【核按钮】2015高考新课标数学(理)课时作业:15.3 参数方程]

合集下载

2015年高考理科数学(新课标全国卷1)(含解析)

2015年高考理科数学(新课标全国卷1)(含解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。

【核按钮】2015高考新课标数学(理)课时作业:15章 选考内容]

【核按钮】2015高考新课标数学(理)课时作业:15章 选考内容]

π 3 解:∵圆 C 的圆心为直线 ρsin θ-3=- 2 与极 轴的交点, π 3 ∴在 ρsin θ-3=- 2 中令 θ=0,得 ρ=1. ∴圆 C 的圆心坐标为(1,0). π 2, , ∵圆 C 经过点 P 4 ∴圆 C 的半径为 PC= π ( 2)2+12-2× 1× 2cos =1. 4
解: 由 PD∶DB=9∶16, 可设 PD=9x, DB=16x. 2 由切割线定理得 PA =PD· PB, ∴32=9x· (9x+16x), 1 解得 x= . 5 9 ∴PD= ,PB=5. 5 ∵AB 为圆 O 的直径, PA 为圆 O 的切线, ∴AB⊥PA. 由勾股定理得 AB= PB2-PA2= 52-32=4.故 9 填 ;4. 5 陕西)设 a,b∈R,|a-b|>2,则关于 15.(2013· 实 数 x 的 不 等 式 |x-a| + |x-b| >2 的 解 集 是 ____________. 解 : 由 绝 对 值 不 等 式 的 性 质 知 |x-a| + |x-b| ≥|(x-a)-(x-b)|=|a-b|,又|a-b|>2,∴对任 意实数 x 不等式|x-a|+|x-b|>2 都成立,故填(-∞, +∞). x2 y2 16.若在椭圆 + =1 中作内接矩形,则其内 25 16 接矩形的最大面积为____________. x=5cost, 解:椭圆参数方程为 设第一象限内椭 y=4sint. 圆上一点 M(x,y),由椭圆的对称性知,内接矩形的 π 面积为 S=4xy=4· 5cost· 4sint=40sin2t.当 t= 时,面 4 π 5 2 π 积 S 取最大值 40,此时 x=5cos = ,y=4sin = 4 2 4 5 2 ,此 2 2.因此,矩形在第一象限的顶点为 2 ,2 2 时内接矩形的面积最大,且为 40.故填 40. 三、解答题:本大题共 6 小题,共 70 分.解答应 写出文字说明、证明过程或演算步骤. 江苏)在极坐标系中,已知圆 C 17.(10 分)(2012· π π 3 经过点 P 圆心为直线 ρsin 2,4, θ-3=- 2 与极 轴的交点,求圆 C 的极坐标方程.

