汽车中的板簧的断裂失效分析

合集下载

重型汽车钢板弹簧的断裂失效形式及其材料的应用现状

重型汽车钢板弹簧的断裂失效形式及其材料的应用现状

其他f 也经 常 f 1 J 现残渣粉术。 、 板 赞 性 能 、 破坏 r 喷 凡肜 战的 表 饯 氽 受 力 发 生 微 振 导 致 的 磨 损 f f I f ,会 人 大 进 而 敛 力策 l I I 肜成 裂纹 。 一 l …} 板 碡 常 常 J L 干 公 l 凡 J 姚会火套 降 低 板 簧 的 坡 寿 命 。微 振 坡 火 效 多 裂 纹 , 片簧 t要的 失效 之 ,而 变 截 板 簧 } :
侏持 r 的 f ‘ 顺性f ¨ 个- . f 性。 能 降 重 已 伤 , 以 及
、 ・ 拔 l £ 溅 和 擦
图 1
7 过 巾 汴 火 裂 纹 、 野 蛮
随蕾i ‘ i 1 、 l k 的 发杖, 成为 l 1 i 』
操作l 乖 l 1 热 处 小 善 等 『 u j 题 , 也址 致 板
板 簧 何 时 会 l 1 1 心扎 处发, I - 断裂。
衬套之问装眦过 紧、 绉…I I f J l = ; 成 的 条纹 、 过 热 、 趔 度 过 “ I 挪 会 甘敛 橄 晴 I
材 料 和 I I : 艺 的 索 , 板 弹 磷 火 效 裂 纹 一般 l 起始 t : r } 1 心 扎 j 板 债 丧 的 交
2 . 2 板 簧卷耳失效
除 J ’ 故和 使 川 小 1 以外.毯 q 币 ¨
簧替代传统钏板弹赞,
l ^ 】 乍 也开 始
推 广 用 。 由 ¨ 1 人 J 艇 的 道路 情 况 和 辆] 况,以1 6 乏 钢 板弹 簧 制逃 过 巾 原
2 . 1 中心孔失效
力 破 传 递 到 板 簧 处 ,
『 f I 心 孔 附 近
车辆的使 J H 环 境 、拔 倚 人 小 、受 力 造 成 r应 力 集 中 。

汽车中的板簧的断裂失效分析

汽车中的板簧的断裂失效分析

材料断裂理论与失效分析汽车中的板簧的断裂失效分析专业:材料工程(锻压)类型:应用型姓名:***学号:15S******汽车中的板簧的断裂失效分析引言汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。

汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。

在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。

1. 材质是什么?65Mn/低碳钢哪一类合适?材质一般为硅锰钢。

因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。

因此,硅锰钢在我国应用在汽车的板簧上较为广泛。

65Mn 钢更为合适,因为:低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。

它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。

低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。

因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。

65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,© 12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。

