【特稿】全国2019年中考数学真题分类汇编 15 频数与频率 含答案

合集下载

2019年全国中考数学试卷分类汇编:频数与频率【含解析】

2019年全国中考数学试卷分类汇编:频数与频率【含解析】

数学精品复习资料频数与频率一、选择题1. (2014•山东淄博,第3题4分)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D. 52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.2.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。

(C)神州飞船发射前需要对零部件进行抽样检查要全面检查。

(D)了解某种节能灯的使用寿命适合抽样调查,(D)正确。

故选B2.3.4.5.6.7.8.二、填空题1.2.3.4.5.6.7.8.三、解答题1. (2014•山东潍坊,第19题9分)今年我市把男生“引体向上”项目纳入学业水平体育考试内容.考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试成绩(单位:个)如下:9 12 3 13 18 8 8 4 ■ ,1213 12 9 8 12 13 18 13 12 10其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图;(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:根据平均数即可求得被污损的数,求出极差,进一步可将频率分布表、频数分布直方图补充完整;再利用总人数乘以对应的比例即可求解第三问.解答:(1)设被污损的数据为x ,由题意知:3.1121841351210293843=+⨯+⨯+⨯++⨯+⨯++xx 解得:x =19 根据极差的定义,可得该组数据的极差是19-3=16.(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是206 =o .30; 测试成绩在11~15个的有9名,该组频数为9,相应频率是209=0.45. 补全的频数、频率分布表和频数分布直方图如下所示:(3)由频率分布表可知,能完成_11个以上的是后两组,(0.45 +0.15)×100%=60%,由此估计在学业水平体育考试中能完成11个以上“引体向上’的男生数是220×60% =132(名) 点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.(2014•山东聊城,第19题,8分)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t 的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计改小区5月份的用水量.比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.占的百分比为××=3004. (2014•江苏盐城,第21题8分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类(1)表中的a= 0.3 ,b= 6 ;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?)问卷调查的总人数是:=100=0.35. (2014•山东淄博,第20题8分)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤500010 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.菁优网分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.6.(2014•四川泸州,第20题,7分)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.7.(2014•四川内江,第19题,9分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.×=8.(2014•四川宜宾,第19题,8分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500 人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54 度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布a=12,b=0.2;(2)补全频数分布直方图;(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.)抽查的总的人数是:=40=0.2)根据题意得:×项目测试,班上学生所报自选项目的情况统计表如下:(1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.【考点】(1)频率(2)①频率与圆心角;②树状图,概率【分析】(1)各项人数之和等于总人数50 ; 各项频率之和为1(2)所占圆心角=频率*360 (3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】(1)(2)“一分钟跳绳”所占圆心角=(3)至多有一名女生包括两种情况有1个或者0个女生列表图:有1个女生的情况:12种有0个女生的情况:6种至多有一名女生包括两种情况18种至多有一名女生包括两种情况===0.90。

全国各地2019年中考数学真题分类解析汇编 15频数与频率

全国各地2019年中考数学真题分类解析汇编 15频数与频率

频数与频率一、选择题1. ( 2018•安徽省,第5题4分)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A. 0.8 B.0.7考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的知识点是:频率=频数÷总数.二.填空题1.(2019年四川资阳,第12题3分)某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.考点:扇形统计图.分析:用学校总人数乘以教师所占的百分比,计算即可得解.解答:解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.点评:本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.2.(2019年山东泰安,第22题4分)七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):的家庭约有 户.分析:根据=总数之间的关系求出5<x ≤10的频数,再用整体×样本的百分比即可得出答案.解:根据题意得:=100(户),15<x ≤20的频数是0.07×100=7(户),5<x ≤10的频数是:100﹣12﹣20﹣7﹣3=58(户), 则该小区月均用水量不超过10m 3的家庭约有×800=560(户);故答案为:560.点评:此题考查了用样本估计总体和频数、频率、总数之间的关系,掌握=总数和样本估计整体让整体×样本的百分比是本题的关键.三.解答题1.(2018•毕节地区,第24题12分)我市某校在推进新课改的过程中,开设的体育选修课有:A :篮球,B :足球,C :排球,D :羽毛球,E :乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.则概率是:=2.(2018•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40 ;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40360°×3500×=.3.(2018•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.)本次测试的优秀率是=0.44则小宇与小强两名男同学分在同一组的概率是4. (2018•湘潭,第23题)从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上时间≤1小时;B、1小时<上时间≤4小时;C、4小时<上时间≤7小时;D、上时间>7小时.统计结果制成了如图统计图:(第1题图)(1)参加调查的学生有200 人;(2)请将条形统计图补全;(3)请估计全校上不超过7小时的学生人数.20÷1200×=9605. (2018•益阳,第17题,8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?(第2题图);)全校最喜爱文学类图书的学生约有:1200×=480果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a= 0.1 ,b= 6 ;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)株洲市决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?=7.(2018•呼和浩特,第20题9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.名学生恰好在同一组的概率是:;。

新课标版2019年全国各地中考真题分类详解——概率

新课标版2019年全国各地中考真题分类详解——概率

新课标版2019年全国各地中考真题分类详解概率一、选择题若抛掷硬币的次数为1000,则"下面朝上"的频数最接近()A.200B.300C.500D.800【答案】C【解析】根据实验,正面朝上的频率依次为:0.35,0,49,0.52,0.505,0.488,据此可估计,抛掷质地均匀的硬币,正面朝上的概率约为0.5,所以抛掷硬币的次数为1000,则"下面朝上"的频数最接近1000×0.5=500(次),故选C.10.(2019·德州)甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.B.C.D.【答案】C.【解析】画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选C.4.(2019·温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.16B.13C.12D.23【答案】A【解析】本题考查了概率公式,根据概率的定义即可得到答案. 共6张扑克牌,其中1张“红桃”,则从中任意抽取1张,是“红桃”的概率为16.故选A.4.(2019·绍兴 ) 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是 ( )A.0.85B. 0.57C. 0.42D.0.15【答案】D 【解析】结合表格,根据频率=频数÷样本容量,即身高不低于180cm 的频率是15÷100=0.15,再用频率估计概率进行解答.4. (2019·烟台)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( ).A .25 B .12 C .35D .无法确定 【答案】B【解析】利用图形的对称性,可以看出在正六边形镖盘中白色区域与阴影区域的面积相等,所以飞镖落在白色区域的概率为12.10.(2019·株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值()A .10B .6C .5D .4 【答案】C【解析】从-1,1,2,4这四个数中任取两个不同的数,共有{ -1,1}{ -1,2}{ -1,4}{ 1,2}{ 1,4}{ 2,4}六种情况,其中{ -1,4}{ 1,2}两数和相同,所以共有五种情况,即S 最大为5,选C 。

2019年全国各地中考数学试题分类汇编专题15 频数与频率(含解析)

2019年全国各地中考数学试题分类汇编专题15 频数与频率(含解析)

频数与频率一.选择题1.二.填空题1. (2019•江苏扬州•3分)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是0.92 .(精确到0.01)【考点】:频率与频数【解析】:频率接近于一个数,精确到0.01【答案】:0.922.3.三.解答题1. (2019•江苏扬州•8分)扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.根据以上信息,请回答下列问题:(1)表中a= 120 ,b= 0.1 ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天阅读时间超过1小时的人数.【解析】:(1)36÷0.3=120(人)总共120人,∴a=12012÷120=0.1=b(2)如图0.4×120=48(人)(3)1200×(0.4+0.1)=600人答:该校学生每天阅读时间超过1小时的人数为600人.【考点】:数据的收集与整理,统计图的运用2. (2019•广东省广州市•10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.3.4.5.。

