聚酰胺的改性方法

合集下载

聚酰胺弹性体基永久性抗静电剂改性EVAC复合材料制备及性能

聚酰胺弹性体基永久性抗静电剂改性EVAC复合材料制备及性能
国内外涉及到 EVAC 抗静电材料的研究大体 上可以分为两种:一种是只包含少量 EVAC 的多元 基体复合材料,主要的基体材料都是其它高分子材 料,如高密度聚乙烯 (PE-HD)[16–17] ;而另一种是以 EVAC 为主乃至全部基材的抗静电研究基本上都是 采用炭黑、石墨烯或金属基导电填料等来对 EVAC 进行抗静电改性 [18–19],因此所得材料并不具有永久 性抗静电的特性,而且会因为填料的加入而使得材
双螺杆挤出机:SHJ–36 型,配备水下切粒装置, 南京杰亚挤出装备有限公司;
微型注塑机:WZS10 型,上海新硕精密机械有 限公司;
鼓风干燥箱:DHG9053A 型,上海精宏实验设 备有限公司;
动态热机械分析 (DMA) 仪:Q800 型,美国 TA 仪器公司;
场发射扫描电子显微镜 (SEM) :S–4800 型,日 本日立公司;
高阻计:6517B 型,美国吉时利公司; 电子万能试验机:CMT–4104 型,深圳三思纵 横科技股份有限公司。 1.3 试样制备 首先将聚酰胺弹性体基永久性抗静电剂 ( 简 称永久性抗静电剂 )、EVAC 和 EVAC-g-MAH 放入 50℃鼓风干燥箱中干燥 8 h,以去除原料中的水分, 之后按照表 1 配方称量样品并放入高速混合机中混 合均匀,随后将混合均匀的物料使用双螺杆挤出机 进行共混挤出,并经水下切粒装置造粒。双螺杆挤 出 机 8 区 温 度 分 别 为 140,140,150,150,150,155, 160℃和 165℃,主机转速为 150 r/min。
目前对高分子材料进行抗静电改性的最主要 方法还是使用炭黑或者金属基导电填料与高分子材 料进行熔融共混制备得到抗静电复合材料 [3–5],但是 通过这些方法得到的材料,会因为填料的加入使得 材料的力学性能发生变化,特别是材料的韧性容易 受到影响,并且其耐久性较差,容易在使用过程中发 生填料析出,从而影响材料的抗静电性能和长期使 用性 [6]。相比之下,高分子永久性抗静电剂具有许 多突出的优势,如抗静电长效性好、不脱落析出、对 空气的相对湿度依赖性小、对力学性能和加工性能 影响较小等 [7]。因此目前许多研究人员对高分子永 久性抗静电剂进行了研究与开发 [8–9],尤其是选用聚 醚型聚酰胺弹性体作为基体,通过聚醚与无机盐的 配位络合,在聚合物体系中形成导电通路制备得到 高分子永久性抗静电剂 [10–11],并将其与不同材料共 混制备得到永久性抗静电复合材料 。 [12–13]