Mn 是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。

一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn )。

Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。

汽车钢板弹簧断裂分析方法

汽车钢板弹簧断裂分析方法

汽车钢板弹簧(下简称:板簧)是汽车关键的弹性元件,主要功能是当 路面对轮子传输冲击力时,钢板产生变形,起到缓冲、减振的作用,纵向布 置时还具有导向传力的作用。在路试和正常的使用中会偶发板簧断裂现 象,在排除设计原因导致产品强度不够导致断裂的前提下,为查找到断裂 的根本原因对其分析过程进行详细诠释。
一、断裂宏观微观分析 1、断裂位置 常规的板簧断裂位置为 U 型螺栓夹紧位置附近,此种断裂多为板簧寿 命达到极限,因板簧在设计过程中此区域为应力最大区(除等应力板簧)。 板簧中心孔发生断裂,此种断裂多为对板簧的夹紧出现松动,中心孔为 U 型螺栓夹紧的范围内,此段通称为无效段,因 U 型螺栓夹紧后此段不受到 任何力的作用,但是当 U 型螺栓夹紧段发生松动后,此段将后受到外部传 来的应力,而中心孔位置本身就是“缺陷”位置,故会产生应力集中,从而导 致板簧发生断裂,此种断裂多数不为板簧本身质量问题。板簧其他位置发 生断裂,这种断裂通常为异常断裂,或因产品本身质量问题导致断裂,或因 外部原因导致板簧产生缺陷导致断裂。 2、断口周围情况 对断口周围进行初步观察,查看断口的凹面和凸面是否存在缺陷,如 凹坑、灼烧等,这些缺陷很有可能是导致板簧断裂的根本原因,很多公司都 发生过因其他原因导致板簧表面产生凹坑,从而导致板簧断裂的案例,故 断口周围情况的调查了解是很重要的,应引起重视。 3、断口宏观分析 观察断口的断裂纹路,查看是否存在断裂的疲劳源点区(A 区)、稳态 扩展区(B 区)、失稳扩展区(C 区)、瞬间断裂区(C 区)。A 区为疲劳源点区, 此处有较明显的扇形贝纹线,贝纹线中心为疲劳裂源点,应力集中形成点 在这个位置,受到较大交变应力后,此处应力集中源点处出现先期细小疲 劳微裂纹,且渐次疲劳持续后,形成贝纹扩展;B 区为稳态扩展区,约占整 个断裂面积的近 1/2。表示该板簧在持续路试耐久试验中,承受了持续较大 拉伸压缩交变应力后,晶粒产生位错滑移,并出现点型疲劳脊状形态;塑料 变形明显;疲劳特殊明显;C 区为失稳扩展区,约占整个断裂面积的近 1/4。 表示该处承受持续拉伸交变应力后,失稳扩展,塑性变形不明显,晶粒组织 变形均匀平滑;D 区为瞬间断裂区,板片边缘锐边,面积非常小,说明组织 韧性较好,失稳后,瞬间撕裂。 4、断口微观分析 一般为用扫描电镜观察断口的微观特征,进一步的确认断口出的应力 集中点,及断裂裂纹。微观分析的主要作用是初步判断断裂的一个物理过 程,是对宏观分析的一个诠释和补充,目的是确认断裂源及断裂纹路。 二、硬度、金相、脱碳层的分析 硬度、金相、脱碳层的分析主要是对产品热处理结果的一个分析,热处 理是将固态金属采用适当的方式进行加热 、保温和冷却以获得所需组织 结构与性能的工艺。因此板簧的热处理对其使用寿命起着至关重要的作 用,故充分的分析热处理情况可以有效的查找板簧存在的质量问题,从而 查找板簧断裂的主要原因。 1、硬度分析 硬度指“固体材料抗拒永久形变的特性”,热处理后板簧得到什么样的 组织,则产品就会有什么样的硬度,一般淬火硬度要求逸58HRC,回火硬度 要求 40.5耀47HRC,得到的板簧要求硬度合格且均匀。如果硬度偏高,则板 簧的脆性过大,在收到较大冲击的时候,板簧的塑形变形承受能力相对较 小,易导致早期断裂。 如果硬度偏低,则板簧的塑形过大,俗称板簧过软,在不断地受到振动 冲击中,板簧易被压趴,导致板簧作用失效,从而导致断裂。如果硬度不均

汽车零部件断裂失效分析

汽车零部件断裂失效分析

4 汽车零部件疲劳断裂分析
4.1疲劳断裂形式
• • 断口分析是疲劳分析的重要环节,包括结构、应力分布场、载荷 形式、异常工况、应力的大小等因素特征都会有所体现; 也要关注断口或失效性质的转化及相关的条件。
疲劳断口形态
疲劳断口形态
贝壳纹形成机理
关注那些随机 性冲击载荷、 台架试验的连 续不变的载荷 和铸铁的疲劳 断口,有时并 不十分典型。
钢板弹簧疲劳断裂与磕碰伤
• 轧制过程中磕碰伤引起疲劳断裂。
板簧前卷耳疲劳开裂
• 关注冲击载荷的作用,关注车辆的动力和制动性能,道路情 况,关注断裂的部位和结构特性; • 关注对失效认识的不断深化和阶段性。
钢板弹簧盖板疲劳开裂
• 少片簧的中间段刚性不足,如果与板簧中心孔断裂有关则应该有异常 接触印记; • 压板的弯曲在先,实际的失效形式应该是弯曲,要点是弯曲的连续性, 交通肇事的弯曲脆断中会有断裂件弯曲的一类问题。
钢板弹簧中心孔疲劳开裂
• 关注约束的有效性; • 断裂力学要素:简支梁弯矩 最大部位、应力集中、应变 集中。 • 同时也应考虑少片簧平直段 的自身刚性和约束结构刚性。
钢板弹簧压板边缘处疲劳断裂
• • 关注局部异常的表面异常硬化会增加疲劳裂纹萌生的敏感性。 考虑异常的擦伤、表面挤压磕碰伤与表面强力喷丸有什么差别或作用。
汽车零部件断裂失效分析
约束失控
约束(constraint) 对质点系中各“质点(结构件)”的位置和速度预先施加的几 何学或运动学的限制。 常见的约束有柔性绳索或链条约束、光滑接触面约束、圆柱形 铰链和球形铰链约束、铰链支座约束等。约束限制质点系中各质点 的自由运动,故约束对质点系有作用力,称约束反力,简称约束力。
与结构件失效相关的约束