2015年全国统一高考数学试卷(理科)(新课标ⅰ)教师版

2015年全国统一高考数学试卷(理科)(新课标ⅰ)教师版

2015 年全国一致高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12 小题,每题 5 分,满分60 分)1.(5 分)(2015?新课标Ⅰ)设复数A.1 B.z 知足C.=i,则 | z| =()D.2【剖析】先化简复数,再求模即可.【解答】解:∵复数 z 知足=i,∴1+z=i﹣ zi,∴z(1+i)=i﹣ 1,∴z= =i,∴| z| =1,应选: A.2.(5 分)(2015?新课标Ⅰ)A.B.sin20 cos10° °﹣cos160 °sin10 =°(C.)D.【剖析】直接利用引诱公式以及两角和的正弦函数,化简求解即可.【解答】解: sin20 °cos10°﹣cos160°sin10 °=sin20 cos10° °+cos20 °sin10 °=sin30 °= .应选: D..(分)(新课标Ⅰ)设命题2>2n,则¬ p 为()3 52015?p:? n∈ N, n2>2n.∈,2≤2n.∈ ,2 A.? n∈N, n B ? n N n C ? n N n ≤ 2n.∈ , 2 nD ? n N n =2【剖析】依据特称命题的否认是全称命题即可获得结论.【解答】解:命题的否认是: ? n∈ N,n2≤2n,应选: C.4.(5 分)(2015?新课标Ⅰ)投篮测试中,每人投 3 次,起码投中 2 次才能经过测试.已知某同学每次投篮投中的概率为 0.6,且各次投篮能否投中互相独立,则该同学经过测试的概率为()A .0.648B .0.432C .0.36D .0.312【剖析】 判断该同学投篮投中是独立重复试验,而后求解概率即可.【解答】 解:由题意可知:同学 3 次测试知足 X ∽B (3,0.6),该同学经过测试的概率为 =0.648.应选: A .5.( 5 分)(2015?新课标Ⅰ)已知 M (x 0,y 0)是双曲线 C :=1 上的一点,F 1,F 2 是 C 的左、右两个焦点, 若<0,则 y 0 的取值范围是()A ., B . ,C .,D .,【剖析】 利用向量的数目积公式,联合双曲线方程,即可确立 y 0 的取值范围.【解答】 解:由题意,=(﹣﹣x 0,﹣ y 0)?(﹣x 0,﹣ y 0)=x 0 2﹣223+y 00 ﹣1<0,=3y所以﹣<y 0<.应选: A .6.( 5 分)( 2015?新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有以下问题: ”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何? “其意思为:”在屋内墙角处堆放米 (如图,米堆为一个圆锥的四分之一) ,米堆底部的弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少? “已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估量出堆放的米约有( )A.14 斛B.22 斛C.36 斛【剖析】依据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得 r=,故米堆的体积为× ×π×()2×5≈,∵ 1 斛米的体积约为 1.62 立方,∴÷1.62≈ 22,应选: B.7.(5 分)(2015?新课标Ⅰ)设 D 为△ ABC所在平面内一点,A.B.C.D.【剖析】将向量利用向量的三角形法例第一表示为示为,的形式.【解答】解:由已知获得如图由===应选: A.D.66 斛,则(),而后联合已知表;8.(5 分)(2015?新课标Ⅰ)函数 f( x)=cos(ωx+φ)的部分图象以下图,则f( x)的单一递减区间为()A.( kπ﹣,kπ+ ),k∈z B.(2kπ﹣,2kπ+ ), k∈ zC.( k﹣, k+ ), k∈z D.(,2k+),k∈ z【剖析】由周祈求出ω,由五点法作图求出φ,可得f(x)的分析式,再依据余弦函数的单一性,求得 f (x)的减区间.【解答】解:由函数f(x)=cos(ωx+? )的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f( x) =cos(πx+? ).再依据函数的图象以及五点法作图,可得+? = ,k∈ z,即 ?= ,(f x)=cos(πx+ ).由 2kπ≤πx+ ≤2kπ+π,求得 2k﹣≤x≤2k+ ,故(fx)的单一递减区间为(,2k+), k∈z,应选: D.9.(5 分)(2015?新课标Ⅰ)履行以下图的程序框图,假如输入的t=0.01,则输出的n=()A.5B.6C.7D.8【剖析】由已知中的程序框图可知:该程序的功能是利用循环构造计算并输出变量 n 的值,模拟程序的运转过程,剖析循环中各变量值的变化状况,可得答案.【解答】解:第一次履行循环体后,S= , m= ,n=1,不知足退出循环的条件;再次履行循环体后, S= ,m= ,n=2,不知足退出循环的条件;再次履行循环体后, S= ,m=,n=3,不知足退出循环的条件;再次履行循环体后, S=,m=,n=4,不知足退出循环的条件;再次履行循环体后, S=,m=,n=5,不知足退出循环的条件;再次履行循环体后, S=,m=,n=6,不知足退出循环的条件;再次履行循环体后, S= ,m= ,n=7,知足退出循环的条件;故输出的 n 值为 7,应选: C.10.( 5 分)(2015?新课标Ⅰ)(x2+x+y)5的睁开式中, x5y2的系数为()A.10B.20C.30D.60【剖析】利用睁开式的通项,即可得出结论.【解答】解:(x2+x+y)5的睁开式的通项为 T r+1=,令 r=2,则( x2+x)3的通项为=,令 6﹣k=5,则 k=1,∴( x2+x+y)5的睁开式中, x5 2的系数为.y=30应选: C.11.( 5 分)(2015?新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)构成一个几何体,该几何体三视图中的正视图和俯视图以下图.若该几何体的表面积为16+20π,则 r=()A.1B.2C.4D.8【剖析】经过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,22222∴其表面积为:×4πr+ ×πr2r× 2πr+2r× 2r+ ×πr+4r,=5πr又∵该几何体的表面积为16+20π,2 2∴5πr+4r =16+20π,解得 r=2,应选: B.12.( 5分)(新课标Ⅰ)设函数x(2x﹣ 1)﹣ ax+a,此中 a< 1,2015? f (x)=e若存在独一的整数x0使得 f( x0)< 0,则 a 的取值范围是().,)B.[,)C.[,)D.[,)A [【剖析】设 g(x)=e x(2x﹣1),y=ax﹣a,问题转变为存在独一的整数 x0使得 g (x0)在直线 y=ax﹣ a 的下方,求导数可得函数的极值,数形联合可得﹣a>g (0)=﹣1 且 g(﹣ 1)=﹣3e﹣1≥﹣ a﹣a,解对于 a 的不等式组可得.【解答】解:设 g( x) =e x( 2x﹣1), y=ax﹣ a,由题意知存在独一的整数x0使得 g(x0)在直线 y=ax﹣a 的下方,∵g′(x) =e x( 2x﹣1)+2e x=e x(2x+1),∴当 x<﹣时, g′(x)< 0,当 x>﹣时,g′(x)>0,∴当 x=﹣时, g(x)取最小值﹣ 2,当 x=0 时, g( 0) =﹣ 1,当 x=1 时, g(1)=e> 0,直线 y=ax﹣a 恒过定点( 1,0)且斜率为 a,故﹣ a>g( 0) =﹣ 1 且 g(﹣ 1) =﹣3e ﹣ 1≤a< 1≥﹣ a﹣a,解得应选: D.二、填空题(本大题共有 4 小题,每题 5 分)13.( 5分)(新课标Ⅰ)若函数f (x) =xln(x+)为偶函数,则 a= 2015?1.【剖析】由题意可得, f(﹣ x)=f( x),代入依据对数的运算性质即可求解.【解答】解:∵ f(x)=xln( x+)为偶函数,∴ f(﹣ x) =f(x),∴(﹣ x)ln(﹣ x+)=xln(x+),∴﹣ ln(﹣ x+)=ln(x+),∴ ln(﹣ x+)+ln(x+)=0,∴ ln(+x)(﹣x)=0,∴ lna=0,∴ a=1.故答案为: 1.14.( 5 分)(2015?新课标Ⅰ)一个圆经过椭圆=1的三个极点.且圆心在 x 轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【剖析】利用椭圆的方程求出极点坐标,而后求出圆心坐标,求出半径即可获得圆的方程.【解答】解:一个圆经过椭圆=1 的三个极点.且圆心在 x 轴的正半轴上.可知椭圆的右极点坐标(4, 0),上下极点坐标( 0,± 2),设圆的圆心( a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2 =.故答案为:( x﹣)2+y2 =.15.( 5 分)(2015?新课标Ⅰ)若 x,y 知足拘束条件.则的最大值为3.【剖析】作出不等式组对应的平面地区,利用目标函数的几何意义,利用数形结合确立的最大值.【解答】解:作出不等式组对应的平面地区如图:(暗影部分ABC).设 k= ,则 k 的几何意义为地区内的点到原点的斜率,由图象知 OA 的斜率最大,由,解得,即A(1,3),k OA= =3,即的最大值为 3.故答案为: 3.16.(5 分)(2015?新课标Ⅰ)在平面四边形 ABCD中,∠A=∠ B=∠C=75°.BC=2,则 AB 的取值范围是(﹣,+).【剖析】以下图,延伸 BA,CD 交于点 E,设 AD=,x ,DE=,x AE=x CD=m,求出x+m= +,即可求出AB的取值范围.【解答】解:方法一:以下图,延伸BA, CD交于点 E,则在△ ADE中,∠ DAE=105°,∠ ADE=45°,∠ E=30°,∴设 AD=x ,AE=,,,x DE=x CD=m∵BC=2,∴(x+m) sin15 =1°,∴x+m= + ,∴0< x<4,而 AB=x+m﹣x=+ ﹣x,∴ AB的取值范围是(﹣,+ ).故答案为:(﹣,+).方法二:以以下图,作出底边BC=2的等腰三角形 EBC, B=C=75°,倾斜角为 150°的直线在平面内挪动,分别交EB、EC于 A、D,则四边形 ABCD即为知足题意的四边形;当直移,运用极限思想,①直靠近点 C , AB 近最小,;②直靠近点 E ,AB 近最大, + ;故答案:(, + ).三、解答:17.(12 分)(2015?新Ⅰ)S n数列 { a n} 的前 n 和,已知 a n> 0,a n2+2a n=4S n+3( I)求 { a n} 的通公式:(Ⅱ) b n=,求数列{ b n}的前n和.【剖析】(I)依据数列的推关系,利用作差法即可求{ a n} 的通公式:(Ⅱ)求出b n=,利用裂法即可求数列{ b n} 的前n 和.【解答】解:(I)由 a n2+2a n=4S n+3,可知 a n+12+2a n+1=4S n+1+322两式相减得 a n+1a n +2(a n+1a n)=4a n+1,即 2(a n+1+a n)=a n+12 a n2=( a n+1+a n)(a n+1 a n),∵a n>0,∴ a n+1 a n=2,∵a12+2a1=4a1+3,∴a1= 1(舍)或 a1=3,{ a n} 是首3,公差d=2 的等差数列,∴{ a n} 的通公式a n=3+2(n 1)=2n+1:(Ⅱ)∵a n=2n+1,∴ b n=== (),∴数列 { b n} 的前 n 和 T n= (+⋯+)= ()=.18.( 12 分)( 2015?新课标Ⅰ)如图,四边形ABCD为菱形,∠ ABC=120°,E,F 是平面 ABCD同一侧的两点, BE⊥平面 ABCD,DF⊥平面 ABCD,BE=2DF,AE ⊥EC.(Ⅰ)证明:平面AEC⊥平面 AFC(Ⅱ)求直线 AE 与直线 CF所成角的余弦值.【剖析】(Ⅰ)连结 BD,设 BD∩AC=G,连结 EG、EF、FG,运用线面垂直的判断定理获得 EG⊥平面 AFC,再由面面垂直的判断定理,即可获得;(Ⅱ)以 G 为坐标原点,分别以GB,GC为 x 轴, y 轴, | GB| 为单位长度,成立空间直角坐标系 G﹣ xyz,求得 A,E,F,C 的坐标,运用向量的数目积的定义,计算即可获得所求角的余弦值.【解答】解:(Ⅰ)连结 BD,设 BD∩ AC=G,连结 EG、EF、 FG,在菱形ABCD中,不如设 BG=1,由∠ ABC=120°,可得 AG=GC= ,BE⊥平面 ABCD,AB=BC=2,可知 AE=EC,又 AE⊥EC,所以 EG=,且EG⊥ AC,在直角△ EBG中,可得 BE=,故DF=,在直角三角形 FDG中,可得 FG=,,FD=,可得EF==,在直角梯形BDFE中,由 BD=2,BE=进而222EG +FG =EF,EG⊥ FG,(或由 tan∠ EGB?tan∠FGD= ? = ? =1,可得∠ EGB+∠FGD=90°, EG⊥ FG)AC∩FG=G,可得 EG⊥平面 AFC,由 EG? 平面 AEC,所以平面 AEC⊥平面 AFC;(Ⅱ)如,以 G 坐原点,分以 GB,GC x ,y ,| GB| 位度,成立空直角坐系 G xyz,由(Ⅰ)可得 A(0,,0),E(1, 0,),F( 1,0,),C(0,,0),即有=( 1,,),=( 1,,),故 cos<,>===.有直 AE 与直 CF所成角的余弦.19.( 12 分)(2015?新Ⅰ)某企业确立下一年度投入某种品的宣,需认识年宣 x (位:千元)年售量 y(位: t)和年利 z(位:千元)的影响,近 8 年的年宣 x i和年售量 y i(i=1,2,⋯,8)数据作了初步理,获得下边的散点及一些量的.( x )2(w)(x)( y(wi i i i i2))(y i)46.6563 6.8289.8 1.61469108.8表中 w i=i,=(Ⅰ)依据散点判断, y=a+bx 与 y=c+d哪一个适合作年售量y 对于年宣x 的回方程型?(出判断即可,不用明原因)(Ⅱ)依据(Ⅰ)的判断果及表中数据,成立y 对于 x 的回方程;(Ⅲ)已知种品的年利z 与 x、y 的关系 z=0.2y x.依据(Ⅱ)的果回答以下:(i)年宣 x=49 ,年售量及年利的是多少?(ii)年宣 x 何,年利的最大?附:于一数据( u1 v1),(u2 v2)⋯..(u n v n),其回 v=α+βu的斜率和截距的最小二乘估分:=,=.【剖析】(Ⅰ)依据散点,即可判断出,(Ⅱ)先成立中量w=,成立y对于w的性回方程,依据公式求出w,得以解决;(Ⅲ)(i)年宣 x=49 ,代入到回方程,算即可,( ii)求出得方程,依据函数的性,即可求出.【解答】解:(Ⅰ)由散点能够判断, y=c+d适合作年售量y 对于年宣x 的回方程型;(Ⅱ)令 w=,先成立 y 对于 w 的性回方程,因为=,=68= ﹣﹣68×,=563 6.8=100.6所以 y 对于 w 的线性回归方程为,=100.6+68w 所以 y 对于 x 的回归方程为=100.6+68,(Ⅲ)( i)由(Ⅱ)知,当 x=49 时,年销售量 y 的预告值=100.6+68,=576.6年收益 z 的预告值=576.6×0.2﹣49=66.32,(ii)依据(Ⅱ)的结果可知,年收益z 的预告值 =0.2(100.6+68 )﹣ x=﹣ x+13.6 +20.12,当 ==6.8 时,即当 x=46.24 时,年收益的预告值最大.20.( 12 分)( 2015?新课标Ⅰ)在直角坐标系 xOy 中,曲线 C:y=与直线l:y=kx+a(a>0)交于 M,N 两点.(Ⅰ)当 k=0 时,分別求 C 在点 M 和 N 处的切线方程.(Ⅱ)y 轴上能否存在点 P,使适当 k 改动时,总有∠ OPM=∠OPN?(说明原因)【剖析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法例可得: y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在切合条件的点( 0,﹣ a),设 P( 0,b)知足∠ OPM=∠OPN. M (x1,y1),N(x2,y2),直线 PM,PN 的斜率分别为: k1,k2.直线方程与抛物线方程联立化为 x2﹣ 4kx﹣ 4a=0,利用根与系数的关系、斜率计算公式可得+k.k +k直线PM ,PN的倾斜角互补?∠∠.即可k1 2= 1 2=0?OPM=OPN 证明.【解答】解:(I)联立,不如取M,,N,,由曲线C: y=可得: y′=,∴曲线化为C 在M点处的切线斜率为.=,其切线方程为:y﹣a=,同理可得曲线 C 在点 N 处的切线方程为:.( II)存在切合条件的点( 0,﹣ a),下边给出证明:设 P(0,b)知足∠ OPM=∠OPN.M(x1, y1), N(x2,y2),直线 PM,PN 的斜率分别为: k1,k2.联立,化为 x2﹣4kx﹣4a=0,∴x1+x2=4k, x1x2=﹣4a.∴ k1+k2=+==.当 b=﹣ a 时, k1+k2=0,直线 PM, PN的倾斜角互补,∴∠ OPM=∠ OPN.∴点 P(0,﹣ a)切合条件.21.( 12 分)( 2015?新课标Ⅰ)已知函数 f( x) =x3+ax+ , g( x) =﹣lnx( i)当 a 为什么值时, x 轴为曲线 y=f( x)的切线;( ii)用 min{ m,n} 表示 m, n 中的最小值,设函数h(x) =min{ f( x),g(x)}(x>0),议论 h( x)零点的个数.【剖析】(i)f (′x)=3x2+a.设曲线 y=f( x)与 x 轴相切于点 P( x0,0),则 f(x0)=0, f (′ x0)=0 解出即可.(ii)对 x 分类议论:当 x∈( 1, +∞)时, g(x)=﹣lnx<0,可得函数 h( x)=min { f( x),g(x)} ≤g(x)< 0,即可得出零点的个数.当 x=1 时,对 a 分类议论: a≥﹣,a<﹣,即可得出零点的个数;当 x∈( 0,1)时, g( x)=﹣lnx>0,所以只考虑 f( x)在( 0,1)内的零点个数即可.对 a 分类议论:①当 a≤﹣ 3 或 a≥0 时,②当﹣ 3<a<0 时,利用导数研究其单一性极值即可得出.【解答】解:(i)f ′(x)=3x2+a.设曲线 y=f( x)与 x 轴相切于点 P( x0,0),则 f(x0)=0,f ′(x0)=0,∴,解得,a=.所以当 a=﹣时, x 轴为曲线 y=f(x)的切线;(ii)当 x∈( 1,+∞)时, g(x)=﹣lnx<0,∴函数 h( x)=min { f(x), g( x)} <0,故 h(x)在 x∈( 1, +∞)时无零点.当 x=1 时,若 a≥﹣,则 f (1)=a+ ≥0,∴h( x)=min { f(1), g( 1) } =g(1)=0,故 x=1 是函数 h( x)的一个零点;若 a<﹣,则 f( 1) =a+ <0,∴ h( x) =min { f ( 1),g(1)} =f(1)<0,故x=1 不是函数 h( x)的零点;当 x∈( 0,1)时, g( x)=﹣lnx>0,所以只考虑 f( x)在( 0,1)内的零点个数即可.①当 a≤﹣ 3 或 a≥0 时, f (′ x)=3x2+a 在( 0,1)内无零点,所以f(x)在区间(0,1)内单一,而 f( 0) = ,f (1)=a+ ,∴当 a≤﹣ 3 时,函数 f( x)在区间( 0, 1)内有一个零点,当 a≥0 时,函数 f(x)在区间( 0,1)内没有零点.②当﹣ 3<a<0 时,函数 f(x)在,内单一递减,在,内单一递增,故当 x=时,f(x)获得最小值=.若>0,即<<,则f(x)在(0,1)内无零点.若=0,即 a=﹣,则 f(x)在( 0, 1)内有独一零点.若<0,即<<,由f(0)=,f(1)=a+,∴当<<时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在( 0, 1)内有一个零点.综上可得: a<时,函数h(x)有一个零点.当>时,h(x)有一个零点;当 a=或时,h(x)有两个零点;当<<时,函数h(x)有三个零点.选修 4 一 1:几何证明选讲22.( 10 分)( 2015?新课标Ⅰ)如图, AB 是⊙ O 的直径, AC 是⊙ O 的切线, BC 交⊙O于点 E.(Ⅰ)若 D 为 AC的中点,证明: DE是⊙ O 的切线;(Ⅱ)若 OA=CE,求∠ ACB的大小.【剖析】(Ⅰ)连结 AE和 OE,由三角形和圆的知识易得∠OED=90°,可得 DE是⊙O 的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得对于x 的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连结 AE,由已知得 AE⊥BC,AC⊥AB,在 RT△ ABC中,由已知可得 DE=DC,∴∠DEC=∠DCE,连结 OE,则∠ OBE=∠OEB,又∠ ACB+∠ABC=90°,∴∠ DEC+∠ OEB=90°,∴∠ OED=90°,∴ DE是⊙ O 的切线;(Ⅱ)设 CE=1,AE=x,由已知得 AB=2,BE=,由射影定理可得AE2=CE?BE,∴ x2=,即x4+x2﹣12=0,解方程可得x=∴∠ ACB=60°选修 4 一 4:坐标系与参数方程23.( 10 分)( 2015?新课标Ⅰ)在直角坐标系xOy 中,直线 C1: x=﹣2,圆 C2:(x﹣1)2+(y﹣2)2 =1,以坐标原点为极点, x 轴的正半轴为极轴成立极坐标系.(Ⅰ)求 C1,C2的极坐标方程;(Ⅱ)若直线 C3的极坐标方程为θ=(ρ∈ R),设 C2与 C3的交点为 M ,N,求△C2MN 的面积.【剖析】(Ⅰ)由条件依据x=ρcos,θy=ρsin θ求得 C1,C2的极坐标方程.2(Ⅱ)把直线 C3的极坐标方程代入ρ﹣3ρ+4=0,求得ρ1和ρ2的值,联合圆的半径可得 C2M ⊥C2N,进而求得△ C2MN 的面积?C2 M?C2N 的值.【解答】解:(Ⅰ)因为 x=ρcos,θy=ρsin,θ∴ C1:x=﹣ 2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1 的极坐标方程为:(ρcos﹣θ1)2+(ρsin﹣θ2)2=1,2化简可得ρ﹣( 2ρcos+4θρsin )θ+4=0.(Ⅱ)把直线 C3的极坐标方程θ=(ρ∈ R)代入圆 C2:(x﹣1)2+(y﹣2)2=1,2可得ρ﹣( 2ρcosθ+4ρsin )θ+4=0,求得ρ1=2,ρ2=,∴ | MN| =| ρ﹣ρ| =,因为圆 C 的半径为 1,∴ C⊥C2N ,1222M △ C2MN 的面积为 ?C2M?C2N= ?1?1=.选修 4 一 5:不等式选讲24.( 10 分)( 2015?新课标Ⅰ)已知函数f( x) =| x+1| ﹣ 2| x﹣a| ,a>0.(Ⅰ)当 a=1 时,求不等式 f(x)> 1 的解集;(Ⅱ)若 f( x)的图象与 x 轴围成的三角形面积大于6,求 a 的取值范围.【剖析】(Ⅰ)当 a=1 时,把原不等式去掉绝对值,转变为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f ( x)的分析式,求得它的图象与 x 轴围成的三角形的三个极点的坐标,进而求得 f( x)的图象与 x 轴围成的三角形面积;再依据 f(x)的图象与 x 轴围成的三角形面积大于 6,进而求得 a 的取值范围.【解答】解:(Ⅰ)当 a=1 时,不等式 f(x)> 1,即 | x+1| ﹣2| x﹣1| > 1,即<①,或<②,>>或③.>解①求得 x∈ ?,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数 f (x) =| x+1| ﹣2| x﹣a| =,<,,由此求得f( x)的图象与x 轴的交点 A (,>,0),2015年全国统一高考数学试卷(理科)(新课标ⅰ)教师版B(2a+1,0),故 f( x)的图象与 x 轴围成的三角形的第三个极点 C(a,a+1),由△ ABC的面积大于 6,可得 [ 2a+1﹣] ?(a+1)> 6,求得 a>2.故要求的 a 的范围为( 2,+∞).。