高分子材料的合成与改性方法

高分子材料的合成与改性方法

高分子材料的合成与改性方法高分子材料是一类具有长链结构的大分子化合物,广泛应用于塑料、橡胶、纤维等各个领域。

为了提高高分子材料的性能和应用范围,人们经过长期研究,发展了多种合成和改性方法。

本文将介绍一些常见的高分子材料的合成与改性方法。

一、高分子材料的合成方法1. 缩聚聚合法缩聚聚合法是一种常用的高分子材料合成方法。

它通过将两个或多个小分子单体,在适当的条件下,通过缩聚反应或聚合反应连接成长链高分子化合物。

常见的缩聚聚合法包括:(1)酯交换聚合法:如聚酯的合成。

该方法以酯类单体为原料,通过酯交换反应,合成具有酯键的长链高分子。

(2)醚化聚合法:如聚醚的合成。

该方法以含有醚键的单体为原料,通过醚化反应,将多个单体连接成长链高分子。

(3)胺缩合聚合法:如聚酰胺的合成。

该方法以胺类和酸酐为原料,通过胺缩合反应,生成酰胺键,形成长链高分子。

2. 聚合反应法聚合反应法是指通过单体的自由基聚合、离子聚合或开环聚合等反应,将单体聚合成高分子链的方法。

常见的聚合反应法包括:(1)自由基聚合法:如聚丙烯的合成。

该方法以丙烯单体为原料,通过自由基引发剂引发聚合反应,形成聚合度较高的聚丙烯。

(2)阴离子聚合法:如聚乙烯的合成。

该方法以乙烯单体为原料,通过阴离子引发剂引发聚合反应,生成聚合度较高的聚乙烯。

3. 交联聚合法交联聚合法是指通过交联剂将线性高分子材料进行交联,形成具有空间网络结构的材料。

该方法可以提高高分子材料的力学性能和热稳定性,常见的交联聚合法包括:(1)辐射交联法:如交联聚乙烯的合成。

该方法以聚乙烯为原料,通过辐射照射,引发聚乙烯链的交联,形成具有交联结构的聚乙烯材料。

(2)化学交联法:如交联聚氨酯的合成。

该方法以含有多官能团的单体为原料,通过化学反应引发交联反应,形成交联结构的聚氨酯材料。

二、高分子材料的改性方法1. 加入填料加入填料是一种常用的高分子材料改性方法。

填料可以提高高分子材料的强度、硬度、耐磨性和导热性等性能,常见的填料有纤维素、硅酸盐、碳黑等。

有机添加剂 SEED 在聚酰胺 6 改性中的应用

有机添加剂 SEED 在聚酰胺 6 改性中的应用

有机添加剂SEED 在聚酰胺6 改性中的应用摘要: 在己内酰胺水解聚合时加入一定量的有机添加剂 N ,N′- 二(2 ,2 ,6 ,6 - 四甲基 - 4 - 哌啶基) - 1 ,3 - 苯二酰胺(SEED) ,合成出含有添加剂 SEED的改性聚酰胺 6 树脂 ,研究了改性聚酰胺6 的流变性、热稳定性及染色性。

实验表明:当 SEED添加量为 0. 2 %时 ,聚酰胺 6 熔体表观粘度随剪切速率的升高而下降的趋势变慢 ,熔体加工稳定性提高;与空白试样相比 ,改性聚酰胺 6 的初始热分解温度提高约 3 ℃,高温(170 ℃、 190 ℃)老化 1 h后纤维的断裂强度保留率可达80 %以上 ,热稳定性改善;且改性树脂的端氨基含量可高达45 mmol/ kg ,为空白试样的1. 7 倍 ,纤维的酸性染料染色上染率明显提高。

改性聚酰胺 6 稳定性、染色性的改善 ,是有机添加剂 SEED 中特有的芳胺基和受阻哌啶基结构综合作用的结果。

关键词: N ,N′ - 二(2 ,2 ,6 ,6 - 四甲基- 4 - 哌啶基) - 1 ,3 - 苯二酰胺; 聚酰胺6 ; 末端氨基; 热稳定性; 染色性聚酰胺 6 由于具有拉伸强度高、自润滑性良好、冲击韧性好、耐磨性、耐化学性、耐油性优异等突出优点 ,在工程塑料及功能化塑料领域得到迅速发展 ,但也存在着耐光性、耐热性、染色性 (尤其是染色深度) 较差等缺点 ,需要加以改进 ,以适应各种用途的要求。

而聚酰胺所存在的不足一般可通过加入适当的添加剂来抑制。

Malik 等研究了在聚酰胺树脂中直接加入有机添加剂 SEED 后的改性效果,本研究则通过在己内酰胺水解开环聚合中加入一定量的SEED ,以合成出含有一定 SEED 含量的改性聚酰胺 6 树脂 ,并探了有机添加剂 SEED 在改善聚酰胺 6 的流变性、热稳定性及染色性等方面的作用效果。

1 实验部分1. 1 原材料及配方1. 1. 1 原材料己内酰胺(LA) ,日本东丽公司;蒸馏水(H2O) ,开环剂 ,实验室自制;间苯二甲酸( IPA) ,相对分子质量调节剂 ,化学纯 ,上海润捷化学试剂有限公司;苯甲酸(BIA) ,相对分子质量调节剂 ,分析纯 ,湖南湘中精细化学品厂;N ,N′ - 二(2 ,2 ,6 ,6 - 四甲基 - 4 - 哌啶基) - 1 ,3 -苯二酰胺,有机热稳定剂,汽巴精化(中国)有限公司。