基于汽车钢板弹簧断裂失效研究

基于汽车钢板弹簧断裂失效研究

基于汽车钢板弹簧断裂失效研究摘要:汽车是我们日常生活中常见的一个交通工具,为人们出行提供了很多便捷,而钢板弹簧是汽车悬架系统中的重要零件,倘若其出现问题,会对驾驶人员带来一定的影响。

其中致使汽车钢板弹簧断裂失效的原因,也来自方方面面,本文则主要针对弹簧断裂失效的主要形式进行了分析,同时也提出一些可行的改进方法,希望以此来确保钢板弹簧处于有效状态,这不仅可以保障车辆的安全性和可靠性,也可以极大的降低安全事故的发生概率。

关键词:汽车;钢板弹簧;断裂失效;研究前言:社会经济的发展促进了我国汽车行业的发展,而汽车也成为人们生活中不可缺少的一部分。

通常情况下,车辆在正常行驶时,会受到自身震动或者是外部因素的影响,而致使钢板弹簧出现一些问题,其中当应力超过钢板弹簧自身承受能力时,就会出现断裂而失效,这难以保障驾驶人员的生命安全。

因为作者多年从事钢板弹簧的质量检测及失效分析,所以根据自身工作经验提出几点改进方法,希望以此来尽量避免钢板弹簧断裂失效问题的出现,切实保障驾驶人员的生命安全。

1.汽车钢板弹簧断裂失效主要形式1.中心孔失效现阶段,汽车钢板弹簧断裂失效的形式很多,具体从以下进行分析。

第一,中心孔失效,中心孔本身就是钢板弹簧最为脆弱的部分,一旦其失效,就会导致车辆过程中出现诸多问题,严重者还会引发安全事故[1]。

致使中心孔失效的原因,可能是由于螺栓松动,造成弹簧承受的作用力被汇聚到中心孔,也可能是由于其他原因,比如:当中心孔的承受力的表面积变小时,也会致使其产生裂纹,此时的钢板弹簧会失去作用,这会影响到汽车的正常行驶,针对此类问题我们要采取措施进行处理。

1.板簧卷耳失效板簧卷耳失效,也是汽车钢板弹簧断裂失效的一个主要形式,他对驾驶人员所带来的影响也比较大。

汽车在行驶过程中难免会遇到各种摩擦力或者是外力的碰撞作用,导致板簧卷耳处于失效的状态,致使此类问题出现的原因,我们从以下分析:第一点,可能是由于驾驶人员在驾驶过程中因操作不规范,例如急停或快速换挡引起汽车非正常窜动,长期之后会致使板簧卷耳处于失效状态,很难保障车辆运行的平顺性。

汽车后桥板簧的断裂分析

汽车后桥板簧的断裂分析

汽车后桥板簧的断裂分析摘要:整车可靠性耐久道路试验中,后桥板簧是重要试验验证对象,是影响整车性能的重要因素之一。

本文通过对耐久性道路试验中的后板簧断裂现象,应用设计复核、宏观分析、微观分析、金相分析、硬度检测等技术手段开展分析判断,阐述了后桥板簧表面凹坑缺陷、后悬架无减振器是造成板簧早期断裂的关键及实施优化的设计方案,为后续车型开发提供必要的经验积累。

关键词:汽车后桥板簧断裂前言板簧是汽车悬架系统的弹性元件,具有可靠性好、结构简单、制造工艺流程短、成本低等优点。

车板簧一般是由若干片不等长的簧片组成,簧片按照一定的组合方式使得板簧呈现线性或非线性弹性特征,在悬架系统中起到缓冲作用。

汽车在非平整路面上行驶时,在交互冲击载荷作用下,各片板簧有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减。