2015年高考复习《核按钮新课标(理)数学教师用书》【564页,word版,含答案】

2015年高考复习《核按钮新课标(理)数学教师用书》【564页,word版,含答案】

目录第一章集合与常用逻辑用语 (1)§1.1集合 (1)§1.2命题及其关系、充分条件与必要条件 (7)§1.3简单的逻辑联结词、全称量词与存在量词 (13)单元测试卷 (18)第二章函数的概念、基本初等函数(Ⅰ)及函数的应用 (21)§2.1函数及其表示 (21)§2.2函数的单调性与最大(小)值 (28)§2.3函数的奇偶性与周期性 (35)§2.4二次函数 (41)§2.5基本初等函数(Ⅰ) (47)§2.6函数与方程 (55)§2.7函数的图象 (60)§2.8函数模型及其应用 (66)单元测试卷 (74)第三章导数 (78)§3.1导数的概念及运算 (78)§3.2导数的应用(一) (83)§3.3导数的应用(二) (88)§3.4定积分与微积分基本定理 (92)单元测试卷 (97)第四章三角函数(基本初等函数(Ⅱ)) (100)§4.1弧度制及任意角的三角函数 (100)§4.2同角三角函数的基本关系及诱导公式 (107)§4.3三角函数的图象与性质 (112)§4.4三角函数图象的变换 (121)§4.5三角函数模型的应用 (129)§4.6三角恒等变换 (136)§4.7正弦定理、余弦定理及其应用 (144)单元测试卷 (152)第五章平面向量 (157)§5.1平面向量的概念及线性运算 (157)§5.2平面向量的基本定理及坐标表示 (164)§5.3平面向量的数量积 (169)§5.4平面向量的综合应用 (176)单元测试卷 (183)第六章数列 (187)§6.1数列的概念与简单表示法 (187)§6.2等差数列 (194)§6.3等比数列 (201)§6.4数列求和及应用 (207)单元测试卷 (214)第七章不等式 (218)§7.1不等关系与不等式 (218)§7.2一元二次不等式及其解法 (223)§7.3二元一次不等式(组)与简单的线性规划问题 (231)§7.4基本不等式及其应用 (239)单元测试卷 (244)第八章立体几何 (248)§8.1空间几何体的结构、三视图和直观图 (248)§8.2空间几何体的表面积与体积 (255)§8.3空间点、线、面之间的位置关系 (261)§8.4空间中的平行关系 (268)§8.5空间中的垂直关系 (275)§8.6空间向量及其加减、数乘和数量积运算 (283)§8.7空间向量的坐标表示、运算及应用 (290)单元测试卷 (302)第九章平面解析几何 (308)§9.1平面直角坐标系中的基本公式和直线的方程 (308)§9.2两条直线的位置关系 (314)§9.3圆的方程 (320)§9.4直线、圆的位置关系 (325)§9.5曲线与方程 (332)§9.6椭圆 (338)§9.7双曲线 (345)§9.8抛物线 (351)§9.9直线与圆锥曲线的位置关系 (357)单元测试卷 (366)第十章算法初步 (370)§10.1算法与程序框图 (370)§10.2基本算法语句 (378)。