水性环氧固化剂改性三种方法

水性环氧固化剂改性三种方法

水性环氧固化剂改性三种方法目前国内外环氧树脂的水性化技术主要分为乳化法和成盐法。

乳化法指的是环氧树脂的直接乳化、不用外加乳化剂的自乳化或水性环氧固化剂乳化,而成盐法则是将环氧树脂改性成富含酸或富含碱的树脂,再用小分子质量的碱或酸进行中和。

水性环氧固化剂乳化环氧树脂是最重要的水性化技术,它可以克服其他水性化方法的缺点。

常用的水性环氧固化剂大多为多元胺或其改性产物,其中改性产物主要利用其分子中胺基上的活泼氢与环氧树脂分子中的环氧基反应进行改性。

据专家介绍,多元胺常用的改性方法有3种,均采用在多元胺分子链中引人非极性基团,使得改性后的多胺固化剂具有两亲性结构,以改善与环氧树脂的相容性。

首先是酰胺化多胺改性。

酰胺化的多胺本身具有一定的水溶性或水可分散性,无需借助于助溶剂或乳化剂的作用就可获得一定范围的水可稀释性,从而可以用作水性环氧树脂的固化剂。

并且酰胺化的多胺具有表面活性剂的作用,低分子质量液体环氧树脂不需要预先乳化,而由酰胺化多胺在施工前混合乳化,用酰胺化多胺乳化环氧树脂配成的水性环氧体系具有施工性能好,适用期长等优点。

但专家也表示,用单脂肪酸改性的酰胺化多胺固化剂,与环氧树脂的相容性不是太好,容易发生相分离而在涂膜表面出现浮油和凹坑等表面缺陷,并且固化不充分造成涂膜的耐化学性能和耐湿性较差。

其次是聚酰胺的改性。

采用二聚酸与多元胺进行缩合来制备水性聚酰胺固化剂,这样改性可改善与环氧树脂的相容性,涂膜表面也不会出现因不相容而造成的表面缺陷;但用聚酰胺固化剂乳化的环氧树脂体系的适用期较短,一般不超过1小时就会凝胶化,这会对施工带来一定的麻烦。

专家介绍说,并且用聚酰胺固化的涂膜柔韧性较差,冲击性能较差,涂膜偏脆。

水性聚酰胺固化剂由于合成时二聚酸中不饱和双键的存在,而容易被空气中的氧气氧化导致固化剂的颜色变深,不适合作为色泽要求较高的水性环氧地坪涂料的固化剂。

这种方法改性具有一定的局限性,当然这并不掩盖其应用上的优点。

PA 尼龙塑料材料详解

PA 尼龙塑料材料详解

如:1.6-己二胺和1,6-己二酸缩聚所得聚合物成为 PA66
6:单体所含的碳原子 数命名
5
6
PA(聚酰胺)的一般性能
①聚酰胺无毒、无味、为白色至淡黄色的颗粒;
聚酰胺的密度为1~1.16,制品坚硬有光泽
②结晶度一般,在35%左右
注塑成型时,模具温度越高, 熔体冷却时间较长, 制品的结晶度越高。
⑥尼龙具有较高的机械强度和模量,
②热变形温度 30%玻纤增强PA6和PA66的热
变形温度大幅度提高的250℃,纯的热变形温度在
③成型收缩率 20%-30%玻纤增强PA6的成型收
缩流率一般在0.6%以下。
④流动性下降 要求成型加工温度高于纯PA的
加工温度
玻璃纤维含量对性能影响: ①玻纤含量增加,产品的流动性下降 ②玻纤含量增加,产品力学性能也会增加。
如尼龙6和尼龙66的共聚物称为尼龙6/66; 若主要成分为尼龙66,则称为66/6
共聚尼龙破坏了尼龙原有的结构,失去结晶 能力,结晶度变低,材料具有较好的韧性和 透明性,是耐磨的弹性材料。
1、由内酰胺开环聚合的尼龙,称为尼龙n,简写为PAn。 如己内酰胺开环聚合得到的聚合物,称为PA6。
2、由二元胺和二元酸缩聚得到的聚合物,称为尼 龙mn,简写为PAmn,m为重复单元二元胺的碳原 子数,n为重复单元中二元酸的碳原子数,
所以,作为工程用塑料,还须改进其性能,才能 达到工业用途的要求。
利用尼龙的结构特点进行改性,克服尼龙易吸水, 制品尺寸变化大的弱点,提高尼龙的冲击强度和 耐热性。
目前为止尼龙的改性牌号有3000多种,充分证明 了尼龙具有良好的改性性能。
改性?
在聚合物基体中加入某种材料使其获得某种性能。 聚酰胺的改性的目的