板簧结构在商用车及轻小型车辆上应用广泛,实际应用场景中,在交变应力下板簧可能发生疲劳和断裂,故板簧应具有较高的疲劳强度和耐蚀等性能。

一、后板簧断裂案例某汽车后悬架根据该车型的总质量、底盘布置等特点,采用板簧结构,用于连接车身与后桥,且不装后减振器。

主要由三片不等长的钢板弹簧组成,并用夹箍将三片板簧固定,防止各簧片横向错位,在弹簧回弹将力传递给其他片,减少主板簧片的应力。

后悬架采用板簧结构,开发阶段需在试验场进行道路耐久试验验证,试验场给汽车提供各种类型的路面试验条件,满足零件的耐久试验要求。

在可靠性耐久道路试验中,3台试验车均出现了后钢板弹簧断裂的情况,在第一片到第三片板簧均有发生断裂情况。

二、后板簧断裂原因探讨为确定后桥板簧断裂的根本原因,应用设计复核、金相分析、硬度检查等技术手段开展分析。

1、设计复核应用CAE软件对板簧设计进行复核,对板簧应力分析结果与已量产车型进行横向对比,根据分析结果并结合设计经验,板簧设计满足设计要求。

按汽车行业标准QC/T 29035-1991对板簧进行强度台架测试,测试结果均不低于试验标准(板簧的疲劳寿命不小于8万次)。

板弹簧疲劳断裂原因的分析与改进措施

板弹簧疲劳断裂原因的分析与改进措施

BL客车后钢板弹簧疲劳断裂原因的分析与改进措施田洪森(机电系,北京100044)摘要:本文通过对BL客车后钢板弹簧断裂断口形状、设计应力、原材料及理化性能等方面的分析,找出造成钢板弹簧疲劳断裂的原因,提出了改进的措施,使该钢板弹簧的疲劳寿命达到日本五十铃公司标准的要求。

关键词:钢板弹簧;疲劳断裂;原因分析;改进措施1问题的提出BL客车是对日本五十铃公司BE22客车技术引进、吸收、消化后的一种轻型客车,该客车后悬挂弹性元件是一变刚度钢板弹簧,该种钢板弹簧的优点是在客车空载、满载状态下呈非线性状态,即悬挂在客车空载、满载状态下接近等频性,从而可以提高客车的平顺性,乘客乘坐舒适性,本文通过分析BL客车后钢板弹簧在设计、试制、试验过程中出现非正常疲劳断裂原因分析,提出了改进措施,使其达到了日本五十铃公司BE22客车后钢板弹簧疲劳寿命的标准要求。

2 BL客车后钢板弹簧的结构BL客车后钢板弹簧为一多片半椭圆形且由主、副簧组成的变刚度钢板弹簧,总片数为12片,其中主簧9片,副簧3片,主片片厚为10mm,其余片厚为9mm,采用的弹簧钢为60Si2Mn,其中3~9片端部压延,使钢板弹簧接近等应力梁。

3 BL后钢板弹簧疲劳试验情况3.1 试验标准:按五十铃公司提供的BE22客车后钢板弹簧疲劳寿命试验标准执行即: 1)按实车状态夹紧;2)变形中心:Fa=58.5mm,Fmax=137mm(2.5G),Fmin=20mm;3)振动频率:60-120cpm;4)从产品中随机抽取三架钢板弹簧;5)疲劳寿命:疲劳循环次数3≥20万次。

3.2 试验设备:钢板弹簧疲劳试验机。

3.3 疲劳寿命试验结果如下:4对钢板弹簧疲劳断裂原因分析根据以上试验结果可以看出,疲劳断裂的簧片均在第7片且同在钢板弹簧的大卷耳端,且位置距钢板弹簧中心螺栓距离也差别不大(138、142、150),说明该钢板弹簧在此处存在规律性疲劳断裂源,而非偶然原因造成的,下面根据疲劳断裂试验结果及设计、生产过程对钢板弹簧疲劳断裂的原因进行分析。

重型汽车钢板弹簧断裂失效形式及应用现状

重型汽车钢板弹簧断裂失效形式及应用现状

重型汽车钢板弹簧断裂失效形式及应用现状钢板弹簧(Leaf Spring)是广泛用于汽车悬架结构的具有一定弹性的元件,由宽度相等长度不相同的复合金属弹簧片组合而成,该元件各个部位的强度是相等的,可以起到很强的减缓压力的作用,但是钢板弹簧由于长期受到大力压迫导致其在达到一定的承受值后会发生断裂,本文重点分析了钢板弹簧断裂的形式,并提出相关的技术改进方案供相关生产商参考。