2019年全国各地中考数学真题分类解析:统计

2019年全国各地中考数学真题分类解析:统计

统计一、选择题1.(2019年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2018•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()解:根据题意得:360×=2523.(2019年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2018•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()5.(2018•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()6.(2018•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()7.(2018•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()8.(2018•毕节地区,第5题3分)下列叙述正确的是()9.(2018•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()10.(2018•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:11.(2018•襄阳,第6题3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()12.(2018•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()则平均数为:=1.513.(2018•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2019年4月份用电量的调查结果:那么关于这1014.(2018•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?( ) A.a=16 B.a=24 C.b=24 D.b=34分析:先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选D.点评:此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(2018•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C.2 D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17. (2018•株洲,第3题,3分)下列说法错误的是()的平均数是18. (2018•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是()19. (2018•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()20.(2018•呼和浩特,第2题3分)以下问题,不适合用全面调查的是()同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的(),下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()中位数为:=29()成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二.填空题1. ( 2018•福建泉州,第12题4分)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为 5 件.2. ( 2018•广西玉林市、防城港市,第15题3分)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是9 ℃.3. ( 2018•广西贺州,第15题3分)近年来,A市民用汽车拥有量持续增长,2009年至2019年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= 22 .考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.4.(2019年广东汕尾,第14题5分)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.分析:根据众数和平均数的概念求解.解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.(2018•孝感,第14题3分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是①③.(填序号)6.(2018·云南昆明,第11题3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).年4月份的日平均气温的情况,记该月A 市和B 市日平均气温是8℃的天数分别为a 天和b 天,则a+b= .分析:根据折线图即可求得a 、b 的值,从而求得代数式的值. 解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案是:12.点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.(2018·浙江金华,第14题4分)小亮对60名同学进行节水方法的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是▲ .【答案】240°.【解析】试题分析:根据扇形圆心角的计算方法,表示“一水多用”的扇形圆心角的度数是40360240 40578⨯︒=+++︒.考点:扇形圆心角的计算.9.(2018•浙江宁波,第15题4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 150 支.10. (2018•湘潭,第11题,3分)未测试两种电子表的走时误差,做了如下统计则这两种电子表走时稳定的是甲.11. (2018•益阳,第11题,4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 2.16 米.12. (2018•株洲,第12题,3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.等级所占的百分比为:×100%=30%,166,168,167,169,168,则她们身高的众数是cm,极差是cm.考点:众数、极差分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解答:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.14. (2018•扬州,第12题,3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280 人.解:∵骑车的学生所占的百分比是×100%=35%,15.(2018•呼和浩特,第12题3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6 .=﹣﹣∴这组数据的方差是的平均数为,[))三.解答题1. ( 2018•福建泉州,第23题9分)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?)1300×=5202. ( 2018•广东,第22题7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3. ( 2018•珠海,第14题6分)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.)根据题意得:1000×=1004. ( 2018•广西贺州,第22题8分)学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据学生的人数除以占的百分比,求出总人数;求出商人占的百分比即可;(2)求出职工的人数,补全条形统计图即可;(3)由职工的百分比乘以28000即可得到结果.解答:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.5. ( 2018•广西玉林市、防城港市,第22题8分)第一次模拟试后,数陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?)第三、四组的频率是:0.12×=0.686.(2019年四川资阳,第18题8分)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.考点:条形统计图;列表法与树状图法.分析:(1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防知识“特别熟悉”的居民人数的百分比乘以900即可;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出树状图,再根据概率公式求解.解答:解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.7.(2019年天津市,第20题8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.专题:计算题.分析:(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.解答:解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.8.(2018•新疆,第18题8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?9.(2019年云南省,第18题9分)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(2018•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)=,,11.(2018•舟山,第19题6分)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?=0.2512.(2018•毕节地区,第24题12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.则概率是:=13.(2018•襄阳,第20题7分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是6个;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.P=.14.(2018•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40 ;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40360°×3500×=.15.(2018•邵阳,第22题8分)瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁瘾人数约为2000万,请估计其中12﹣23岁的人数.)360°××100%=108°万×16.(2018•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.)本次测试的优秀率是=0.44则小宇与小强两名男同学分在同一组的概率是17.(2018·台湾,第28题分)已知甲校有a 人,其中男生占60%;乙校有b 人,其中男生占50%.今将甲、乙两校合并后,小清认为:「因为60%+50%2=55%,所以合并后的男生占总人数的55%.」如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.分析:根据加权平均数的计算公式可得合并后男生在总人数中占的百分比,再与小清的结果进行比较即可. 解:合并后男生在总人数中占的百分比是:60%a +50%ba +b ×100%.当a =b 时小清的答案才成立; 当a =b 时,60%a +50%aa +a×100%=55%.点评:此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,再进行比较.18.(2018·云南昆明,第18题6分)某校计划开设4门选修课:音乐、绘画、体育、舞蹈.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图:20%音乐舞蹈体育绘画科目人数根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为 a = 人,其中选择“绘画”的学生人数占抽样人数的百分比为 b = ;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?。

2019年全国各地中考数学真题汇编:统计与概率(四川专版)(解析卷)

2019年全国各地中考数学真题汇编:统计与概率(四川专版)(解析卷)

2019年全国各地中考数学真题汇编(四川专版)统计与概率参考答案与试题解析一.选择题(共15小题)1.(2019•成都)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.2.(2019•自贡)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.3.(2019•攀枝花)比较A组、B组中两组数据的平均数及方差,以下说法正确的是()A.A组、B组平均数及方差分别相等B.A组、B组平均数相等,B组方差大C.A组比B组的平均数、方差都大D.A组、B组平均数相等,A组方差大解:由图象可看出A组的数据为:3,3,3,3,3,2,2,2,2,B组的数据为:2,2,2,2,3,0,0,0,0则A组的平均数为A=×(3+3+3+3+3+2+2+2+2)=B组的平均数为B=×(2+2+2+2+3+0+0+0+0)=∴A=BA组的方差S2A=×[(3﹣)2+(3﹣)2+(3﹣)2+(3﹣)2+(3﹣)2+(﹣1﹣)2+(﹣1﹣)2+(﹣1﹣)2+(﹣1﹣)2]=B组的方差S2B=×[(2﹣)2+(2﹣)2+(2﹣)2+(2﹣)2+(3﹣)2+(0﹣)2+(0﹣)2+(0﹣)2+(0﹣)2]=∴S2A>S2B综上,A组、B组的平均数相等,A组的方差大于B组的方差故选:D.4.(2019•绵阳)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11﹣3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5﹣7)2+(7﹣7)2+(11﹣7)2+(3﹣7)2+(9﹣7)2]=8.结论正确,故D符合题意;故选:D.5.(2019•广元)如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5B.6C.7D.9解:∵一组数据6,7,x,9,5的平均数是2x,∴6+7+x+9+5=2x×5,解得:x=3,则从大到小排列为:3,5,6,7,9,故这组数据的中位数为:6.故选:B.6.(2019•遂宁)某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选:C.7.(2019•乐山)小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A.B.C.D.解:在﹣1,0,1,2,3,4这六个数中,满足不等式x+1<2的有﹣1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.8.(2019•南充)在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A.5人B.10人C.15人D.20人解:∵选考乒乓球人数为50×40%=20人,选考羽毛球人数为50×=10人,∴选考乒乓球人数比羽毛球人数多20﹣10=10人,故选:B.9.(2019•眉山)某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.6B.6.5C.7D.8解:∵5,6,6,x,7,8,9,这组数据的平均数是7,∴x=7×7﹣(5+6+6+7+8+9)=9,∴这组数据从小到大排列为:5,6,6,7,8,9,9则最中间为7,即这组数据的中位数是7.故选:C.10.(2019•宜宾)如表记录了两位射击运动员的八次训练成绩:次数第1次第2次第3次第4次第5次第6次第7次第8次环数运动员甲107788897乙1055899810根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是()A.=,s 甲2<s乙2B.=,s甲2>s乙2C.>,s甲2<s乙2D.<,s甲2<s乙2解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2]=1;s乙2=[(10﹣8)2+(5﹣8)2+(5﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2+(10﹣8)2]=,∴=,s甲2<s乙2,故选:A.11.(2019•广安)下列说法正确的是()A.“367人中必有2人的生日是同一天”是必然事件B.了解一批灯泡的使用寿命采用全面调查C.一组数据6,5,3,5,4的众数是5,中位数是3D.一组数据10,11,12,9,8的平均数是10,方差是1.5解:A.“367人中必有2人的生日是同一天”是必然事件,故本选项正确;B.了解一批灯泡的使用寿命采用抽样调查,故本选项错误;C.一组数据6,5,3,5,4的众数是5,中位数是5,故本选项错误;D.一组数据10,11,12,9,8的平均数是10,方差是2,故本选项错误;故选:A.12.(2019•达州)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.5解:平均数为==2方差S2=[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=故选:B.13.(2019•巴中)如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A.120人B.160人C.125人D.180人解:学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.14.(2019•资阳)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.15.(2019•凉山州)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.二.填空题(共6小题)16.(2019•自贡)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90分.解:这组数据的众数是90分,故答案为:90.17.(2019•南充)下表是某养殖户的500只鸡出售时质量的统计数据.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为 1.4kg.解:500个数据的中位数是第250、251个数据的平均数,∵第250和251个数据分别为1.4、1.4,∴这组数据的中位数为=1.4(kg),故答案为:1.4kg.18.(2019•巴中)如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为.解:根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4﹣5)2+(5﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=,故答案为:.19.(2019•遂宁)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为88.8分.解:由题意,则该名教师的综合成绩为:92×40%+85×40%+90×20%=36.8+34+18=88.8故答案为:88.820.(2019•资阳)一组数据1,2,5,x,3,6的众数为5.则这组数据的中位数为4.解:∵数据1,2,5,x,3,6的众数为5,∴x=5,则数据为1,2,3,5,5,6,∴这组数据的中位数为=4,故答案为:4.21.(2019•达州)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.三.解答题(共16小题)22.(2019•南充)现有四张完全相同的不透明卡片,其正面分别写有数字﹣2,﹣1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.解:(1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为=;(2)画树状图如图所示:共有16个可能的结果,点A在直线y=2x上的结果有2个,∴点A在直线y=2x上的概率为=.23.(2019•成都)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.(2019•自贡)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<80280≤x<901790≤x<10010(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.25.(2019•攀枝花)某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表.兴趣班频数频率A0.35B180.30C15bD6合计a1请你根据统计表中提供的信息回答下列问题:(1)统计表中的a=60,b=0.25;(2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣班的人数;(3)王姀和李婴选择参加兴趣班,若她们每人从A、B、C、D四类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类的概率.解:(1)a=18÷0.3=60,b=15÷60=0.25,故答案为:60、0.25;(2)估计该市2000名小学生中最喜欢“绘画”兴趣班的人数2000×0.35=700(人);(3)根据题意画树状图如下:共有16种等可能的结果,其中两人恰好选中同一类的结果有4种,∴两人恰好选中同一类的概率为=.26.(2019•泸州)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是21.125℃,中位数是21.5℃;(2)求扇形统计图中扇形A的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.解:(1)5月1日至8日中午时气温的平均数:(19+16+22+18+21+22+25+26)÷8=21.125℃将8天的温度按低到高排列:16,18,19,21,22,22,25,26,因此中位数为=21.5℃,故答案为21.125,21.5;(2)因为低于20℃的天数有3天,则扇形统计图中扇形A的圆心角的度数360°×=135°,答:扇形统计图中扇形A的圆心角的度数135°;(3)设这个月5月1日至5日的5天中午12时的气温依次即为A1,A2,A3,A4,A5,则抽到2天中午12时的气温,共有(A1A2),(A1A3),(A1A4),(A1A5),(A2A3),(A2A4),(A2A5),(A3A4),(A3A5),(A4A5)共10种不同取法,其中抽到2天中午12时的气温均低于20℃有(A1A2),(A1A4),(A2A4)3种不同取法,因此恰好抽到2天中午12时的气温均低于20℃的概率为.27.(2019•绵阳)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.解:(1)80~90的频数为36×50%=18,则80~85的频数为18﹣11=7,95~100的频数为36﹣(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°×=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为=.28.(2019•广元)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?饮品名称白开水瓶装矿泉水碳酸饮料非碳酸饮料平均价格(元/瓶)0234(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.解:(1)这个班级的学生人数为15÷30%=50(人),选择C饮品的人数为50﹣(10+15+5)=20(人),补全图形如下:(2)=2.2(元),答:该班同学每天用于饮品的人均花费是2.2元;(3)画树状图如下:由树状图知共有20种等可能结果,其中恰好抽到2名班长的有2种结果,所以恰好抽到2名班长的概率为=.29.(2019•遂宁)我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了200名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为108°.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.解:(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)“数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.30.(2019•乐山)某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有40名男生,40名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是27;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.31.(2019•眉山)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中三等奖所在扇形的圆心角的度数是108度;(2)请将条形统计图补全;(3)获得一等奖的同学中有来自七年级,有来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.解:(1)∵被调查的总人数为16÷40%=40(人),∴扇形统计图中三等奖所在扇形的圆心角的度数是360°×=108°,故答案为:108;(2)一等奖人数为40﹣(8+12+16)=4(人),补全图形如下:(3)一等奖中七年级人数为4×=1(人),九年级人数为4×=1(人),则八年级的有2人,画树状图如下:由树状图知,共有12种等可能结果,其中所选出的2人中既有八年级同学又有九年级同学的有4种结果,所以所选出的2人中既有八年级同学又有九年级同学的概率为=.32.(2019•宜宾)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.解:(1)三个年级获奖总人数为17÷34%=50(人);(2)三等奖对应的百分比为×100%=20%,则一等奖的百分比为1﹣(14%+20%+34%+24%)=8%,补全图形如下:(3)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率为.33.(2019•广安)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了200名学生,两幅统计图中的m=84,n=15.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.解:(1)68÷34%=200,所以本次调查共抽取了200名学生,(3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.34.(2019•达州)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是780元,中位数是680元,众数是640元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):不合适.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110,中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×780=23400(元).35.(2019•巴中)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为4,众数为4.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.36.(2019•资阳)为了解“哈啰单车”的使用情况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获得的数据分成四组(A:0<t≤30;B:30<t≤60;C:60<t≤120;D:t>120),并绘制出如图所示的两幅不完整的统计图.(1)求D组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在C、D两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰好选中一男一女的概率.解:(1)∵被调查的总人数为6÷30%=20(人),∴C组人数为20×20%=4(人),则D组人数为20﹣(6+7+4)=3(人),∴D组所在扇形的圆心角的度数为360°×=54°,补全图形如下:(2)树状图如下:共有12种等可能的情况,其中选中一名男同学和一名女同学的情况有6种,∴选中一名男同学和一名女同学的概率为=.37.(2019•凉山州)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.。