塑料改性方法

塑料改性方法

塑料改性方法“塑料改性方法”是一种将普通的塑料材料通过加入不同的化学品、添加剂或改变工艺流程,使其性能发生改变,从而实现更好的使用效果的技术。

其主要目的是为了提高塑料的耐久性、可靠性、耐用性和耐热性等方面的性能。

本文将对塑料改性方法进行详细介绍。

一、改性工艺和方法1.添加剂改性添加剂改性是最常见的一种改性方法,它是利用各种化学添加剂来改善塑料的性能。

通常使用的添加剂包括防老剂、增塑剂、稳定剂、色素和填充剂等。

其中,增塑剂能够提高塑料的柔韧性和韧性,稳定剂可以减缓塑料的老化速度,颜料和填充剂可以改变塑料的颜色和纹理,从而满足人们对于高性能塑料的追求。

2.化学改性化学改性是将不同的化学品添加到塑料中,以改变其性质。

比如说,物理性能比较差的聚氨酯,可以通过添加一些环氧基团或甲基基团来改善其物理性能。

此外,给聚丙烯或聚乙烯添加活性剂、单体或光引发剂可以使其具有更高的热稳定性和高温耐性。

3.物理改性物理改性是通过物理手段来改善塑料性能的方法。

例如,通过在塑料加工过程中加入一些纤维或高弹性聚合物的添加剂,可以增强塑料的韧性和强度。

这种方法的主要优点是不会改变原有塑料的基本特性,同时还能够有效地提高其力学性能。

4.结构改性结构改性是通过改变塑料的分子结构来提高其性能。

例如,在聚醚中添加醚氧基团,可以大大提高其耐水性和抗水解性。

而在聚酰胺中加入亚胺基团,则可以提高其抗温性和耐磨性。

二、改性分类在实际应用中,根据不同的目的和底材,改性塑料可以分为以下几种类型:1.改性聚烯烃类塑料改性聚烯烃类塑料是普通聚烯烃塑料的一种改性形式。

通过添加不同的化学品,改善了其硬度、抗冲击性以及耐热性。

例如,经改性后的聚丙烯能够耐受高温,不易老化、强韧耐用。

2.改性聚酯类塑料改性聚酯类塑料可以分为苯酰苯酰酯、多元酯等类别,这些高强度、耐热性能优秀的塑料,在开发高质量工程塑料方面占有重要的地位。

3.改性聚胺类塑料改性聚胺类塑料是由脂肪族、芳香族等聚胺酯、聚酰胺、聚醚、聚酯等共聚而成,是一种性能良好、性能多样化的高分子材料。

实验一 AG80,聚酰胺650实验

实验一  AG80,聚酰胺650实验

实验一 AG80/聚酰胺650实验一、实验目的1、找到AG80与聚酰胺650的最佳配比。

2、确定AG80树脂改性方向。

3、探究长链线型结构的固化剂对含氮芳环类的环氧树脂的力学性能的影响。

二、实验原理环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机化合物,凡分子结构中含有环氧基团的高分子化合物统称为环氧树脂。

环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。

由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶的具有三向网状结构的高聚物。

固化后的环氧树脂具有良好的物理、化学性能,它对金属和非金属材料的表面具有优异的粘接强度,介电性能良好,变形收缩率小,制品尺寸稳定性好,硬度高,柔韧性较好,对碱及大部分溶剂稳定,因而广泛应用于国防、国民经济各部门,作浇注、浸渍、层压料、粘接剂、涂料等用途【1】。