2015年高考数学(理)核按钮:第三章《导数》(含解析)

2015年高考数学(理)核按钮:第三章《导数》(含解析)

第三章 导 数§3.1 导数的概念及运算1.导数的概念(1)通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.(2)通过函数图象直观地理解导数的几何意义. 2.导数的运算(1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =1x,y =x ,y =x 2,y =x 3的导数.(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如f (ax +b )的复合函数)的导数.导数的几何意义是高考考查的重点内容之一,常以选择,填空的形式出现,有时也出现在解答题中.导数的运算基本上每年都考,一般不单独设题,大都是在考查导数应用的同时考查.1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx 就叫函数y =f (x )从x 0到x 0+Δx 之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处 ,并把这个极限叫做f (x )在点x 0处的导数,记作 或y ′0|x x =,即f ′(x 0)=0lim →∆xΔyΔx =0lim →∆x f (x 0+Δx )-f (x 0)Δx. (2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆x f (x +Δx )-f (x )Δx .(3)求函数y =f (x )在点x 0处导数的方法①求函数的增量Δy = ;②求平均变化率ΔyΔx = ;③取极限,得导数f ′(x 0)=0lim →∆xΔy Δx. 2.导数的意义 (1)几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .(2)物理意义函数S =s (t )在点t 0处的导数s ′(t 0), 就是当物体的运动方程为S =s (t )时,物体运动在t 0时刻的瞬时速度v ,即 .设v =v (t )是速度函数,则v ′(t 0)表示物体在t =t 0时刻的 .3.基本初等函数的导数公式(1)c ′= (c 为常数), (x α) ′= (α∈Q *); (2)(sin x ) ′=______________, (cos x ) ′= ; (3)(ln x ) ′= , (log a x ) ′= ;(4)(e x ) ′= ,(a x ) ′= . 4.导数运算法则 (1)[f (x )±g (x )] ′= . (2)[f (x )g (x )] ′= ;当g (x )=c (c 为常数)时,即[cf (x )] ′= . (3)⎣⎢⎡⎦⎥⎤f (x )g (x ) ′= (g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【自查自纠】 1.(1)可导 f ′(x 0)(3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.(1)f ′(x 0) y -y 0=f ′(x 0)(x -x 0) (2)v =s ′(t 0) 加速度3.(1)0 αx α-1 (2)cos x -sin x (3)1x 1x ln a(4)e x a x ln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x ) (3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x函数f (x )=1的导函数是( )A .y =0B .y =1C .不存在D .不确定 解:常数函数的导函数是y =f ′(x )=0.故选A.函数f (x )=a 3+5a 2x 2的导数f ′(x )=( ) A .3a 2+10ax 2 B .3a 2+10ax 2+10a 2x C .10a 2x D .以上都不对解:f ′(x )=10a 2x .故选C.曲线y =e x 在点A (0,1)处的切线斜率为( )A .1B .2C .e D.1e解:y ′=e x ,y ′|x =0=1,故选A.(2012·广东)曲线y =x 3-x +3在点(1,3)处的切线方程为 .解:y ′=3x 2-1,当x =1时,y ′=2,此时切线斜率k =2,故切线方程为y -3=2(x -1),即2x -y +1=0.故填2x -y +1=0.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为 .解:v (t )=s ′(t )=-t 2+4t ,t =3时,v =3, 故填3.类型一 导数的概念设f (x )为可导函数,当x 趋近于0时,f (1)-f (1-2x )2x趋近于-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2解:f (1)-f (1-2x )2x =f (1-2x )-f (1)-2x ,当x 趋近于0时,-2x 也趋近于0,∴y ′|x =1=-1,所以y =f (x )在点(1,f (1))处的切线斜率为-1.故选B. 【评析】本题利用导数定义求导数,将“表达式”变形为导数的“定义式”的标准形式是关键,这里要找准增量Δx =-2x .“y ′|x =1”是指曲线在x =1处的切线斜率.已知f ′(0)=2,则h 趋近于0时,f (3h )-f (0)h趋近于 .解:f (3h )-f (0)h =3[f (0+3h )-f (0)]3h当h 趋近于0时,3h 也趋近于0. ∴f (3h )-f (0)h趋近于3f ′(0)=6.故填6.类型二 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程. 解:(1)设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝⎛⎭⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)∵y ′=x 2,且P (2,4)在曲线y =13x 3+43上,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,又∵切线的斜率k =y ′|x =x 0=x 20, ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0. 【评析】曲线切线方程的求法: (1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简. (2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.已知函数f (x )=x 3+x -16.(1)求满足斜率为4的曲线的切线方程; (2)求曲线y =f (x )在点(2,-6)处的切线的方程; (3)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程.解:(1)设切点坐标为(x 0,y 0), ∵f ′(x 0)=3x 20+1=4,∴x 0=±1, ∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18. ∴切线方程为y =4x -18或y =4x -14. (2)∵f ′(x )=3x 2+1,且(2,-6)在曲线f (x )=x 3+x -16上, ∴在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13x -32. (3)解法一:设切点为(x 0,y 0), ∵直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 0=-2, ∴斜率k =13.∴直线l 的方程为y =13x .解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则斜率k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴k =13.∴直线l 的方程为y =13x .类型三 求导运算求下列函数的导数: (1)y =5x 2-4x +1; (2)y =(2x 2-1)(3x +1);(3)y =sin(πx +φ)(其中φ为常数);(4)y =x +3x +2(x ≠-2).解:(1)y ′=10x -4;(2)y ′=4x ·(3x +1)+(2x 2-1)·3=18x 2+4x -3; (3)y ′=cos(πx +φ)·(πx +φ) ′=πcos(πx +φ);(4)y ′=⎝⎛⎭⎫1+1x +2 ′=-1(x +2)2.【评析】求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =(x +1)(x +2);(2)y =xe x -1(x ≠0);(3)y =cos2x ;(4)y =ln x +3x +1(x >-1).解:(1)y ′=(x +1) ′(x +2)+(x +1)(x +2) ′ =x +2+x +1=2x +3;(2)y ′=x ′(e x -1)-x (e x -1)′(e x -1)2=(1-x )e x -1(e x -1)2;(3)y ′=-sin2x ·(2x ) ′=-2sin2x ;(4)y ′=[ln(x +3)-ln(x +1)] ′=1x +3-1x +1=-2(x +1)(x +3).1.弄清“函数在一点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在一点x 0处的导数f ′(x 0)是一个常数,不是变量;(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x );(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.求函数y =f (x )在x =x 0处的导数f ′(x 0)通常有以下两种方法(1)利用导数的定义:即求lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)利用导函数的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.求曲线在某一点处的切线方程时,可以先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.如果切点未知,要先求出切点坐标.4.在导数与切线斜率的对应关系中体会数形结合的思想方法.1.函数f (x )=x 3+sin2x 的导数f ′(x )=( ) A .x 2+cos2x B .3x 2+cos2x C .x 2+2cos2xD .3x 2+2cos2x解:f ′(x )=3x 2+(2x ) ′cos2x =3x 2+2cos2x .故选D. 2.已知f (x )=(x -2)(x -3),则f ′(2)的值为( ) A .0 B .-1C .-2D .-3解:∵f ′(x )=(x -3)+(x -2)=2x -5,∴f ′(2)=-1.故选B.3.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15解:由y ′|x =1=3,得在点P (1,12)处的切线方程为3x -y +9=0,令x =0,得y =9,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解:∵f ′(x )=2x -2-4x =2(x -2)(x +1)x >0,x >0,∴x -2>0,解得x >2.故选C.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1解:∵y ′=2x +a ,∴y ′|x =0=a ,∴a =1. ∵(0,b )在切线x -y +1=0上,∴b =1, 故选A.6.已知点P 在曲线y =4e x +1上,则曲线在点(0,f (0))处的切线的斜率是( )A .2B .1C .0D .-1解:∵y ′=4′·(e x+1)-4·(e x +1)′(e x +1)2=-4e xe 2x +2e x +1,∴y ′|x =0=-41+2+1=-1.故选D.7.曲线y =x 3+x -2的一条切线平行于直线y =4x-1,则切点P 0的坐标是________________.解:∵y ′=3x 2+1,又∵3x 2+1=4,解得x =±1. ∴切点P 0的坐标为(1,0)或(-1,-4).故填(1,0)或(-1,-4).8.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.解:令e x =t ,则x =ln t .∵f (e x )=x +e x ,∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=1+1=2.故填2.9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线的方程.解:设切点坐标为(x 0,y 0), ∵f ′(x 0)=3x 20-4=-1,∴x 0=±1. ∴切点为(1,1)或(-1,7).切线方程为x +y -2=0或x +y -6=0. 10.设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a ,b 为常数.已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l ,求a ,b 的值,并写出切线l 的方程.解:f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3,由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线,故有f (2)=g (2)=0,f ′(2)=g ′(2)=1,由此解得a =-2,b =5.从而切线l 的方程为x -y -2=0.11.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=2x 2.(1)求x <0时, f (x )的表达式;(2)令g (x )=ln x ,问是否存在x 0,使得f (x ),g (x )在x =x 0处的切线互相平行?若存在,求出x 0的值;若不存在,请说明理由.解:(1)当x <0时,-x >0, f (x )=-f (-x )=-2(-x )2=-2x 2; ∴当x <0时,f (x )的表达式为f (x )=-2x 2. (2)若f (x ),g (x )在x 0处的切线互相平行,则f ′(x 0)=g ′(x 0),当x 0>0时,f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得x 0=12.故存在x 0=12满足条件.(2013·福建改编)已知函数f (x )=x -1+ae x(a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,若直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.解:(1)f ′(x )=1-aex ,因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=1-ae =0,解得a=e.(2)当a =1时,f (x )=x -1+1e x ,f ′(x )=1-1e x .设切点为(x 0,y 0),∵f (x 0)=x 0-1+0e 1x =kx 0-1,① f ′(x 0)=1-e 1x =k ,② ①+②得x 0=kx 0-1+k ,即(k -1)(x 0+1)=0. 若k =1,则②式无解,∴x 0=-1,k =1-e. ∴l 的直线方程为y =(1-e)x -1.§3.2 导数的应用(一)1.导数在研究函数中的应用(1)结合实例,借助图形直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).(2)结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值,极小值(其中多项式函数不超过三次),会求闭区间上函数的最大值,最小值(其中多项式函数不超过三次).2.生活中的优化问题举例通过解“利润最大”“用料最省”“效率最高”等优化问题,体会导数在解决实际问题中的应用.高考对导数应用的考查很频繁.内容既可以是对某一类函数性质的研究,也可以联系方程的根,不等式的解等综合考查,选择,填空,解答等题型均有可能出现,分值比较重,是每年高考考查的重点内容之一.1.