2019年全国各地中考数学真题汇编:统计与概率(四川专版)(解析卷)

2019 年全国各地中考数学真题汇编(四川专版)统计与概率参照答案与试题分析一.选择题(共15 小题)1.( 2019?成都)某校展开了主题为“青春?梦想”的艺术作品搜集活动.从九年级五个班采集到的作品数目(单位:件)分别为:42,50, 45,46, 50,则这组数据的中位数是()A .42 件B.45 件C.46 件D.50 件解:将数据从小到大摆列为:42, 45, 46, 50, 50,∴中位数为 46,应选: C.2.( 2019?自贡)在 5 轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的均匀分都是90 分,甲的成绩方差是 15,乙的成绩方差是3,以下说法正确的选项是()A .甲的成绩比乙的成绩稳固B .乙的成绩比甲的成绩稳固C.甲、乙两人的成绩同样稳固D.没法确立甲、乙的成绩谁更稳固解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳固,应选: B.3.( 2019?攀枝花)比较 A 组、 B 组中两组数据的均匀数及方差,以下说法正确的选项是()A .A 组、B 组均匀数及方差分别相等B .A 组、 B 组均匀数相等, B 组方差大C.A 组比 B 组的均匀数、方差都大D .A 组、 B 组均匀数相等, A 组方差大解:由图象可看出 A 组的数据为:3, 3, 3, 3, 3,2, 2, 2, 2,B 组的数据为: 2, 2,2, 2,3,0, 0,0, 0则 A 组的均匀数为 A = ×( 3+3+3+3+3+2+2+2+2 )=B 组的均匀数为 B =×( 2+2+2+2+3+0+0+0+0 )=∴A =BA 组的方差 2×[(3﹣22222S A =) +(3﹣ ) +(3﹣ ) +(3﹣) +(3﹣) +(﹣1﹣)2+(﹣ 1﹣) 2+(﹣ 1﹣ ) 2+(﹣ 1﹣) 2]=2× [( 2﹣22222)B 组的方差 S B =) +(2﹣ ) +(2﹣) +(2﹣) +(3﹣) +(0﹣ 2222+( 0﹣) +( 0﹣) +(0﹣ ) ] =∴ S 2A > S 2B综上, A 组、 B 组的均匀数相等, A 组的方差大于 B 组的方差应选: D .4.( 2019?绵阳)帅帅采集了南街米粉店今年6 月 1 日至 6 月 5 日每日的用水量(单位:吨),整理并绘制成以下折线统计图.以下结论正确的选项是()A .极差是6B .众数是7C .中位数是5D .方差是8解:由图可知,6 月1 日至6 月5 日每日的用水量是:5, 7, 11, 3,9.A .极差=11﹣ 3=8,结论错误,故 A 不切合题意;B .众数为 5,7, 11, 3,9,结论错误,故 B 不切合题意;C .这 5 个数按从小到大的次序摆列为:3,5,7,9, 11,中位数为 7,结论错误,故 C 不切合题意;D .均匀数是( 5+7+11+3+9 )÷ 5=7,2 2 2 2 2 2方差 S = [( 5﹣7) +( 7﹣7) +( 11﹣ 7) +( 3﹣7) +( 9﹣7) ]= 8. 结论正确,故 D 切合题意;应选: D .5.( 2019?广元)假如一组数据 6, 7, x , 9, 5 的均匀数是 2x ,那么这组数据的中位数为( )A .5B .6C . 7D . 9解:∵一组数据6, 7, x,9, 5 的均匀数是2x,∴6+7+x+9+5 = 2x× 5,解得: x= 3,则从大到小摆列为: 3, 5, 6, 7, 9,故这组数据的中位数为:6.应选: B.6 .( 2019?遂宁)某校为了认识家长对“严禁学生带手机进入校园”这一规定的建议,随机对全校100 名学生家进步行检查,这一问题中样本是()A.100B.被抽取的 100 名学生家长C.被抽取的100 名学生家长的建议D.全校学生家长的建议解:某校为了认识家长对“严禁学生带手机进入校园”这一规定的建议,随机对全校100 名学生家进步行检查,这一问题中样本是:被抽取的100 名学生家长的建议.应选: C.7.( 2019?乐山)小强同学从﹣1, 0,1, 2,3,4 这六个数中任选一个数,知足不等式x+1 <2 的概率是()A .B.C.D.解:在﹣ 1, 0,1, 2, 3, 4 这六个数中,知足不等式x+1< 2 的有﹣ 1、 0 这两个,所以知足不等式x+1 < 2 的概率是=,应选: C.8.( 2019?南充)在 2019 年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班 50 名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A.5 人B.10 人C.15 人D.20 人解:∵选考乒乓球人数为50× 40%=20 人,选考羽毛球人数为 50×=10 人,∴选考乒乓球人数比羽毛球人数多20﹣ 10= 10 人,应选: B.9.( 2019?眉山)某班七个兴趣小组人数以下:5,6, 6, x, 7, 8,9,已知这组数据的均匀数是7,则这组数据的中位数是()A .6B.C. 7D. 8解:∵ 5, 6, 6, x, 7, 8, 9,这组数据的均匀数是7,∴x= 7× 7﹣( 5+6+6+7+8+9 )= 9,∴这组数据从小到大摆列为: 5, 6,6, 7, 8, 9, 9则最中间为7,即这组数据的中位数是7.应选: C.10.( 2019?宜宾)如表记录了两位射击运动员的八次训练成绩:次数第1次第2次第3次第4次第5次第6次第7次第8次环数运动员甲10 7 7 8 8 8 9 7乙10 5 5 8 9 9 8 10依据以上数据,设甲、乙的均匀数分别为、,甲、乙的方差分别为s 甲2, s 乙2,则以下结论正确的选项是()A .=, s 甲2<s 乙2B .=, s 甲2> s 乙2C.>, s 甲2< s 乙2D .<, s 甲2< s 乙2解:( 1)=( 10+7+7+8+8+8+9+7 )= 8;=( 10+5+5+8+9+9+8+10 )= 8;2 2 2 2 2 2 2 2s 甲= [( 10﹣ 8)+( 7﹣8) +( 7﹣ 8) +(8﹣ 8) +( 8﹣8) +( 8﹣8) +(9﹣ 8) +( 7﹣8)2 ]= 1;2 2 2 2 2 2 2 2s 乙= [( 10﹣8)+( 5﹣8) +(5﹣ 8) +( 8﹣8) +(9﹣ 8) +(9﹣ 8) +( 8﹣ 8)+( 10﹣8)2]=,∴=, s 甲2< s 乙2,应选: A.11.( 2019?广安)以下说法正确的选项是()A .“ 367 人中必有 2 人的诞辰是同一天”是必定事件B.认识一批灯泡的使用寿命采纳全面检查C.一组数据6, 5, 3,5, 4 的众数是5,中位数是 3D .一组数据10, 11, 12, 9, 8 的均匀数是 10,方差是解: A.“ 367 人中必有 2 人的诞辰是同一天”是必定事件,故本选项正确;B.认识一批灯泡的使用寿命采纳抽样检查,故本选项错误;C.一组数据6, 5, 3,5, 4 的众数是5,中位数是5,故本选项错误;D .一组数据 10, 11, 12, 9, 8 的均匀数是 10,方差是 2,故本选项错误;应选: A.12.( 2019?达州)一组数据1, 2, 1, 4 的方差为()A .1 B.C. 2 D.解:均匀数为== 22 2 2 2 2方差 S =[( 1﹣2) +( 2﹣2) +( 1﹣ 2) +(4﹣ 2) ]=应选: B.13.( 2019?巴中)以下图,是巴中某校正学生到校方式的状况统计图.若该校骑自行车到校的学生有 200 人,则步行到校的学生有()A .120 人B.160 人C. 125 人D. 180 人解:学生总数:200÷ 25%= 800(人),步行到校的学生:800× 20%= 160(人),应选: B.14.( 2019?资阳)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其余差别.其中红球若干,白球 5 个,袋中的球已搅匀.若从袋中随机拿出 1 个球,拿出红球的可能性大,则红球的个数是()A.4 个B.5 个C.不足 4 个D.6 个或 6 个以上解:∵袋子中白球有 5 个,且从袋中随机拿出 1 个球,拿出红球的可能性大,∴红球的个数比白球个数多,∴红球个数知足 6 个或 6 个以上,应选: D.15.( 2019?凉山州)某班40 名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10 那么该班 40 名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,B.17, 9 C.8, 9 D. 8,解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21 两个数的均匀数就是中位数,∴这组数据的中位数为=;应选: D.二.填空题(共 6 小题)16.( 2019?自贡)在一次有 12 人参加的数学测试中,得100 分、 95 分、 90 分、 85 分、 75 分的人数分别是 1、 3、 4、 2、 2,那么这组数据的众数是90 分.解:这组数据的众数是90 分,故答案为: 90.17.( 2019?南充)下表是某养殖户的500 只鸡销售时质量的统计数据.质量 /kg频数 /只56 162 112 120 40 10 则 500 只鸡质量的中位数为.解: 500 个数据的中位数是第250、251 个数据的均匀数,∵第 250 和 251 个数据分别为、,∴这组数据的中位数为=( kg),故答案为:.18.( 2019?巴中)假如一组数据为4、 a、5、 3、 8,其均匀数为a,那么这组数据的方差为.解:依据题意,得:= a,解得: a= 5,则这组数据为4、 5、 5、3、 8,其均匀数是5,所以这组数据的方差为2 2 2 2 2,×[(4﹣5)+( 5﹣ 5) +( 5﹣ 5) +( 3﹣5) +( 8﹣5) ]=故答案为:.19.