环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类。

根据分子结构,环氧树脂大体上可分为五大类:1.缩水甘油醚类环氧树脂2.缩水甘油酯类环氧树脂3.缩水甘油胺类环氧树脂4.线型脂肪族类环氧树脂5.脂环族类环氧树脂而本实验所选用的则是含氮芳环类的环氧树脂AG80, AG80是一种四官能度的热固型环氧树脂,环氧值在0.8~0.9(环氧值即每100g环氧树脂中,环氧基的数量(mol))左右,分子量为422,粘度(40℃)1100mPa•s。

化学名称为4,4′二氨基二苯基甲烷环氧树脂。

其结构式如下:固化产物交联密度大、收缩率低、化学稳定性,具有优异的力学性能、耐热性和耐腐蚀性。

因AG80环氧树脂固化后其交联密度大,因而固化物的刚性较强,但同时材料的韧性较差,因此我们要对AG80进行综合改性,来满足材料在不同场合的用途。

改性方法主要有以下几种:1.选择固化剂;2.添加反应性稀释剂;3.添加填充剂;4.添加特种热固性或热塑性树脂;5.改良环氧树脂本身。

聚酰胺

聚酰胺

机械设备 其他行业
球拍线 螺旋推进器
改性
主要在以下几方面进行改性:
①改善尼龙的吸水性,提高制品的尺寸稳定性。
②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。
阻隔 尼龙
• 与PET的混合料符合食品卫生要求,是阻隔性很高的理想 包装材料,可用于药品、碳酸饮料、酒类、食品等包装。
应用与 改性
主要应用
代替金属材料,质量轻,具有优异的力学性能、耐油性和 电绝缘性,适合制造汽车发动机周边部件和电子电器部件
汽车工业 电子电器工业
发动机部件、电器部件、车身其他部件等 壳体材料、绝缘材料(空气开关、接线盒等)
接 线 盒
发动机部件
散热风扇
雨刮器
空 气 开 关
主要应用
齿轮、绝缘垫圈、挡板座、涡轮、螺旋 桨轴、螺旋推进器、滑动轴承等 包装薄膜、球拍线等
• 凯芙拉具有极佳的抗拉 性能,其强度为同等质 量钢铁的五倍,而密度 仅为钢铁约五分之一
改性尼龙
基于Kevlar质量轻、抗冲击 能力强、韧性大的特点,广 泛应用于防弹衣、装甲的制 造。
因其耐磨性,也被用于 手机外壳
改性尼龙
铸型 尼龙
“以塑代钢、性能卓越”,用途极其广泛。 它具有重量轻、强度高、自润滑、耐磨、防 腐,绝缘等多种独特性能是应用广泛的工程 塑料。
最重要的合成纤维原料而后发展为工程塑料 是最早出现能够承受负荷的热塑性塑料,也是五大通用工
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚酰胺的改性方法
实际应用的聚酰胺热熔胶大多采用共聚聚酰胺树脂以满足不同使用要求。

通过共聚,分子链规整性被打乱,氢链遭到破坏,使之结晶性下降,从而降低熔点,采用不同的物质的量比,可制得高(180〜190℃)、中(140〜150℃)、低(105〜110℃)环球软化点的聚酰胺热熔胶。

对聚酰胺热熔胶的改性,主要是添加一些特殊单体,聚合时,在聚酰胺分子链上接上一些链段或基团,对聚酰胺分子进性改性;当然,也可以聚酰胺为主体,加入一些特殊成分,以满足使用要求。

以下是一些聚酰胺改性的例子。

①改善热氧化性。

为改善二聚酸型聚酰胺的热氧化性除加抗氧剂外,还可以将二聚酸氢化处理,大大提高了这种聚酰胺的抗氧化性能,但成本较高。

②提高聚酰胺的耐热性聚酰胺热熔胶是热熔胶中耐热牲最好的品种之一,若向胶黏剂中加人1%的1-苯基-3-吡唑烷酮或1-(4-苯氧基)-3-吡唑烷酮,可大幅度提髙其耐热性能,在如260℃空气中保持6h不变色。

若引入硅氧烷分子链也可提高聚酰胺的耐热性。

③调节聚酰胺的熔点调节内酰胺、脂肪族二羧酸的比例和选择不同碳原子数的共聚单体,可以使聚合物的分子具有一定的无规程度,控制其结晶程度,并赋予非晶态的特性,使聚酰胺具有较宽的熔点范围。

相关文档
最新文档