函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内 .2.函数的极值(1)判断f (x 0)是极大值,还是极小值的方法: 一般地,当f ′(x 0)=0时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧 ,右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤: ①求f ′(x );②求方程 的根;③检查f ′(x )在上述方程根的左右对应函数值的符号.如果左正右负,那么f (x )在这个根处取得 ;如果左负右正,那么f (x )在这个根处取得 .3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则__________为函数在[a ,b ]上的最小值, 为函数在[a ,b ]上的最大值;若函数f (x )在[a ,b ]上单调递减,则 为函数在[a ,b ]上的最大值,为函数在[a ,b ]上的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值 , 比较,其中最大的一个是最大值,最小的一个是最小值.【自查自纠】 1.单调递减2.(1)②f ′(x )<0 f ′(x )>0(2)②f ′(x )=0 极大值 极小值3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b )若在区间[1,2]内有f ′(x )>0,且f (1)=0,则在[1,2]内有( )A .f (x )≥0B .f (x )≤0C .f (x )=0D .不确定解:∵f ′(x )>0,∴f (x )在[1,2]内单调递增. ∵f (1)=0,∴在[1,2]内f (x )≥0.故选A.已知函数f (x )=12x 2-x ,则f (x )的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)解:f ′(x )=x -1,令f ′(x )>0,解得x >1.故选D.关于函数的极值,下列说法正确的是( ) A .导数为0的点一定是函数的极值点 B .函数的极小值一定小于它的极大值C .f (x )在定义域内最多只能有一个极大值,一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数解:导数为0的点不一定是极值点(如y =x 3,在x =0处),而极值点的导数一定为0.极值是局部概念,因此极小值可能有多个且有可能大于极大值.极值点是单调性的转折点.故选D.已知函数f (x )=x 3+6x 2+nx +4在x =-1时有极值,则n = .解:∵f ′(x )=3x 2+12x +n ,f ′(-1)=0, ∴3-12+n =0,得n =9.故填9.函数f (x )=x 3-3x 2+1在x = 处取得极小值.解:f ′(x )=3x 2-6x =3x (x -2).所以f (x )的递增区间是(-∞,0),(2,+∞),递减区间是(0,2),因此f (x )在x =2处取得极小值.故填2.类型一 导数法判断函数的单调性设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是()解:当x <0时,f (x )为增函数,f ′(x )>0,排除A ,C ;当x >0时,f (x )先增后减,再增,对应f ′(x )先正后负,再正.故选D.【评析】导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).若函数f (x )的导函数y =f ′(x )的部分图象如图所示,则下列函数中与f (x )的单调性不可能相同的是()解:当x <1时,f ′(x )<0,f (x )单调递减; 当x >1时,f ′(x )>0,f (x )单调递增,只有C 项的单调性与f (x )不同.故选C.类型二 导数法研究函数的单调性已知函数f (x )=x 3-ax ,f ′(1)=0. (1)求a 的值;(2)求函数f (x )的单调区间.解:(1)f ′(x )=3x 2-a ,由f ′(1)=3-a =0,得 a =3.(2)∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3. 令f ′(x )>0,得x <-1或x >1. 所以f (x )的单调递增区间是(-∞,-1),(1,+∞), 单调递减区间是[-1,1].【评析】①用导数求函数的单调区间,突破口是讨论导数的符号.②注意:区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.如,本例中[-1,1]也可以写成(-1,1).③写单调区间时,一般不要使用符号“∪”,可以用“,”“和”分开各区间,原因是各单调区间用“∪”连接的条件是在合并后的区间内函数单调性依然成立.如,本例中(-∞,-1),(1,+∞)不能写成(-∞,-1)∪(1,+∞),不妨取x 1=-32,x 2=32,x 1<x 2,而f (x 1)=f ⎝⎛⎭⎫-32=98,f (x 2)=-98,这时f (x 1)<f (x 2)不成立.已知函数f (x )=e x -ax ,f ′(0)=0.(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)f ′(x )=e x -a ,由f ′(0)=1-a =0,得 a =1.(2)∵f (x )=e x -x ,∴f ′(x )=e x -1. 令f ′(x )>0,得x >0.所以函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0).类型三 导数法研究函数的极值问题已知函数f (x )=12x 3+cx 在x =1处取得极值.(1)求函数f (x )的解析式; (2)求函数f (x )的极值.解:(1)f ′(x )=32x 2+c ,当x =1时,f (x )取得极值,则f ′(1)=0,即32+c =0,得c =-32.故f (x )=12x 3-32x .(2)f ′(x )=32x 2-32=32(x 2-1)=32(x -1)(x +1),令f ′(x )=0,得x =-1或1.x ,f ′(x ),f (x )的变化情况如下表:,其中a 斜率为2.(1)确定(2)求函数=x3+bx,c)处具有公共切线(1)求a(2)求函数=f′(x)的图象关于直线(1)求实数(2)求函数解:(1)f是边长为60 cm的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点棱柱形状的包装盒,解:(1)根据题意有S =602-4x 2-(60-2x )2=240x -8x 2,0<x <30, S ′=240-16x ,令S ′=0,得x =15. 当0<x <15时,S ′>0,S 递增; 当15<x <30时,S ′<0,S 递减.所以x =15 cm 时包装盒侧面积S 最大. (2)根据题意有V =(2x )2·22(60-2x )=22x 2(30-x ),0<x <30,V ′=62x (20-x ),当0<x <20时,V ′>0,V 递增; 当20<x <30时,V ′<0,V 递减. 所以x =20 cm 时包装盒容积V 最大.【评析】本题主要考查学生的空间想象能力,阅读能力,运用数学知识解决实际问题的能力及建立函数模型的能力,属于中档题.注意用导数求解实际问题中的最大(小)值时,如果函数在区间只有一个极值点,那么依据实际意义,该极值点也就是最值点.用长为15 cm ,宽为8 cm 的长方形铁皮做一个无盖的容器,先在四角分别裁去一个边长为x 的小正方形,然后把四边翻转90°角,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?解:依题意,0<x <4, 容积V =(15-2x )·(8-2x )·x =4x 3-46x 2+120x , V ′=12x 2-92x +120=4(3x -5)(x -6).令V ′=0,得x =53或6(舍去).当0<x <53时,V ′>0,V 递增;当53<x <4时,V ′<0,V 递减. 所以高x =53 cm 时容器的容积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大值并不一定比极小值大.(3)从位置上看,极值只能在定义域内部取得而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.3.实际问题中的最值在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.函数f (x )是定义域为R 的可导函数,若f ′(x )>0,设a =f ⎝⎛⎭⎫12,b =f ⎝⎛⎭⎫23,c =f (-1),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .a >c >b解:因为f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增.∵-1<12<23,∴f (-1)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫23, 即c <a <b .故选A.2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象有可能是( )解:当x <0时,f ′(x )>0,f (x )单调递增; 当x >0时,f ′(x )<0,f (x )单调递减.故选C. 3.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)解:f ′(x )=(x -3) ′e x +(x -3)(e x ) ′=(x -2)e x ,令 f ′(x )>0,解得x >2,故选D.4.函数f (x )=(x -1)(x -2)2的极值点为x =( )A .1,2 B.43,2 C.13,1 D.13,43解:f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合导数的符号变化.故选B.5.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .4解:f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x =0或x =2(舍去), 当-1≤x <0时,f ′(x )>0; 当0<x ≤1时,f ′(x )<0.所以当x =0时,f (x )取得最大值为2.故选C.6.(2012·陕西)设函数f (x )=2x+ln x ,则( ) A. x =12为f (x )的极大值点B. x =12为f (x )的极小值点C. x =2为 f (x )的极大值点D. x =2为 f (x )的极小值点解:f ′(x )=x -2x2,令f ′(x )=0,得x =2.当x <2时,f ′(x )<0,f (x )为减函数;当x >2时,f ′(x )>0,f (x )为增函数,所以x =2为f (x )的极小值点,故选D.7.若函数f (x )=ax +1+x 在x =1处取极值,则a=________.解:f ′(x )=-a (x +1)2+1,f ′(1)=-a4+1=0⇒a =4.故填4.8.一块形状为直角三角形的铁皮,两直角边长分别为40 cm ,60 cm ,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm 2.解:设长为40 cm 和60 cm 的直角边上对应的矩形边长分别为x cm ,y cm ,则40-x 40=y60,得y =60-32x .矩形的面积S =xy =x ⎝⎛⎭⎫60-32x =60x -32x 2,令S ′=60-3x =0,得x =20.所以当x =20时矩形面积最大,最大面积为600 cm 2.故填600.9.(2013·湖北模拟)已知函数f (x )=2ax 3-3x 2,其中a >0.求证:函数f (x )在区间(-∞,0)上是增函数. 证明:f ′(x )=6ax 2-6x =6x (ax -1).因为a >0且x <0,所以f ′(x )>0.所以函数f (x )在区间(-∞,0)上是增函数.10.已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间; (2)求函数f (x )的极值.解:(1)f ′(x )=(1-x )e -x .令f ′(x )=0,得x =1. x在区间(1,+∞)内是减函数.(2)由(1)可知,函数f (x )在x =1处取得极大值f (1)=1e. 11.已知函数f (x )=ax +ln(x +1),a ∈R .(1)若a =2,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在x =1处取得极值,试讨论f (x )的单 调性.解:f ′(x )=a +1x +1.(1)若a =2,则f ′(0)=2+10+1=3,又f (0)=0,因此曲线y =f (x )在点(0,f (0))处的切线方程为y -0=3(x -0),即3x -y =0.(2)∵f ′(1)=0,∴f ′(1)=a +12=0,得a =-12,∴f (x )=-12x +ln(x +1),x >-1,f ′(x )=-12+1x +1=-(x -1)2(x +1),令f ′(x )=0,得x =1.调递减.(2012·福建)已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论:①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0.其中正确结论的序号是( )A .①③B .①④C .②③D .②④ 解:f (3)=27-54+27-abc =-abc =f (0),因为f ′(x )=3(x -1)(x -3),所以f (x )在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减.∵a <b <c ,且f (a )=f (b )=f (c )=0,∴a <1<b <3<c ,∴f (1)>0,f (3)=f (0)<0,∴f (0)f (1)<0,f (0)f (3)>0.故选C.§3.3 导数的应用(二)利用导数来解决函数的单调性,极值与最值问题已经成为热点问题之一.既有填空题,侧重于利用导数确定函数的单调性和极值;也有解答题,侧重于导数的综合应用,即导数与函数,数列,不等式的综合应用.故编写导数的应用(二),以加大学习力度.1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈[a ,b ]. 直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出 和____________即可.在此基础上还应注意:(1)结合 可减少比较次数.(2)含参数的函数求最值可用:①按 分类;②按 分类.【自查自纠】 1.02.最小值 最大值 (1)单调性 (2)单调性 极值点函数f (x )=ax 3+x +1在x =-1处有极值,则a 的值为( )A .1B .0C .-13D .-12解:f ′(x )=3ax 2+1,∵f ′(-1)=3a +1=0,∴a =-13.故选C.函数y =4x 2+1x的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 解:y ′=8x -1x 2,令y ′>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增.故选B.已知函数f (x )=ax 3+bx +c (a ,b ,c ∈R ),若f ′(1)=2,则f ′(-1)=( )A .0B .3C .-1D .2 解:f ′(x )=3ax 2+b ,f ′(-1)=f ′(1)=2.故选D.已知f (x )=sin x +2x ,x ∈R ,且f (2a )<f (a -1),则a 的取值范围是 .解:∵f ′(x )=cos x +2>0恒成立,∴f (x )在R 上单调递增.∵f (2a )<f (a -1),∴2a <a -1,得a <-1.故填(-∞,-1).若函数g (x )=e x -3x 在(1,+∞)上的最小值是 .解:g ′(x )=e x -3,令g ′(x )=0,得x =ln3,g (x )在(-∞,ln3)上单调递减,在(ln3,+∞)上单调递增,所以g (x )在(1,+∞)上的最小值g (ln3)=3-3ln3.故填3-3ln3.类型一 函数单调性的进一步讨论设函数f (x )=x e kx (k ≠0).(1)若k >0,求函数f (x )的单调区间;(2)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围.