( 2019?遂宁)某校拟招聘一批优异教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92 分、 85 分、 90 分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 88.8 分.解:由题意,则该名教师的综合成绩为:92× 40%+85 × 40%+90 × 20%=36.8+34+18=故答案为:20.( 2019?资阳)一组数据1, 2, 5, x, 3, 6 的众数为 5.则这组数据的中位数为 4 .解:∵数据 1,2, 5, x,3, 6 的众数为 5,∴x= 5,则数据为1, 2, 3, 5, 5, 6,∴这组数据的中位数为= 4,故答案为: 4.21.( 2019?达州)以下图的电路中,当随机闭合开关S1、 S2、 S3中的两个时,可以让灯泡发光的概率为.解:由于随机闭合开关S1, S2, S3中的两个,有 3 种方法,其中有 2 种可以让灯泡发光所以 P(灯泡发光)=.故此题答案为:.三.解答题(共16 小题)22.( 2019?南充)现有四张完好同样的不透明卡片,其正面分别写有数字﹣张卡片反面向上洗匀后放在桌面上.( 1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.2,﹣ 1, 0, 2,把这四( 2)先随机抽取一张卡片,其上的数字作为点 A 的横坐标;而后放回并洗匀,再随机抽取一张卡片,其上的数字作为点 A 的纵坐标,试用画树状图或列表的方法求出点 A 在直线 y= 2x 上的概率.解:( 1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为=;( 2)画树状图以下图:共有 16 个可能的结果,点 A 在直线 y= 2x 上的结果有 2 个,∴点 A 在直线 y= 2x 上的概率为=.23.(2019?成都)跟着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生供给以下四类在线学习方式:在线阅读、在线听课、在线答题和在线议论.为认识学生需求,该校随机对本校部分学生进行了“你对哪种在线学习方式最感兴趣”的检查,并依据检查结果绘制成以下两幅不完好的统计图.依据图中信息,解答以下问题:(1)求本次检查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线议论”对应的扇形圆心角的度数;(3)该校共有学生 2100 人,请你预计该校正在线阅读最感兴趣的学生人数.解:( 1)本次检查的学生总人数为: 18÷20%= 90,在线听课的人数为: 90﹣24﹣ 18﹣12= 36,补全的条形统计图如右图所示;= 48°,( 2)扇形统计图中“在线议论”对应的扇形圆心角的度数是:360°×即扇形统计图中“在线议论”对应的扇形圆心角的度数是48°;( 3) 2100×=560(人),答:该校正在线阅读最感兴趣的学生有560 人.24.( 2019?自贡)某校举行了自贡市创立全国文明城市知识比赛活动,初一年级全体同学参加了知识比赛.采集教据:现随机抽取了初一年级30 名同学的“创文知识比赛”成绩,分数以下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理剖析数据:成绩 x(单位:分)频数(人数)60≤ x< 70 170≤ x< 80 280≤ x< 901790≤ x< 10010(1)请将图表中空缺的部分增补完好;(2)学校决定表彰“创文知识比赛”成绩在 90 分及其以上的同学.依据上边统计结果预计该校初一年级 360 人中,约有多少人将获取表彰;(3)“创文知识比赛”中,遇到表彰的小红同学获取了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选用两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰巧有恐龙图案的概率是.解:( 1)补全图表以下:( 2)预计该校初一年级360 人中,获取表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、 B、 C、D ,画树状图以下:则共有 12 种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰巧有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰巧有恐龙图案的概率为,故答案为:.25.( 2019?攀枝花)某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班.为认识学生对这四类兴趣班的喜爱状况,对学生进行了随机问卷检查(问卷检查表以下图),将检查结果整理后绘制了一幅不完好的统计表.兴趣班频数频次AB 18C 15 bD 6共计 a 1请你依据统计表中供给的信息回答以下问题:(1)统计表中的 a= 60 , b= 0.25 ;(2)依据检查结果,请你预计该市2000 名小学生中最喜爱“绘画”兴趣班的人数;( 3)王姀和李婴选择参加兴趣班,若她们每人从A、B、 C、D 四类兴趣班中随机选用一类,请用画树状图或列表格的方法,求两人恰巧选中同一类的概率.解:( 1) a= 18÷= 60, b= 15÷ 60=,故答案为: 60、0.25 ;( 2)预计该市2000 名小学生中最喜爱“绘画”兴趣班的人数2000×= 700(人);( 3)依据题意画树状图以下:共有 16 种等可能的结果,其中两人恰巧选中同一类的结果有∴两人恰巧选中同一类的概率为=.26.( 2019?泸州)某市气象局统计了 5 月 1 日至 8 日正午制成以下图的两幅统计图.依据图中给出的信息,解答以下问题:4 种,12 时的气温(单位:℃),整理后分别绘( 1)该市 5 月 1 日至 8 日中正午气温的均匀数是℃,中位数是℃;( 2)求扇形统计图中扇形 A 的圆心角的度数;( 3)现从该市 5 月 1 日至 5 日的 5 天中,随机抽取 2 天,求恰巧抽到 2 天正午 12 时的气温均低于 20℃的概率.解:( 1) 5 月 1 日至 8 日中正午气温的均匀数:(19+16+22+18+21+22+25+26 )÷ 8=℃将 8 天的温度按低到高摆列:16, 18,19,21, 22, 22,25, 26,因其中位数为=℃,故答案为,;( 2)由于低于20℃的天数有3 天,则扇形统计图中扇形 A 的圆心角的度数 360°×= 135°,答:扇形统计图中扇形A 的圆心角的度数135°;( 3)设这个月 5 月 1 日至5 日的5 天正午12 时的气温挨次即为A 1, A 2, A 3, A 4, A 5,则抽到 2 天正午 12 时的气温, 共有(A 1A 2),( A 1A 3),( A 1A 4),( A 1A 5),(A 2A 3),(A 2A 4),( A 2 5),( A 3 4),( A 3 5),( A 4 A 5)共 10 种不一样取法,A A A其中抽到 2 天正午 12 时的气温均低于 20℃有( A 1A 2),( A 1A 4),( A 2 A 4) 3 种不一样取法,所以恰巧抽到 2 天正午 12 时的气温均低于 20℃的概率为.27.( 2019?绵阳)成功中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将 36名参赛选手的成绩(单位:分)统计并绘制成频数散布直方图和扇形统计图,部分信息以下:请依据统计图的信息,解答以下问题:( 1)补全频数散布直方图,并求扇形统计图中扇形D 对应的圆心角度数;( 2)成绩在 D 地区的选手, 男生比女生多一人, 从中随机抽取两人暂时担当该校艺术节的主持人,求恰巧选中一名男生和一名女生的概率.解:( 1) 80~ 90 的频数为 36× 50%=18,则 80~ 85 的频数为 18﹣11=7,95~ 100 的频数为 36﹣( 4+18+9 )= 5,补全图形以下:扇形统计图中扇形 D 对应的圆心角度数为360°×= 50°;( 2)画树状图为:共有 20 种等可能的结果数,其中抽取的学生恰巧是一名男生和一名女生的结果数为12,所以抽取的学生恰巧是一名男生和一名女生的概率为=.28.( 2019?广元)现在好多初中生喜爱购头饮品饮用,既影响身体健康又给家庭增添不用要的开支,为此某班数学兴趣小组对本班同学一天饮用饮品的状况进行了检查,大概可分为四种: A.白开水,B.瓶装矿泉水, C.碳酸饮料, D.非碳酸饮料.依据统计结果绘制以下两个统计图,依据统计图供给的信息,解答以下问题(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每日只饮用一种饮品(每种仅限一瓶,价钱以下表),则该班同学每日用于饮品的人均花销是多少元?饮品名称白开水瓶装矿泉水碳酸饮料非碳酸饮料均匀价钱(元/瓶)023 4( 3)为了养成优异的生活习惯,班主任决定在饮用白开水的 5 名班委干部(其中有两位班长记为A,B,其余三位记为C,D ,E)中随机抽取 2 名班委干部作优异习惯监察员,请用列表法或画树状图的方法求出恰巧抽到 2 名班长的概率.解:( 1)这个班级的学生人数为 15÷ 30%= 50(人),选择 C 饮品的人数为 50﹣( 10+15+5 )= 20(人),补全图形以下:( 2)=(元),答:该班同学每日用于饮品的人均花销是 2.2 元;( 3)画树状图以下:由树状图知共有20 种等可能结果,其中恰巧抽到 2 名班长的有 2 种结果,所以恰巧抽到 2 名班长的概率为=.29.( 2019?