标签:钢板弹簧;断裂失效形式;应用现状车辆在正常行驶时,会受到自身振动和外部一定强度的挤压力作用,此时钢板弹簧会压缩从而吸收车辆的动能,将动能转化为弹簧的弹性势能,由此车辆的动能逐渐被转化,避免了巨大的冲击作用,起到很好的缓冲效果,使车辆运行更平稳,操作更流畅,安全性更好。

当钢板弹簧承受的压力过大会发生断裂失效,下面重点分析钢板弹簧断裂的几种形式。

1 钢板弹簧断裂失效的形式1.1 中心孔失效中心孔是钢板弹簧最脆弱的部位,因为钢板弹簧受到力作用时,其所承受的力会共同作用于中心孔,使其发生断裂失效。

其断裂时会产生很多裂纹,其位于孔板的结合处,跨越整板。

经过专业人员研究发现,该种失效是由于螺栓松动,弹簧承受的作用力被汇集到中心孔,中心孔承受力的表面积小,故而力的强度就大,当强度超过一定的值,孔就断裂,导致裂纹,随后弹簧便失效。

1.2 卷耳失效车辆在行驶过程中会不可避免受到各种摩擦力以及外力碰撞作用,此外,司机在驾驶过程中也会出现挂挡力度过大等不规范的操作,如果卷耳和衬套之间过于紧密,会导致发热,变硬等现象,这会使钢板膨胀变大,导致一定的变型,使得弹簧卷上方失效。

当车辆行驶过长时间时,卷耳上已有的些许裂纹会进一步加速断裂,加速弹簧失效的过程。

1.3 腐蚀疲劳钢板弹簧持续受力,而且很多零件露天之后会遭到空气腐蚀,生锈变型,致使弹簧在裂纹处承受力大幅度降低,裂纹便会不断加深,当达到极限时,弹簧便会断裂。

失效的切面看起来像是一系列同心的半圆形,在腐蚀和摩擦的作用下,裂纹外侧变暗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料断裂理论与失效分析汽车中的板簧的断裂失效分析专业:材料工程(锻压)类型:应用型姓名:***学号: 15S******汽车中的板簧的断裂失效分析引言汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。

汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。

在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。

1.材质是什么?65Mn/低碳钢哪一类合适?材质一般为硅锰钢。

因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。

因此,硅锰钢在我国应用在汽车的板簧上较为广泛。

65Mn钢更为合适,因为:低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。

它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。

低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。

因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。

65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,φ12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。

Mn是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。

一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn)。

Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。

总体上,钢中加入锰为0.9%~1.2%,使淬透性和综合性能有所提高,脱碳倾向减小,但有过热倾向及回火脆性,易出现淬火裂纹。

且锰钢价格便宜,资源丰富。

常用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧。

综上所述,应用65Mn钢更为合适。

2.所选材质的合金化原理、性能特点、典型热处理工艺。

2.1材质的合金化原理65Mn钢化学成分见表2.1,一般其抗拉强度σb(MPa)≥980(100);屈服强度σs(MPa)≥784(80);伸长率δ10(%)≥8;断面收缩率ψ(%)≥30;硬度:热轧≤302HB,冷拉+热处理≤321HB。

表2.1 65Mn钢化学成分C Si Mn P S Cr Ni Cu含量0.62~0.70 0.17~0.37 0.90~1.20 ≤0.025 ≤0.020 ≤0.10 ≤0.15 ≤0.20 2.2材质的性能要求板簧钢应具有优良的综合性能,如力学性能(特别是弹性极限、强度极限、屈强比)、抗弹减性能(即抗弹性减退性能,又称抗松弛性能)、疲劳性能、淬透性、物理化学性能(耐热、耐低温、抗氧化、耐腐蚀等)。

因此所选材质应具有较高的强度以及适当的韧性,并且具有较高的弹性极限、较好的弹性减退抗力以及较高的屈强比,为了防止板簧在交变应力下发生疲劳和断裂,弹簧应具有较高的疲劳强度和耐蚀等性能,通常为σ0.2≥1160MPa,σb≥1280MPa,δ10≥5%,ψ≥25%。