解:(1)f ′(x )=(1+kx )e kx .若k >0,令f ′(x )>0,得x >-1k,所以函数f (x )的单调递增区间是⎝⎛⎭⎫-1k ,+∞, 单调递减区间是⎝⎛⎭⎫-∞,-1k . (2)∵f (x )在区间(-1,1)内单调递增,∴f ′(x )=(1+kx )e kx ≥0在(-1,1)内恒成立, ∴1+kx ≥0在(-1,1)内恒成立, 即⎩⎪⎨⎪⎧1+k ·(-1)≥0,1+k ·1≥0, 解得-1≤k ≤1. 因为k ≠0,所以k 的取值范围是[-1,0)∪(0,1]. 【评析】①函数单调性的讨论归结为对不等式解的讨论;②函数f (x )在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解.若函数f (x )=-x +b ln(x +2)在[-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,1]D .(-∞,1)解:∵f ′(x )=-1+bx +2≤0在[-1,+∞)上恒成立,∴b ≤x +2在[-1,+∞)上恒成立.∴b ≤1.故选C .类型二 极值与最值的进一步讨论(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.解:(1)∵当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x.∴f (1)=1,f ′(1)=-1.∴所求切线方程为y -1=-(x -1),即x +y -2=0.(2)f ′(x )=1-a x =x -ax,x >0.若a ≤0,则f ′(x )>0恒成立,f (x )不存在极值.所以f (x )的极小值f (a )=a -a ln a .【评析】本题要求掌握运用导数研究函数的单调性,极值的一般步骤.第二问对分类讨论要求较高,其分类是以表格为基础进行的.(2013·河南模拟)已知函数f (x )=x ln x 在区间[t ,+∞)(t >0)上的最小值大于-1e,则t 的取值范围是( )A.⎝⎛⎭⎫0,1e B .(1,e) C.⎣⎡⎭⎫1e ,1 D.⎝⎛⎭⎫1e ,+∞ 解:f ′(x )=ln x +1,令f ′(x )=0,得x =1e.x所以f (x )的极小值f ⎝⎛⎭⎫1e =-1e. 显然,若t >1e ,则f (x )的最小值大于-1e.故选D.类型三 方程根的讨论已知函数f (x )=e x ,x ∈R .(1)求f (x )的图象在点(0,f (0))处的切线方程;(2)证明:曲线y =f (x )与直线y =e x 有唯一公共点. 解:(1)∵f ′(0)=e 0=1,f (0)=1,∴切线方程为y -1=1·(x -0),即x -y +1=0. (2)证法一:设g (x )=e x -e x ,曲线y =e x 与y =e x 的公共点的个数等于函数g (x )=e x -e x 零点的个数.∵g ′(x )=e x -e ,令g ′(x )=0,得x =1, ∴g(x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,∴g (x )的最小值g (1)=e 1-e =0,g (x )=e x -e x ≥0(仅当x =1时,等号成立). ∴曲线y =f (x )与直线y =e x 有唯一公共点.证法二:⎝⎛⎭⎫由于方程e x =e x 等价于x e x =1e . 设h (x )=xe x ,分析方法类似证法一.【评析】通过作差或作商可得到新的函数,求出新函数的单调区间,极值点,区间端点处的函数值,特殊点(如图象与x 轴,y 轴交点),来判断交点的个数.若a >1e,则方程ln x -ax =0的实根的个数为( )A .0个B .1个C .2个D .无穷多个解法一:由于方程ln x -ax =0等价于ln xx=a .设f (x )=ln xx .∵f ′(x )=1x ·x -ln x x 2=1-ln xx 2, 令f ′(x )=0,得x =e ,∴f (x )在(0,e)上单调递增;在(e ,+∞)上单调递减.∴f (x )的最大值f (e)=1e,f (x )=ln x x ≤1e (仅当x =e 时,等号成立).∵a >1e,∴原方程无实根.解法二:设g (x )=ln x -ax ,分析单调性,极值可得结论.故选A.类型四 导数法证明不等式已知函数f (x )=e x ,当x ∈[0,1]时.求证: (1)f (x )≥1+x ; (2)(1-x )f (x )≤1+x .证明:(1)设g (x )=e x-x -1,x ∈[0,1]. ∵g ′(x )=e x -1≥0,∴g (x )在[0,1]上是增函数, g (x )≥g (0)=1-0-1=0. ∴e x ≥1+x ,即f (x )≥1+x .(2)设h (x )=(1-x )e x -x -1,x ∈[0,1]. ∵h ′(x )=-x e x -1<0,∴h (x )在[0,1]上是减函数,h (x )≤h (0)=1-0-1=0.∴(1-x )e x -x -1≤0, 即(1-x )f (x )≤1+x .【评析】①用导数证明不等式问题的关键在于构造函数;②由作差或者作商来构造函数是最基本的方法;③本题通过作差构造函数,分析其单调性,最值,得出函数值恒大于或小于0,使问题得证.(2013·江西模拟)设函数f (x )=x1+x,g (x )=ln x +12.求证:当0<x ≤1时,f (x )≥g (x ).证明:设h (x )=x 1+x-ln x -12,0<x ≤1.∵h ′(x )=1+x -x (1+x )2-1x =1(1+x )2-1x=-x 2-x -1(1+x )2x <0, ∴h (x )在(0,1]上单调递减.∵h (1)=12-0-12=0,h (x )≥0(仅当x =1时,等号成立). ∴当0<x ≤1时,f (x )≥g (x ).1.证明不等式问题可通过作差或作商构造函数,然后用导数证明.2.求参数范围问题的常用方法:(1)分离变量; (2)运用最值.3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论.4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.1.函数f (x )的导函数为f ′(x )=1-xx,则f (x )的单调增区间是( )A .(-∞,0)B .[1,+∞)C .(0,1]D .(-∞,0),[1,+∞)解:令f ′(x )>0,解得0<x <1.又f ′(1)=0,所以f (x )在(0,1]上单调递增. 故选C.2.函数f (x )=43x 3-x 2的单调减区间是( )A.⎝⎛⎭⎫12,+∞B .(-∞,0)C .(-∞,0),⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫0,12 解:f ′(x )=4x 2-2x =2x (2x -1),令f ′(x )<0,得0<x <12.所以f (x )的单调减区间是⎝⎛⎭⎫0,12.故选D.3.已知函数f (x )=mx 3+12m x ,f ′(1)=-12,则实数m 的值为( )A .2B .-2C .4D .-4解:f ′(x )=3mx 2+12m ,由f ′(1)=3m +12m =-12,得m 2+4m +4=0,即(m +2)2=0,故m =-2, 故选B.4.函数f (x )=x (1-x )n 的部分图象如图所示,f (x )在x =13处取极值,则n 的值为()A .1B .-1C .2D .-2解:f ′(x )=(1-x )n -nx (1-x )n -1=(1-x -nx )(1-x )n -1,∵x =13为f (x )的极值点,∴f ′⎝⎛⎭⎫13=0,得⎝⎛⎭⎫1-13-n 3·⎝⎛⎭⎫23n -1=0,∴n =2.故选C.5.已知函数f (x )=e xx,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值也无极小值解:f ′(x )=e x ·x -e x x 2=(x -1)e xx 2,x >0.令f ′(x )=0,得x =1.又f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以x =1为f (x )的极小值点,f (x )无极大值.故选B.6.若对于R 上的可导函数f (x )满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)解:当x >1时,f ′(x )≥0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )≤0,f (x )在(-∞,1)上是减函数, 故f (x )的最小值为f (1),必有f (0)+f (2)≥2f (1).故选C .7.(2013·山西模拟)函数f (x )=x 2+3xf ′(1),在点(2,f (2))处的切线方程为 .解:f ′(x )=2x +3f ′(1),f ′(1)=2×1+3f ′(1),得f ′(1)=-1,所以f (x )=x 2-3x ,f ′(x )=2x -3.代入x =2,可知f (2)=-2,f ′(2)=1,在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.故填x -y -4=0.8.(2013·广东改编)函数f (x )=(x -1)e x -x 2的单调减区间是 .解:f ′(x )=e x +(x -1)e x -2x =x (e x -2), 令f ′(x )<0,得0<x <ln2.故填(0,ln2).9.已知函数f (x )=12ax 2+(a -1)x +1,a ∈R .(1)求f (x )的图象在(0,f (0))处的切线方程; (2)若f (x )在区间(1,4)上为减函数,求实数a 的取值范围.解:(1)f ′(x )=ax +a -1,f ′(0)=a -1,f (0)=1. 所以在点(0,f (0))处的切线方程为y -1=(a -1)(x -0),即(a -1)x -y +1=0.(2)∵f (x )在区间(1,4)上为减函数, ∴f ′(x )≤0在区间(1,4)上恒成立, ∴ax +a -1≤0在区间(1,4)上恒成立,即⎩⎪⎨⎪⎧a ·1+a -1≤0,a ·4+a -1≤0, 得⎩⎨⎧a ≤12,a ≤15.因此a ≤15.10.已知函数f (x )=e x -2x +a ,a ∈R . (1)求f (x )的单调区间;(2)若f (x )在R 上有零点,求a 的取值范围. 解:(1)f ′(x )=e x -2,令f ′(x )=0,得x =ln2.所以f (x )的单调减区间是(-∞,ln2), 单调增区间是(ln2,+∞). (2)若f (x )在R 上有零点,则f (x )的最小值f (ln2)≤0,即e ln2-2ln2+a ≤0,得a ≤2ln2-2.11.已知函数f (x )=x 2+a ln x ,a ≠0.(1)若x =1是函数f (x )的极值点,求实数a 的值; (2)讨论f (x )的单调性.解:(1)f ′(x )=2x +ax,x >0.因为f ′(1)=0,所以2+a =0,得a =-2, 经检验,当a =-2时,x =1是函数f (x )的极值点. (2)①若a >0,则f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增.②若a <0,令f ′(x )=0,得x =-a2,当x ∈⎝⎛⎭⎫0,-a2时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f ′(x )>0,f (x )单调递增.(2014届湖北重点中学高三10月阶段性统一考试)已知函数f (x )=a x +x 2,g (x )=x ln a ,a >1.(1)求证:函数F (x )=f (x )-g (x )在(0,+∞)上单调递增;(2)若函数y =|F (x )-b 2-3b |-3有四个零点,求b 的取值范围.证明:(1)F (x )=a x +x 2-x ln a ,F ′(x )=a x ln a +2x -ln a =(a x -1)ln a +2x .∵a >1,当x ∈(0,+∞)时,a x -1>0,ln a >0,2x >0,∴F ′(x )>0,函数F (x )在(0,+∞)上单调递增. (2)由(1)知F (x )在(0,+∞)上单调递增, 当x <0时,a x -1<0,ln a >0,2x <0, ∴函数F (x )在(-∞,0)上单调递减.当x 趋近于+∞或-∞时,F (x )趋近无穷大. ∴F (x )的最小值为F (0)=1. 由|F (x )-b 2-3b |-3=0,得F (x )=b 2+3b +3或F (x )=b 2+3b -3.所以要使函数y =|F (x )-b 2-3b |-3有四个零点,只需b 2+3b +3>1且b 2+3b -3>1,即b 2+3b >4.解得b <-4或b >1.§3.4 定积分与微积分基本定理1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.3.初步掌握定积分的主要应用:①利用定积分求曲边梯形的面积;②利用定积分求变速直线运动物体的路程;③利用定积分求变力作的功.近几年高考试卷中对定积分的考查主要内容有:定积分的运算,求曲边梯形的面积(或利用曲边梯形的面积计算概率),定积分的物理应用等,一般为选择,填空题,难度不大.1.定积分的定义(1)如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i =1,2,…,n )作和式∑=-ni i f n ab 1)(ξ.当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作 ,即⎠⎛a bf (x )d x =∑=∞→-ni i n f n a b 1)(lim ξ.其中f (x )称为________,x 称为__________,f (x )d x 称为__________,[a ,b ]为__________,a 为积分下限,b 为积分上限,“∫”称为积分号.(2)用化归为计算矩形面积和逼近的思想方法求出曲边梯形的面积的具体步骤为 ,近似代替,求和, .2.定积分的性质(1)⎠⎛a b kf (x )d x = (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x = ;(3)⎠⎛ab f (x )d x = (其中a <c <b ). 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ) ,那么⎠⎛ab f (x )d x = ,这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.常常把F (b )-F (a )记作 ,即 ⎠⎛abf (x )d x = = .4.定积分在几何中的简单应用(1)当函数f (x )在区间[a ,b ]上恒为正时,由直线x=a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形(图甲中阴影部分)的面积S =.(2)当函数f (x )在区间[a ,b ]上恒为负时,由直线 x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形(图乙中阴影部分)的面积S = .(3)当x ∈[a ,b ]有f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x ),y =g (x )围成的曲边梯形(图丙中阴影部分)的面积S =.一般情况下,定积分⎠⎛ab f (x )d x 的几何意义是介于x轴,曲线y =f (x )以及直线x =a ,x =b 之间的曲边梯形(图丁中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.(4)若f (x )是偶函数,则⎠⎛-aa f (x )d x = (其中a >0);若f (x )是奇函数,则⎠⎛-aa f (x )d x = (其中a >0).5.定积分在物理中的简单应用(1)作变速直线运动的物体(速度函数为V (t ),速度方向不变)在时间区间[a ,b ]上所经过的路程S =____________.(2)在变力F =F (x )的作用下,物体沿力F 的方向作直线运动,并且由x =a 运动到x =b (a <b ),则力F 对物体所作的功W = .(3)在变力F =F (x )的作用下,物体沿与力F 的方向成θ角的方向作直线运动,并且由x =a 运动到x =b (a <b ),则力F 对物体所作的功W = .【自查自纠】1.(1)⎠⎛ab f (x )d x 被积函数 积分变量被积式 积分区间 (2)分割 取极限。