遂宁)我市某校为了让学生的课余生活丰富多彩,展开了以下课外活动:代号活动种类A经典朗读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其余为认识学生的选择状况,现从该校随机抽取了部分学生进行问卷检查(参加问卷检查的每名学生只好选择其中一项),并依据检查获取的数据绘制了以下图的两幅不完好的统计图.请依据统计图供给的信息回答以下问题(要求写出简要的解答过程).( 1)此次共检查了200名学生.( 2)将条形统计图增补完好.( 3)“数学兴趣与培优”所在扇形的圆心角的度数为108°.( 4)若该校共有2000 名学生,请预计该校喜爱A、 B、 C 三类活动的学生共有多少人?( 5)学校将从喜爱“A”类活动的学生中选用 4 位同学(其中女生 2 名,男生 2 名)参加校园“金话筒”朗读初赛,并最后确立两名同学参加决赛,请用列表或画树状图的方法,求出恰巧一男一女参加决赛的概率.解:( 1)此次检查的总人数为40÷ 20%= 200(人),故答案为: 200;( 2)D 种类人数为200× 25%= 50(人),B 种类人数为200﹣( 40+30+50+20 )= 60(人),补全图形以下:( 3)“数学兴趣与培优”所在扇形的圆心角的度数为360°×= 108°,故答案为: 108°;( 4)预计该校喜爱A、B、 C 三类活动的学生共有2000×= 1300(人);( 5)画树状图以下:,由树状图知,共有 12 种等可能结果,其中一男一女的有8 种结果,∴恰巧一男一女参加决赛的概率=.30.( 2019?乐山)某校组织学生参加“安全知识比赛”,测试结束后,张老师从七年级720 名学生中随机地抽取部分学生的成绩绘制了条形统计图,以下图.试依据统计图供给的信息,回答下列问题:( 1)张老师抽取的这部分学生中,共有40 名男生,40 名女生;( 2)张老师抽取的这部分学生中,女生成绩的众数是27 ;( 3)若将不低于 27 分的成绩定为优异,请预计七年级720 名学生中成绩为优异的学生人数大概是多少.解:( 1)男生: 1+2+2+4+9+14+5+2+1 = 40(人)女生: 1+1+2+3+11++13+7+1+1 =40(人)故答案为 40, 40;( 2)女生成绩 27 的人数最多,所以众数为27,故答案为 27;( 3)(人),七年级 720 名学生中成绩为优异的学生人数大概是396 人.31.( 2019?眉山)某中学举行钢笔书法大赛,对各年级同学的获奖状况进行了统计,并绘制了以下两幅不完好的统计图.请联合图中有关信息解答以下问题:( 1)扇形统计图中三等奖所在扇形的圆心角的度数是108 度;(2)请将条形统计图补全;(3)获取一等奖的同学中有来自七年级,有来自九年级,其余同学均来自八年级.现准备从获取一等奖的同学中任选 2 人参加市级钢笔书法大赛,请经过列表或画树状图的方法求所选出的 2人中既有八年级同学又有九年级同学的概率.解:( 1)∵被检查的总人数为16÷ 40%= 40(人),∴扇形统计图中三等奖所在扇形的圆心角的度数是360°×=108°,故答案为: 108;(2)一等奖人数为 40﹣( 8+12+16 )= 4(人),补全图形以下:( 3)一等奖中七年级人数为4×= 1(人),九年级人数为4×= 1(人),则八年级的有 2 人,画树状图以下:4 由树状图知,共有12 种等可能结果,其中所选出的 2 人中既有八年级同学又有九年级同学的有种结果,所以所选出的 2 人中既有八年级同学又有九年级同学的概率为=.32.( 2019?宜宾)某校在七、八、九三个年级中进行“一带一路”知识比赛,分别设有一等奖、二等奖、三等奖、优异奖、纪念奖.现对三个年级同学的获奖状况进行了统计,其中获取纪念奖有17 人,获取三等奖有10 人,并制作了如图不完好的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;( 3)在获一等奖的同学中,七年级和八年级的人数各占,其余为九年级的同学,现从获一等奖的同学中选 2 名参加市级比赛,经过列表或许树状图的方法,求所选出的 2 人中既有七年级又有九年级同学的概率.解:( 1)三个年级获奖总人数为17÷ 34%= 50(人);( 2)三等奖对应的百分比为× 100%=20%,则一等奖的百分比为 1﹣( 14%+20%+34%+24% )= 8%,补全图形以下:( 3)由题意知,获一等奖的学生中,七年级有 1 人,八年级有 1 人,九年级有 2 人,画树状图为:(用 A、B、 C 分别表示七年级、八年级和九年级的学生)共有 12 种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率为.33.( 2019?广安)为了提升学生的阅读能力,我市某校展开了“读好书,助成长”的活动,并计划购买一批图书,购书前,对学生喜爱阅读的图书种类进行了抽样检查,并将检查数据绘制成两幅不完好的统计图,以下图,请依据统计图回答以下问题:( 1)本次检查共抽取了200名学生,两幅统计图中的m=84,n=15.( 2)已知该校共有3600 名学生,请你预计该校喜爱阅读“A”类图书的学生约有多少人?(3)学校将举办念书知识比赛,九年级 1 班要在本班 3 名优越者( 2 男 1 女)中随机选送 2 人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.解:( 1) 68÷ 34%= 200,所以本次检查共抽取了200 名学生,( 3)画树状图为:共有 6 种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.34.( 2019?达州)随机抽取某小吃店一周的营业额(单位:元)以下表:礼拜一礼拜二礼拜三礼拜四礼拜五礼拜六礼拜日共计540 680 640 640 780 1110 1070 5460 ( 1)剖析数据,填空:这组数据的均匀数是780 元,中位数是680 元,众数是640 元.( 2)预计一个月的营业额(按30 天计算):① 礼拜一到礼拜五营业额相差不大,用这 5 天的均匀数估量适合么?答(填“适合”或“不适合”):不适合.② 选择一个你以为最适合的数据估量这个小吃店一个月的营业额.解:( 1)这组数据的均匀数== 780(元);依据从小到大摆列为540、 640、 640、 680、 780、 1070、 1110,中位数为680 元,众数为 640 元;故答案为: 780, 680, 640;(2)① 由于在周一至周日的营业额中周六、日的营业额显然高于其余五天的营业额,所以去掉周六、日的营业额对均匀数的影响较大,故用该店本周礼拜一到礼拜五的日均匀营业额预计当月的营业总数不适合;故答案为:不适合;② 用该店本周一到周日的日均营业额预计当月营业额,当月的营业额为30× 780= 23400(元).35.( 2019?巴中)如图表示的是某班部分同学衣服上口袋的数目.① 从图中给出的信息获取学生衣服上口袋数目的中位数为4,众数为 4.② 依据如图信息,在给出的图表中绘制频数条形统计图,由此预计该班学生衣服上口袋数目为 5≤ x< 7 的概率.解:① 由图可知,学生衣服上口袋的数目分别为:3, 4,2, 6, 5, 5, 3, 1, 4, 2, 4, 6, 10,7, 1, 4, 5, 6, 2, 10, 3.按从小到大的次序摆列为:1, 1,2, 2, 2,3, 3,3, 4, 4,4, 4,5, 5, 5,6, 6,6, 7, 10, 10.故中位数为4,众数为4,故答案为4, 4.( 2)条形图以下图:预计该班学生衣服上口袋数目为5≤ x< 7 的概率==.36.( 2019?资阳)为认识“哈啰单车”的使用状况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获取的数据分红四组(A: 0<t≤ 30; B: 30< t≤ 60; C:60< t≤ 120; D: t> 120),并绘制出以下图的两幅不完好的统计图.(1)求 D 组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在 C、 D 两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰巧选中一男一女的概率.解:( 1)∵被检查的总人数为 6÷30%= 20(人),∴C 组人数为 20× 20%=4(人),则 D 组人数为 20﹣( 6+7+4 )= 3(人),∴ D 组所在扇形的圆心角的度数为 360°×= 54°,补全图形以下:( 2)树状图以下:共有 12 种等可能的状况,其中选中一名男同学和一名女同学的状况有 6 种,∴选中一名男同学和一名女同学的概率为=.37.( 2019?凉山州)某校初中部举行诗词大会预选赛,学校正参赛同学获奖状况进行统计,绘制了以下两幅不完好的统计图.请联合图中有关数据解答以下问题:( 1)参加此次诗词大会预选赛的同学共有40人;( 2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;( 3)将条形统计图增补完好;( 4)若获取一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请经过列表或树状图方法求所选两名同学中,恰巧是一名七年级和一名九年级同学的概率.解:( 1)参加此次诗词大会预选赛的同学共有18÷ 45%= 40(人),故答案为: 40;( 2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为: 90°.(3)获二等奖的人数= 40× 20%= 8,一等奖的人数为 40﹣ 8﹣ 10﹣ 18= 4(人),条形统计图为:( 4)由题意知,获一等奖的学生中,七年级有 1 人,八年级有 1 人,九年级有 2 人,画树状图为:(用A、B、 C 分别表示七年级、八年级和九年级的学生)共有 12 种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.。