汽车板簧在工作中反复承受交变弯曲应力,故对板簧的表面质量要求很高,不允许其表面有缺口、裂纹、折叠和斑疤等,表面即使存在微小缺陷和损伤,也会由此产生应力集中,形成疲劳源,导致板簧早期疲劳断裂口。

有研究指出,断裂板簧的裂源正好萌生于小坑处,并且小坑处组织为针状马氏体,且有淬火裂纹存在。

故板簧表面的小坑及裂纹是引起板簧早期疲劳断裂的根源。

为了满足上述性能要求,板簧钢应具有优良的冶金质量(高的纯洁度和均匀性)、良好的表面质量(严格控制表面缺陷和脱碳)、精确的外形和尺寸。

2.3材质典型的热处理工艺板簧的主要制造工艺过程为:下料一钻孔一轧制切头一校正一第一片卷耳一端磨一淬火一回火一喷丸一探伤一油漆一测试。

即使是同样的材料,其热处理是否合理,导致的寿命相差也很大。

因而通常材料在淬火得到马氏体后,进行回火处理,可得到碳化物尚未发生明显的聚集长大,保持弥散的分布状态的回火组织。

淬火所造成的第二类内应力也几乎全部消除,但并未发生再结晶,仍保留马氏体针状结构和强化效果,故而有较高的弹性极限。

在淬火前对65Mn钢加热到860度,油淬,在380度中温回火。

采用回火屈氏体转变机制是:马氏体在中温回火温度,其过饱和的碳原子析出与铁原子结合生成颗粒状碳化物,马氏体组织中碳浓度减少,晶格改组转变成铁素体组织,形成由极细小的颗粒状渗碳体分布在铁素体基体上这种机械混合物称之为回火屈氏体。

板簧钢的高弹性极限性能主要依靠这种组织来实现。

碳化物尚未发生明显的聚集长大,保持弥散的分布状态,马氏体制发生回复过程,由淬火所造成的第二类内应力几乎全部消除,但未发生再结晶,仍保留马氏体针状结构和强化效果,故而有较高的弹性极限,硬度54.1HRC。

淬火工艺为:淬火温度为850~880℃,淬火时间有板厚决定。

淬火介质为10号轻柴油,在油中冷却50~75s,油温控制在20~50℃。

图2.1 65Mn钢淬火温度与硬度的关系中温回火工艺:中温快速回火,以提高生产效率和强度。

回火温度及时间视板厚而定,见表2.2。

表2.2回火工艺参数板厚/mm ≤8 >8时间/min 18 30 回火炉前部温度/℃480±20 460±20回火炉后部温度/℃680±20 650±20图2.2 65Mn钢回火温度与硬度关系图2.3 65Mn钢经回火后硬度与冲击性关系图2.2描述了65Mn回火硬度随回火温度升高而发生变化的规律,由图可见,在180-280℃范围内回火时,其硬度随回火温度升高而变化不大。

在300℃回火时,硬度略有升高,为57-58HRC。

图2.3描述了65Mn在870℃冷淬火后经不同温度回火后的硬度值与冲击韧度的关系。

图2.3所示的冲击韧度有两个峰值,其中一个峰值约为400J/cm2,对应的硬度为50-52HRC,这个硬度对冷作模具而言,显然是偏低的。

另一峰值韧度约为380J/cm2,其对应的硬度值为57-58HRC。

对于膜片弹簧成形压淬模而言,硬度为50-55HRC较为合宜,硬度为55HRC时,冲击值为谷点(实际回火脆性为350℃左右),应避开。

回火最后得到的组织为回火屈氏体。

喷丸的目的是为了提高弹簧的强度和疲劳寿命,要对热处理后的板簧进行喷丸处理。

经喷丸处理的疲劳寿命一般可达未喷丸的5~10倍。

3.服役环境的要素弹簧在冲击、振动或长期交应力下使用,所以要求板簧钢有高的抗拉强度、弹性极限、高的疲劳强度。

在工艺上要求板簧钢有一定的淬透性、不易脱碳、表面质量好等。

考虑板簧可能的服役环境为:(1)汽车板簧需承受来自汽车车厢以及载物的重量,各弹簧片受力变形,产生弯曲变形;(2)汽车在行驶过程中,当路面不平时,汽车发生较大幅度和频繁的颠簸,则汽车板簧需承受冲击载荷,并因此造成单向循环弯曲应力;(3)当汽车行驶速度过高时,也会加大汽车板簧的变形幅度,导致板簧加速疲劳而损坏;(4)紧急刹车会瞬间加大汽车板簧的受力,长期频繁的紧急刹车会对汽车板簧造成严重的损坏;(5)汽车在转弯时,若转弯速度较大,则会产生过大的离心力,加大外侧板簧的负荷;(6)汽车行驶的环境如果较为恶劣,零部件容易发生腐蚀。