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

4 1 AB AC 3 3
4 1 AB AC 3 3
1 1 1 4 试题分析:由题知 AD AC CD AC BC AC ( AC AB) = AB AC ,故选 A. 3 3 3 3
考点:平面向量运算
(8) 函数 f ( x) = cos( x ) 的部分图像如图所示,则 f ( x) 的单调递减区间为 (A)( ),k (b)( ),k
考点:函数的奇偶性
(14)一个圆经过椭圆
x2 y 2 1 的三个顶点,且圆心在 x 轴上,则该圆的标准方程为 16 4

3 25 【答案】 ( x )2 y 2 2 4
【解析】
3 试题分析:设圆心为( a ,0) ,则半径为 4 | a | ,则 (4 | a |) 2 | a | 2 2 2 ,解得 a ,故圆的 2 3 25 方程为 ( x )2 y 2 .学科网 2 4
【解析】 试题分析: (Ⅰ)先用数列第 n 项与前 n 项和的关系求出数列{ an }的递推公式,可以判断数列{ an }是等差
数列,利用等差数列的通项公式即可写出数列{ an }的通项公式; (Ⅱ)根据(Ⅰ)数列{ bn }的通项公式, 再用拆项消去法求其前 n 项和. 学科网
试题解析: (Ⅰ)当 n 1 时, a12 2a1 4S1 3 4a1 +3 ,因为 an 0 ,所以 a1 =3,
考点:数列前 n 项和与第 n 项的关系;等差数列定义与通项公式;拆项消去法
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值

2015高考数学新课标Ⅰ卷(理)试题及答案(纯word版)-推荐下载


对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2015年高考数学(理)核按钮:第二章《基本初等函数(Ⅰ)》(含解析)