2019年全国各地中考数学试题分类汇编(第一期) 专题15 频数与频率(含解析)

频数与频率一.选择题1. (2019•湖南邵阳•3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B.C进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D进行判断(当然前面三个判断了可直接对D进行判断).【解答】解:A.该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B.第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C.这组数据的众数为4,所以C选项错误;D.这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].也考查了中位数和众数.2. (2019•浙江绍兴•4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x组别(cm)x<160 160≤x<170 170≤x<180 x≥180人数 5 38 42 15)A.0.85 B.0.57 C.0.42 D.0.15【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于180cm的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.3(2019•湖北孝感•3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【点评】本题主要考查了随机事件的定义、众数的定义、方差的意义以及调查的方式,属于基础题.二.填空题1. (2019▪湖北黄石▪3分)根据下列统计图,回答问题:该超市10月份的水果类销售额>11月份的水果类销售额(请从“>”“=”“<”中选一个填空).【分析】10月份的水果类销售额60×20%=12(万元),11月份的水果类销售额70×15%=10.5(万元),所以10月份的水果类销售额>11月份的水果类销售额.【解答】解:10月份的水果类销售额60×20%=12(万元),11月份的水果类销售额70×15%=10.5(万元),所以10月份的水果类销售额>11月份的水果类销售额,故答案为>.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.2. (2019•甘肃武威•4分)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【分析】由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.【解答】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.3 (2019甘肃省陇南市)(4分)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【分析】由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.【解答】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.三.解答题1(2019•浙江金华•8分)某校根据课程设置要求,开设了数学类拓展性课程。

2019年全国各地中考数学真题汇编:统计与概率(江苏专版)(解析卷)

2019年全国各地中考数学真题汇编(江苏专版)统计与概率参考答案与试题解析一.选择题(共2小题)1.(2019•泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.800解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.2.(2019•无锡)已知一组数据:66,66,62,67,63,这组数据的众数和中位数分别是()A.66,62B.66,66C.67,62D.67,66解:把这组数据按照从小到大的顺序排列为:62,63,66,66,67,第3个数是66,所以中位数是66,在这组数据中出现次数最多的是66,即众数是66,故选:B.二.填空题(共8小题)3.(2019•苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.4.(2019•南京)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是7200.解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.5.(2019•宿迁)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:=.故答案为:.6.(2019•盐城)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为.解:∵圆被等分成6份,其中阴影部分占3份,∴落在阴影区域的概率为,故答案为:.7.(2019•镇江)一组数据4,3,x,1,5的众数是5,则x=5.解:∵数据4,3,x,1,5的众数是5,∴x=5,故答案为:5.8.(2019•盐城)甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s2,乙的方差是0.06s2,这5次短跑训练成绩较稳定的是乙.(填“甲”或“乙”)解:∵甲的方差为0.14s2,乙的方差为0.06s2,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.9.(2019•宿迁)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是乙.解:∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.10.(2019•镇江)如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是,则转盘B中标有数字1的扇形的圆心角的度数是80°.解:设转盘B中指针落在标有数字1的扇形区域内的概率为x,根据题意得:,解得,∴转盘B中标有数字1的扇形的圆心角的度数为:360°×=80°.故答案为:80.三.解答题(共20小题)11.(2019•南京)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.12.(2019•无锡)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)解:(1)从布袋中任意摸出1个球,摸出是红球的概率==;故答案为:;(2)画树状图为:共有12种等可能的结果数,其中两次摸到红球的结果数为2,所以两次摸到红球的概率==.13.(2019•南京)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.14.(2019•常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是30,这组数据的众数为10元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).15.(2019•无锡)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是4%;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.解:(1)扇形统计图中“不及格”所占的百分比是1﹣52%﹣18%﹣26%=4%;故答案为:4%;(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1;答:所抽取的学生的测试成绩的平均分为84.1分;(3)设总人数为n个,80.0≤41.3×n×4%≤89.9 所以48<n<54 又因为4%n为整数所以n =50,即优秀的学生有52%×50÷10%=260 人.16.(2019•苏州)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.17.(2019•常州)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为.18.(2019•连云港)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了200名中学生,其中课外阅读时长“2~4小时”的有40人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为144°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.解:(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.19.(2019•苏州)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=36,n=16;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).20.(2019•淮安)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C 级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有40人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:(3)800×=160,所以估计该企业员工中对安全生产知识的掌握能达到A级的人数为160人.21.(2019•连云港)现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球.(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.解:(1)从A盒中摸出红球的概率为;故答案为:;(2)画树状图如图所示:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,∴摸出的三个球中至少有一个红球的概率为=.22.(2019•淮安)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.(1)用树状图或列表等方法列出所有可能结果;(2)求两次摸到不同数字的概率.解:(1)画树状图如图所示:所有结果为:(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8,8);(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,∴两次摸到不同数字的概率为.23.(2019•泰州)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.解:画树状图如下由树状图知共有6种等可能结果,其中小明恰好抽中B、D两个项目的只有1种情况,所以小明恰好抽中B、D两个项目的概率为.24.(2019•盐城)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表请根据以上信息,解决下列问题:(1)频数分布表中,a=0.26、b=50;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.解:(1)根据题意得:b=3÷0.06=50,a==0.26;故答案为:0.26;50;(2)根据题意得:m=50×0.46=23,补全频数分布图,如图所示:(3)根据题意得:400×(0.46+0.08)=216,则该季度被评为“优秀员工”的人数为216人.25.(2019•扬州)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.根据以上信息,回答下列问题:(1)表中a=120,b=0.1;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).26.(2019•镇江)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.解:根据题意画树状图如下:共有9种等情况数,其中小丽和小明在同一天值日的有3种,则小丽和小明在同一天值日的概率是=.27.(2019•扬州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是;(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.解:(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是.故答案为.(2)树状图如图所示:共有12种可能,满足条件的有4种可能,所以抽到的两个素数之和等于30的概率==28.(2019•镇江)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是6分;(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D类,所以中位数是6分.故答案为6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98﹣48=50(人).设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.由题意,得,解得.答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.29.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年7~12月全国338个地级及以上城市PM2.5平均浓度统计表(单位:μg/m3)(1)2018年7~12月PM 2.5平均浓度的中位数为μg /m 3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM 2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.解:(1)2018年7~12月PM 2.5平均浓度的中位数为=μg /m 3;故答案为:;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图, 故答案为:折线统计图;(3)2018年7~12月与2017年同期相比PM 2.5平均浓度下降了.30.(2019•宿迁)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图. 男、女生所选类别人数统计表根据以上信息解决下列问题 (1)m = 20 ,n = 2 ;(2)扇形统计图中“科学类”所对应扇形圆心角度数为 79.2 °;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.。