4.有可能发生的断裂模式是什么?汽车钢板弹簧在汽车行驶过程中承受各种应力的作用。

其中以反复弯曲应力为主,绝大多数是疲劳破坏,如图4.1所示。

图4.1 板簧的失效板簧可能发生的失效:(1)过载断裂:当汽车超载时,载荷的重量超过板簧的承载能力,此时板簧往往发生永久性塑性变形,当工作载荷超过其所能承受的极限载荷时,将发生过载断裂。

(2)脆性断裂:汽车长时间在北方寒冷空气下行驶时,可能因为低温发生脆性断裂。

(3)疲劳断裂:由于汽车板簧长期在交变载荷下工作,则容易发生疲劳断裂。

当长时间在恶劣的环境下行驶时,可能因金属发生腐蚀而出现腐蚀疲劳断裂。

5.如何设计实验确定失效的类型及其机理?可通过对汽车板簧的化学成分分析,对断口处的显微组织分析等试验方法,分析疲劳断裂件中疲劳裂纹的萌生,疲劳裂纹的扩展,以及最后断裂。

具体的分析实验步骤为:(1)化学成分失效的汽车板簧用65Mn弹簧钢制备而成,在失效板簧本体上取样做化学成分分析,观察测试结果是否符合国家规定的65Mn弹簧钢标准。

(2)宏观分析观察板簧的断口形貌,寻找疲劳源区,疲劳裂纹扩展区,以及瞬时断裂区。

板簧叶片表面(主要是受拉面)如有裂痕,缺口,凹坑等,会使叶片在受负荷时产生应力集中,引起早期疲劳破坏,所以板簧的疲劳断裂源往往在板簧的表面处。

在疲劳断口处如能观察到清晰可见的贝纹线,则此处为疲劳裂纹的扩展区,外观较为光滑,主要特征是围绕疲劳源存在一系列平行的同心弧线,即为疲劳线。

而瞬间断裂区的外观较为粗糙,与静载断口形貌相似。

一般疲劳断裂的过程为:局部塑性变形—疲劳裂纹的形成—疲劳裂纹的扩展—瞬间断裂。

疲劳裂纹的萌生和扩展过程是疲劳破坏的起始和重要的损伤阶段。

金属所受的交变应力的最大值低于材料的屈服强度,在较低的应力下,材料的变形是局部的,非均匀的,变形严重的地方抗腐蚀能力低,颜色发暗。

微裂纹多在表面形成,主要原因为:一是因为板簧所受到的载荷使其发生弯曲变形,弯曲疲劳时表面变形最大;二是由于表面脱碳强度降低所导致。

65Mn 弹簧钢保温时间较长时,很容易造成表面脱碳,位错与碳化物或夹杂物相互作用,使相界开裂,与基体剥离,形成微孔,微孔合并后形成裂纹源。

(3)微观分析用扫描电子显微镜对断口作进一步观察,并对对失效件在断口裂源处纵向取样作显微分析,一般疲劳裂纹的扩展途径不是唯一的,可以沿晶扩展,也可以穿晶扩展。

在交变应力的作用下,由于位错沿着滑移面往复运动而造成围观裂纹的萌生和扩展。

断口是不均匀的,有许多相互连接而与主裂纹相交的小裂纹,在主裂纹的侧面还有与主裂纹近似平行的小裂纹。

在交变应力的作用下变形是不均匀的,也不是同时的,有先有后,在形成的裂纹扩展的同时又有新的裂纹萌生及扩展,先扩展的裂纹为主裂纹,周围新萌生的微裂纹可称为次生裂纹。

(4)硬度测试对失效样件进行硬度测试,测试样件是否符合技术要求,一般失效件裂源区硬度偏高。

由实验的分析,可以推断提高汽车板簧的疲劳寿命的建议,一般可从以下几方面考虑:(1)选择优良的原材料,材料中的夹杂物以及杂质越少越好。

相关文档
最新文档