ls
ly
Z
ZZH
(2ls
ly Z ZZH )5 40R2ls2
计算 B(xB , yB ) 、 C(xC , yC ) 。 x
l'
αAC
αAB
A (xA , yA )
l
C (xC , yC )
d
B (xB , yB )
O
Ay
4
直线段坐标计算
1、 B(xB , yB )
xB yB
xA yA
l cos l sin
AB AB
2、 C(xC , yC )
边桩坐标:
xZ yZ
xZ yZ
d cos(1 d sin(1
90) 90)
A
12
带缓和曲线线路中边桩坐标计算
3、ZH 点与 HY 点间缓和曲线段坐标计算( Z ZH < Z < Z HY )
中桩坐标:
y
x
Z
ZZH
(Z ZZH )5 40R2ls2
(Z ZZH )9 3456R4ls4
arctan
y x
)
A
17
带缓和曲线线路中边桩坐标计算
边桩坐标:
xZ
yZ
xZ yZ
d cos(1 d sin(1
z z
90(2ls 90(2ls
ly Z
Rls
ly Z
Rls
Z ZH Z ZH
)2 )2
90) 90)
( z >0 为“-”,<0 为“+”)
A
18
带缓和曲线线路中边桩坐标计算
A
6
带缓和曲线线路中边桩坐标计算
如图所示,已知曲线要素:
缓和曲线长度 ls ,圆曲线长度 ly ,圆曲线半径 R ; ZH 点坐标 (xZH , yZH ) ,JD 点坐标 (xJD, yJD) , HZ 点坐标 (xHZ , yHZ ) ,ZH 点里程 Z ZH 。 求里程为 Z 点的中桩及距离中桩 d 处边桩坐标。
测量坐标计算培训
A
1
坐标方位角计算
如图所示,已知 A(xA , y A ) , B(xB , yB ) ,计算方位角 AB 。
x
αAB
A (xA ,yA )
O
B (xB , yB )
y
A
2
坐标方位角计算
A、B 点坐标关系 坐标方位角 AB
备注
yA yB
90
y 轴正半轴上
xA xB yA yB
A
7
带缓和曲线线路中边桩坐标计算
大里程方向 x
YH点 HZ点
αz
HY点
小里程方向 ZH点
JD点
O
y
A
8
带缓和曲线线路中边桩坐标计算
1、相关参数计算 ⑴ 曲线主点里程计算
HY 点里程: Z HY Z ZH ls YH 点里程: ZYH Z ZH ls l y HZ 点里程: ZHZ ZZH 2ls ly
90(Z ZZH
Rls
90(Z ZZH
Rls
)2 )2
90) 90)
( z >0 为“+”,<0 为“-”)
A
14
带缓和曲线线路中边桩坐标计算
4、HY 点与 HY 点间圆曲线段坐标计算( Z HY < Z < ZYH )
中桩坐标:
y
x R sin 180(Z ZZH )
R
R(1 cos180(Z ZZH
(2ls
ly Z ZZH )9 3456R4ls4
(2ls ly Z ZZH )3 (2ls ly Z ZZH )7 (2ls ly Z ZZH )11
6Rls
336R3ls3
42240R5ls5
xZ
xHZ
yZ
yHZ
x2
y2
c os (1
arctan
y x
)
x2
y2
sin(1
任意值
原点 O 上,即 A、B 点重合
yA yB
270
yA yB
arctan yB yA xB xA
xA xB yA yB
0
yA yB
360 arctan yB yA xB xA
yA yB
180 arctan yB yA xB xA
xA xB yA yB
180
yA yB
方法一:利用 B 点求 C 点
xC
yC
xB yB
d cos( AB d sin(AB
90) 90)
A
5
直线段坐标计算
方法二:利用 A 点求 C 点
xC
xA
yC
yA
l2
d
2
cos( AB
arctan
d l
)
l2
d
2
cos( AB
arctan
d l
)
C 点位于 AB 左侧为“-”,AB 右侧为“+”
(Z ZZH )3 (Z ZZH )7 (Z ZZH )11
6Rls
336R3ls3 42240R5ls5
xZ xZH
yZ
yZH
x2
y2
c os (1
arc tan
y x
)
x2
y2
sin(1
arc tan
y x
)
A
13
带缓和曲线线路中边桩坐标计算
xZ
边桩坐标:
yZ
xZ yZ
d cos(1 d sin(1
180 arctan yB yA xB xA
y 轴负半轴上 第Ⅰ象限
x 轴正半轴上 第Ⅳ象限 第Ⅱ象限
x 轴负半轴上 第Ⅲ象限
注:在 EXCLE 中,可统一用公式 ATANA 2(xB-xA,yB-yA)
3
直线段坐标计算
如图所示,已知 A(xA , y A ) ,距离 LAB l , LBC d 方位角 AB ,
切线增值:
q
ls 2
ls3 240 R2
A
10
带缓和曲线线路中边桩坐标计算
O y
p y0
R
φ
β0
ZH
H Y
q x0
YH P
x
A
H Z
11
带缓和曲线线路中边桩坐标计算
2、ZH 点小里程直线段坐标计算( Z < Z ZH )
中桩坐标:
xZ yZ
xZH yZH
(Z (Z
ZZH ) cos1 ZZH ) sin 1
A
9
带缓和曲线线路中边桩坐标计算
⑵ 曲线其他参数计算
ZH 点-JD 点坐标方位角:1 arctan(xJD xZH , yJD yZH )
JD 点-HZ 点坐标方位角:2 arctan(xHZ xJD, yHZ yJD)
转角:z 2 1
内移值:
p
ls2 24 R
ls4 2688
R3
相关文档
最新文档