2019年福建中考数学试题(解析版)

先根据二次函数解析式确定抛物线的图象开口方向,再结合图象分别计算出自变量为0, 2 和 2的函数值,再比较函数值的大小.
{分值}4 {章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:二次函数y=ax2+bx+c的性质} {考点:二次函数的系数与图象的关系} {难度:3-中等难度} {类别:易错题}
{答案} B
{解析}本题考查了多边形的内角和,解题的关键是多边形的外角和公式的记忆.先由正多边形
的一个外角是36゜,然后再套入 n 边形外角和公式列方程计算即可.由多边形的外角公式,得
36°n=360°, n =10,故选择 B.
{分值}4
{章节:[1-11-3]多边形及其内角和}
{考点:多边形}
{考点:多边形的内角和}
A. x+2x+4x=34 685
B. x+2x+3x=34 685
C. x+2x+2x=34 685
11 D. x+ x+ x=34 685
24
{答案}A
{解析}本题考查了一元一次方程的应用,关键是审清题意,抓住等量关系列方程即可
{分值}4
{章节:[1-3-3]实际问题与一元一次方程}
{考点:一元一次方程的应用(其他问题)}
{题目}14. (2019年福建)在平面直角坐标系xOy中,□OABC的三个顶点O(0,0)、A(3,0) 、
B(4,2),则其第四个顶点是是_______. {答案} (1,2) {解析}本题考查了用样本估计总体,解题的关键根据喜欢甲图案的学生60名和所占的百分比 60 ×100%=60%,进而用样本估计总体2000×60%=1200。 100 {分值}4 {章节:[1-10-1]统计调查} {考点:样本的代表性} {考点:用样本估计总体} {类别:常考题} {难度:2-简单}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数与频率考点一、频率分布(6分)1、频率分布的意义在许多问题中、只知道平均数和方差还不够、还需要知道样本中数据在各个小范围所占的比例的大小、这就需要研究如何对一组数据进行整理、以便得到它的频率分布.2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率.一.选择题1.(2017·福建龙岩·4分)在一个密闭不透明的袋子里有若干个白球.为估计白球个数、小何向其中投入8个黑球、搅拌均匀后随机摸出一个球、记下颜色、再把它放入袋中、不断重复摸球400次、其中88次摸到黑球、则估计袋中大约有白球()A.18个 B.28个 C.36个 D.42个2.(2017·山东省德州市·3分)某校为了解全校同学五一假期参加社团活动的情况、抽查了100名同学、统计它们假期参加社团活动的时间、绘成频数分布直方图(如图)、则参加社团活动时间的中位数所在的范围是()A.4﹣6小时 B.6﹣8小时 C.8﹣10小时D.不能确定二、解答题1.(2017·福建龙岩·11分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩、把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人、扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图、并标明数据;(3)求在跳高项目中男生被选中的概率.2.(2017·广西百色·8分)某校在践行“社会主义核心价值观”演讲比赛中、对名列前20名的选手的综合分数m 进行分组统计、结果如表所示:(1)求a的值;(2)若用扇形图来描述、求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2、在第四组内的两名选手记为:B1、B2、从第一组和第四组中随机选取2名选手进行调研座谈、求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).3.(2017·广西桂林·8分)某校为了解本校九年级男生“引体向上”项目的训练情况、随机抽取该年级部分男生进行了一次测试(满分15分、成绩均记为整数分)、并按测试成绩(单位:分)分成四类:A类(12≤m≤15)、B 类(9≤m≤11)、C类(6≤m≤8)、D类(m≤5)绘制出以下两幅不完整的统计图、请根据图中信息解答下列问题:(1)本次抽取样本容量为、扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名、请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?4.(2017·贵州安顺·12分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动、活动后、就活动的5个主题进行了抽样调查(每位同学只选最关注的一个)、根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息、解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整、并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查、根据(2)中调查结果、用树状图或列表法、求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).5.(2017·黑龙江哈尔滨·8分)海静中学开展以“我最喜爱的职业”为主题的调查活动、围绕“在演员、教师、医生、律师、公务员共五类职业中、你最喜爱哪一类?(必选且只选一类)”的问题、在全校范围内随机抽取部分学生进行问卷调查、将调查结果整理后绘制成如图所示的不完整的统计图、请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中、最喜爱教师职业的人数、并补全条形统计图;(3)若海静中学共有1500名学生、请你估计该中学最喜爱律师职业的学生有多少名?6.(2017贵州毕节)为了提高学生书写汉字的能力、增强保护汉子的意识、某校举办了首届“汉字听写大赛”、学生经选拔后进入决赛、测试同时听写100个汉字、每正确听写出一个汉字得1分、本次决赛、学生成绩为x(分)、且50≤x<100、将其按分数段分为五组、绘制出以下不完整表格:请根据表格提供的信息、解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= 、b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀、则本次大赛的优秀率为.7.(2017海南)在太空种子种植体验实践活动中、为了解“宇番2号”番茄、某校科技小组随机调查60株番茄的挂果数量x(单位:个)、并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表请结合图表中的信息解答下列问题:(1)统计表中、a= 、b= ;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”、则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株、则可以估计挂果数量在“55≤x<65”范围的番茄有株.8.(2017·黑龙江齐齐哈尔·12分)为增强学生体质、各学校普遍开展了阳光体育活动、某校为了解全校1000名学生每周课外体育活动时间的情况、随机调查了其中的50名学生、对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图、并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查、样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.9.(2017·湖北荆门·12分)秋季新学期开学时、红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试、测试成绩全部合格、现学校随机选取了部分学生的成绩、整理并制作成了如下不完整的图表:请根据上述统计图表、解答下列问题:(1)在表中、a= 、b= 、c= ;(2)补全频数直方图;(3)根据以上选取的数据、计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次、请你估计全校七年级的800名学生中、“优秀”等次的学生约有多少人?10.(2017·湖北荆州·8分)为了弘扬荆州优秀传统文化、某中学举办了荆州文化知识大赛、其规则是:每位参赛选手回答100道选择题、答对一题得1分、不答或错答为得分、不扣分、赛后对全体参赛选手的答题情况进行了相关统计、整理并绘制成如下图表:请根据以图表信息、解答下列问题:(1)表中m= 、n= ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖、记者从所有参赛选手中随机采访1人、求这名选手恰好是获奖者的概率.11.(2017·山东潍坊)今年5月、某大型商业集团随机抽取所属的m家商业连锁店进行评估、将各连锁店按照评估成绩分成了A、B、C、D四个等级、绘制了如图尚不完整的统计图表.根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中、求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验、求其中至少有一家是A等级的概率.答案频数与频率一.选择题1.(2017·福建龙岩·4分)在一个密闭不透明的袋子里有若干个白球.为估计白球个数、小何向其中投入8个黑球、搅拌均匀后随机摸出一个球、记下颜色、再把它放入袋中、不断重复摸球400次、其中88次摸到黑球、则估计袋中大约有白球()A.18个 B.28个 C.36个 D.42个【考点】用样本估计总体.【分析】根据摸到黑球的概率和黑球的个数、可以求出袋中放入黑球后总的个数、然后再减去黑球个数、即可得到白球的个数.【解答】解:由题意可得、白球的个数大约为:8÷﹣8≈28、故选B.2.(2017·山东省德州市·3分)某校为了解全校同学五一假期参加社团活动的情况、抽查了100名同学、统计它们假期参加社团活动的时间、绘成频数分布直方图(如图)、则参加社团活动时间的中位数所在的范围是()A.4﹣6小时 B.6﹣8小时 C.8﹣10小时D.不能确定【考点】中位数;频数(率)分布直方图.【专题】数形结合.【分析】100个数据的中间的两个数为第50个数和第51个数、利用统计图得到第50个数和第51个数都落在第三组、于是根据中位数的定义可对各选项进行判断.【解答】解:100个数据、中间的两个数为第50个数和第51个数、而第50个数和第51个数都落在第三组、所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列、如果数据的个数是奇数、则处于中间位置的数就是这组数据的中位数.二、解答题1.(2017·福建龙岩·11分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩、把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25 人、扇形统计图中短跑项目所对应圆心角的度数为72 °;(2)补全条形统计图、并标明数据;(3)求在跳高项目中男生被选中的概率.【考点】概率公式;扇形统计图;条形统计图.【分析】(1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比例、即可得出参加复选的学生总人数;用短跑项目的人数除以总人数得到短跑项目所占百分比、再乘以360°即可求出短跑项目所对应圆心角的度数;(2)先求出长跑项目的人数、减去女生人数、得出长跑项目的男生人数、根据总人数为25求出跳高项目的女生人数、进而补全条形统计图;(3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25、72;(2)长跑项目的男生人数为:25×12%﹣2=1、跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人、跳高项目中的男生共有4人、∴跳高项目中男生被选中的概率=.2.(2017·广西百色·8分)某校在践行“社会主义核心价值观”演讲比赛中、对名列前20名的选手的综合分数m 进行分组统计、结果如表所示:(1)求a的值;(2)若用扇形图来描述、求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2、在第四组内的两名选手记为:B1、B2、从第一组和第四组中随机选取2名选手进行调研座谈、求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)根基被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性、从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得、a=20﹣2﹣7﹣2=9、即a的值是9;(2)由题意可得、分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;(3)由题意可得、所有的可能性如下图所示、故第一组至少有1名选手被选中的概率是: =、即第一组至少有1名选手被选中的概率是.3.(2017·广西桂林·8分)某校为了解本校九年级男生“引体向上”项目的训练情况、随机抽取该年级部分男生进行了一次测试(满分15分、成绩均记为整数分)、并按测试成绩(单位:分)分成四类:A类(12≤m≤15)、B 类(9≤m≤11)、C类(6≤m≤8)、D类(m≤5)绘制出以下两幅不完整的统计图、请根据图中信息解答下列问题:(1)本次抽取样本容量为50 、扇形统计图中A类所对的圆心角是72 度;(2)请补全统计图;(3)若该校九年级男生有300名、请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数、从而可以求得样本容量、由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比、从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得、抽取的学生数为:10÷20%=50、扇形统计图中A类所对的圆心角是:360°×20%=72°、故答案为:50、72;(2)C类学生数为:50﹣10﹣22﹣3=15、C类占抽取样本的百分比为:15÷50×100%=30%、D类占抽取样本的百分比为:3÷50×100%=6%、补全的统计图如右图所示、(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.4.(2017·贵州安顺·12分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动、活动后、就活动的5个主题进行了抽样调查(每位同学只选最关注的一个)、根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息、解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整、并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查、根据(2)中调查结果、用树状图或列表法、求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数、补全条形统计图、求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数、找出恰好选到“C”与“E”的情况数、即可求出所求的概率.【解答】解:(1)56÷20%=280(名)、答:这次调查的学生共有280名;(2)280×15%=42(名)、280﹣42﹣56﹣28﹣70=84(名)、补全条形统计图、如图所示、根据题意得:84÷280=30%、360°×30%=108°、答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A、B)(A、C)(A、D)(A、E)B(B、A)(B、C)(B、D)(B、E)C(C、A)(C、B)(C、D)(C、E)D(D、A)(D、B)(D、C)(D、E)E(E、A)(E、B)(E、C)(E、D)用树状图为:共20种情况、恰好选到“C”和“E”有2种、∴恰好选到“进取”和“感恩”两个主题的概率是.【点评】此题考查了列表法与树状图法、扇形统计图、以及条形统计图、熟练掌握运算法则是解本题的关键.5.(2017·黑龙江哈尔滨·8分)海静中学开展以“我最喜爱的职业”为主题的调查活动、围绕“在演员、教师、医生、律师、公务员共五类职业中、你最喜爱哪一类?(必选且只选一类)”的问题、在全校范围内随机抽取部分学生进行问卷调查、将调查结果整理后绘制成如图所示的不完整的统计图、请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中、最喜爱教师职业的人数、并补全条形统计图;(3)若海静中学共有1500名学生、请你估计该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60、答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9、答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.6.(2017贵州毕节)为了提高学生书写汉字的能力、增强保护汉子的意识、某校举办了首届“汉字听写大赛”、学生经选拔后进入决赛、测试同时听写100个汉字、每正确听写出一个汉字得1分、本次决赛、学生成绩为x(分)、且50≤x<100、将其按分数段分为五组、绘制出以下不完整表格:请根据表格提供的信息、解答以下问题:(1)本次决赛共有50 名学生参加;(2)直接写出表中a= 16 、b= 0.28 ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀、则本次大赛的优秀率为48% .【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数、可以求得a、b的值;(3)根据(2)中a的值、可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得、本次决赛的学生数为:10÷0.2=50、故答案为:50;(2)a=50×0.32=16、b=14÷50=0.28、故答案为:16、0.28;(3)补全的频数分布直方图如右图所示、(4)由表格可得、决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%、故答案为:48%.7.(2017海南)在太空种子种植体验实践活动中、为了解“宇番2号”番茄、某校科技小组随机调查60株番茄的挂果数量x(单位:个)、并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表请结合图表中的信息解答下列问题:(1)统计表中、a= 15 、b= 0.3 ;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”、则挂果数量在“35≤x<45”所对应扇形的圆心角度数为72 °;(4)若所种植的“宇番2号”番茄有1000株、则可以估计挂果数量在“55≤x<65”范围的番茄有300 株.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【专题】统计与概率.【分析】(1)根据题意可以求得a的值、b的值;(2)根据(1)中a的值、可以将频数分布直方图补充完整;(3)根据挂果数量在“35≤x<45”所对应的频率、可以求得挂果数量在“35≤x<45”所对应扇形的圆心角度数;(4)根据频数分布直方图可以估计挂果数量在“55≤x<65”范围的番茄的株数.【解答】解:(1)a=60×0.25=15、b==0.3.故答案是:15、0.3;(2)补全的频数分布直方图如右图所示、(3)由题意可得、挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°、故答案为:72;(4)由题意可得、挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株)、故答案为:300.【点评】本题考查频数分布直方图、用样本估计总体、扇形圆心角的度数、解题的关键是明确题意、找出所求问题需要的条件.8.(2017·黑龙江齐齐哈尔·12分)为增强学生体质、各学校普遍开展了阳光体育活动、某校为了解全校1000名学生每周课外体育活动时间的情况、随机调查了其中的50名学生、对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图、并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查、样本容量是50 ;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【考点】频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;加权平均数.【分析】(1)根据题目中的信息可知本次调查为抽样调查、也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%、可以求得每周课外体育活动时间在6≤x<8小时的学生人数、从而可以求得2≤x<4的学生数、从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图、可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得、本次调查属于抽样调查、样本容量是50、故答案为:抽样、50;(2)由题意可得、每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人)、则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人)、补全的频数分布直方图如右图所示、(3)由题意可得、=5、即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得、全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人)、即全校学生每周课外体育活动时间不少于6小时的学生有300人.9.(2017·湖北荆门·12分)秋季新学期开学时、红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试、测试成绩全部合格、现学校随机选取了部分学生的成绩、整理并制作成了如下不完整的图表:请根据上述统计图表、解答下列问题:(1)在表中、a= 0.1 、b= 0.3 、c= 18 ;(2)补全频数直方图;(3)根据以上选取的数据、计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次、请你估计全校七年级的800名学生中、“优秀”等次的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.【分析】(1)根据表格中的数据可以求得抽查的学生数、从而可以求得a、b、c的值;(2)根据(1)中c的值、可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.【解答】解:(1)抽查的学生数:36÷0.4=90、a=9÷90=0.1、b=27÷90=0.3、c=90×0.2=18、故答案为:0.1、0.3、18;(2)补全的频数分布直方图如右图所示、(3)∵=81、即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400、即“优秀”等次的学生约有400人.10.(2017·湖北荆州·8分)为了弘扬荆州优秀传统文化、某中学举办了荆州文化知识大赛、其规则是:每位参赛选手回答100道选择题、答对一题得1分、不答或错答为得分、不扣分、赛后对全体参赛选手的答题情况进行了相关统计、整理并绘制成如下图表:请根据以图表信息、解答下列问题:(1)表中m= 120 、n= 0.2 ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖、记者从所有参赛选手中随机采访1人、求这名选手恰好是获奖者的概率.【分析】(1)根据表格可以求得全体参赛选手的人数、从而可以求得m的值、n的值;(2)根据(1)中的m的值、可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得、全体参赛的选手人数有:30÷0.1=300、则m=300×0.4=120、n=60÷300=0.2、故答案为:120、0.2;(2)补全的频数分布直方图如右图所示、(3)∵35+45=75、75+60=135、135+120=255、∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得、、即这名选手恰好是获奖者的概率是0.55.【点评】本题考查频数分布直方图、频数分布表、中位数、概率公式、解题的关键是明确题意、找出所求问题需要的条件、利用数形结合的思想解答.11.(2017·山东潍坊)今年5月、某大型商业集团随机抽取所属的m家商业连锁店进行评估、将各连锁店按照评估成绩分成了A、B、C、D四个等级、绘制了如图尚不完整的统计图表.根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中、求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验、求其中至少有一家是A等级的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由C等级频数为15、占60%、即可求得m的值;(2)首先求得B等级的频数、继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图、然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况、再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15、占60%、∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2、∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中、有两家等级为A、有两家等级为B、画树状图得:∵共有12种等可能的结果、其中至少有一家是A等级的有10种情况、∴其中至少有一家是A等级的概率为: =.。

相关文档
最新文档