第二章函数的概念、基本初等函数(Ⅰ)及函数的应用§2.1函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).从近几年高考来看,函数的概念、分段函数的解析式和求函数值是重点考查的内容之一,主要以选择、填空题的形式出现.1.函数的概念一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有________f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个________,记作y=f(x),x∈A,其中,x叫做________,x的取值范围A叫做函数的________;与x的值相对应的y值叫做________,其集合{f(x)|x∈A}叫做函数的________.2.函数的表示方法(1)解析法:就是用________表示两个变量之间的对应关系的方法.(2)图象法:就是用________表示两个变量之间的对应关系的方法.(3)列表法:就是________表示两个变量之间的对应关系的方法.3.构成函数的三要素(1)函数的三要素是:________,________,________.(2)两个函数相等:如果两个函数的________相同,并且完全一致,则称这两个函数相等.4.分段函数若函数在定义域的不同子集上的对应关系也不同,这种形式的函数叫做分段函数,它是一类重要的函数.5.映射的概念一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于A中的________元素x,在集合B中都有________元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.6.映射与函数的关系(1)联系:映射的定义是在函数的现代定义(集合语言定义)的基础上引申、拓展而来的;函数是一种特殊的_____________.(2)区别:函数是从非空数集..A到非空数集..B的映射;对于映射而言,A和B不一定是数集...7.复合函数一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))的内层函数.【自查自纠】1.唯一确定的数函数自变量定义域函数值值域2.(1)数学表达式(2)图象(3)列出表格3.(1)定义域对应关系值域(2)定义域对应关系5.任意一个唯一确定的6.(1)映射(2012·江西)下列函数中,与函数y=13x定义域相同的函数为()A.y=1sin x B.y=ln xxC.y=x e x D.y=sin xx解:函数y=13x的定义域为(-∞,0)∪(0,+∞),列判断正确的是.都表示映射,都表示y 是x 的函数 .仅③表示y 是x 的函数 .仅④表示y 是x 的函数 .都不能表示y 是x 的函数根据映射的定义,①②③中,x 与y 的对应关系都不是映射,当然不是函数关系,④是映射,是函数关系.故选C.函数y =-x 2-3x +4x的定义域________________.依题意知⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0, 解得-4≤1.故填[-4,0)∪(0,1].规定记号“*”表示一种运算,且a *b =ab ,a b 是正实数,已知1*k =3.正实数k 的值为____________;在(1)的条件下,函数f (x )=k *x 的值域是___________.∵1*k =k +k +1=3,∴k =1;k *x =1*x =⎝⎛⎭⎫x +122+34>1,∴函数f (x )=k *x 的值域是.故填1;(1,+∞).________.①P =Z 素取绝对值与集合②P ={→y =x 2 ①A =R ②A =⎩⎨⎧a :a →b , 相等的函数是A .g (x一函数的是(A.f(x)=B.f(x)=的定义域.(2)若函数的定义域求函数f(x)的定义域(2)已知函数的定义域.解:(1)∵(1)y=11(3)y=2,x <-12,,-12≤x ≤4,>4,作出其图象,可知函数f (x )的值域是求函数值域的常用方法:①单调性法,(2);③分离常数法,如(包括代数换元与三角换元⑥判别式法,如(4);⑦不等式法,⑧导数法,主要是针对在某区间内连续可导的函数;⑨图象法求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(5),(6)),其解法要针对具体题目可以将二元函数化为一元函数求值只能用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.求下列函数的值域:(1)y =x +; (2)f (x )=解:(1)函数的定义域为和y =(1)已知;(2)已知(3)已知,求f(x)(2)已知2x+17,求(3)已知1-x),-1)-f ________.解:∵x>02x,x>012(-x),范围是(A.(-1(a )>f (-a ),则有由题意可得⎩⎪⎨⎪⎧a >0,log 2a >-log )>log 2(-a )⇒⎩⎪⎨⎪⎧)>0.或-1<a <0.故选类型七 创新问题对实数a 与b ,定义运算a -b ≤1a -b >1.若函数y =f c 的取值范围是由图可知,要使y =f ()x 与y =c 的图象有两个交的活动范围是在l 1与l 2之间, a -b )2)A .f (x )=§2.2函数的单调性与最大(小)值1.理解函数的单调性、最大值、最小值及其几何意义.2.掌握简单函数单调性的判断和证明方法.3.能将函数单调性、最大(小)值的定义、图象、求导等紧密结合,并能综合应用,解决函数单调性问题.函数的单调性、最值一直是高考的热点.1.函数的单调性(1)增函数与减函数一般地,设函数f(x)的定义域为I:①如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是.②如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.(2)单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) ,区间D叫做y=f(x)的.2.函数的最值(1)最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么,我们称M是函数y=f(x)的最大值.(2)最小值一般地,设函数y=f(x)的定义域为I,如果存在实数m满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么我们称m是函数y=f(x)的最小值.【自查自纠】1.(1)①任意两个增函数②任意两个减函数(2)单调性单调区间2.(1)①f(x)≤M②f(x0)=M(2)①f(x)≥m②f(x0)=m(2012·广东)下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.y=-x+1C.y=⎝⎛⎭⎫12xD.y=x+1x解:易知选项中4个函数均在区间(0,+∞)上有意义,由y=ln(x+2)的增区间为(-2,+∞)可知:y =ln(x+2)在(0,+∞)上是增函数.故选A.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是()A.2 B.-2C.2或-2 D.0解:当a>0时,由题意得2a+1-(a+1)=2,即a=2;当a<0时,a+1-(2a+1)=2,即a=-2,所以a=±2.故选C.下列区间中,函数f(x)=||ln(2-x)在其上为增函数的是()A.(-∞,1] B.⎣⎡⎦⎤-1,43C.⎣⎡⎭⎫0,32D.[1,2)解:f(x)的定义域为(-∞,2),f(1)=0,当x∈[1,2)时,f(x)=-ln(2-x),由复合函数的单调性特征知f(x)为增函数.故选D.函数f(x)=log5(2x+1)的单调增区间是____________.解:f(x)的定义域为⎝⎛⎭⎫-12,+∞.∵u=2x+1在⎝⎛⎭⎫-12,+∞上单调递增,且u∈(0,+∞),y=log5u在(0,+∞)上单调递增.∴f(x)在⎝⎛⎭⎫-12,+∞上单调递增.故填⎝⎛⎭⎫-12,+∞.(2012·上海)已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是__________.解:图象法,根据函数f(x)=e|x-a|=⎩⎪⎨⎪⎧e x-a,x≥a,e-x+a,x<a.的图象如图所示,由图象知当为增函数,而已知函数上为增函数,所以a的取值范围为判断函数的单调性,求函数的单调区间2013·重庆模拟)求下列函数的单调区间:①y=-+3;②y=1x+2;③y=x①依题意,可得=-x2+2x+3=-(=-x2-2x+3=-由二次函数的图象知,函数y=-上是增函数,在[y=-x2+2|x|+1];单调减区间为0,得x≥2或x≤,则y=1-u,减的是________①f(x)=③f(x)=上是单调增函数,求实数解:设是单调增函数.在区间[2解:设假设符合条件的当a>1时,由复合函数的单调性知,只需y)=f(x+(1)求证:(2)求f(∞),且对一切时,有(1)求f(1)(2)判断-1)<0,f (11)=f (3)>(80)<f (11),故选D .若函数f (x )=||2x +a 的单调递增区a =____________.函数的对称轴为x =-a2,由对称性可知6. (3)=0⇒a =-6.故填-若函数f (x )=a x (a >0,,最小值为m ,且函数增函数.§2.3函数的奇偶性与周期性了解函数奇偶性的含义.在高考中,函数的奇偶性、周期性常与函数的其他性质结合在一起命题,综合考查学生对函数基本概念及性质的理解,题型以选择、填空为主.1.奇偶函数的概念(1)偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)就叫做偶函数.(2)奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)就叫做奇函数.2.奇偶函数的图象特征偶函数的图象关于对称;奇函数的图象关于对称.3.具有奇偶性函数的定义域的特点具有奇偶性函数的定义域关于,即定义域关于是一个函数具有奇偶性的条件.4.周期函数的概念(1)周期、周期函数对于函数f(x),如果存在一个T,使得当x取定义域内的值时,都有,那么函数f(x)就叫做周期函数.T叫做这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个的正数,那么这个最小正数就叫做f(x)的最小正周期.5.函数奇偶性与单调性之间的关系(1)若函数f(x)为奇函数,在[a,b]上为增(减)函数,则f(x)在[-b,-a]上应为;(2)若函数f(x)为偶函数,在[a,b]上为增(减)函数,则f(x)在[-b,-a]上应为.6.奇偶函数的“运算”(共同定义域上)奇±奇=,偶±偶=,奇×奇=,偶×偶=,奇×偶=.7.函数的对称性如果函数f(x),x∈D,满足∀x∈D,恒有f(a+x)=f(b-x),那么函数的图象有对称轴;如果函数f(x),x∈D,满足∀x∈D,恒有f(a-x)=-f(b +x),那么函数的图象有对称中心.8.函数的对称性与周期性的关系(1)如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且周期T =2(b-a)(不一定是最小正周期,下同).(2)如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)(a<b),那么函数f(x)是周期函数,且周期T=2(b-a).(3)如果函数f(x),x∈D在定义域内有一条对称轴x=a和一个对称中心B(b,0)(a≠b),那么函数f(x)是周期函数,且周期T=4|b-a|.【自查自纠】1.(1)f(-x)=f(x)(2)f(-x)=-f(x)2.y轴原点3.原点对称原点对称必要不充分4.(1)非零常数每一个f(x+T)=f(x)(2)最小5.(1)增(减)函数(2)减(增)函数6.奇偶偶偶奇7.x=a+b2⎝⎛⎭⎫a+b2,0(2013·广东)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是() A.4 B.3 C.2 D.1解:易知函数y=x3,y=2sin x为奇函数,故选C.(2013·山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=()A.-2 B.0 C.1 D.2解:∵f(x)为奇函数,∴f(-1)=-f(1)=-2.故选A.(2013·东北三校联考)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=()A.-1 B.1 C.-2 D.2解:∵函数f(x)的周期为5,∴f(3)-f(4)=f(-2)-f(-1),又∵f(x)为R上的奇函数,∴f(-2)-f(-1)=-f(2)+f(1)=-2+1=-1.故选A.设函数f(x)=x(e x+a e-x)(x∈R)是偶函数,则实数a=.解:令g(x)=x,h(x)=e x+a e-x,因为函数g(x)(1)f(x)=(2)f(x)=,∴-2≤x≤2且x≠0定义域关于原点对称.偶性:(1)f(x)=(2)f(x)=(1)求证:(2)若f(1)(3)若当f(x)的解析式称,且当x∈x).解:由题意知函数期的周期函数.所以先求出一个周期内的表达式,然2]上单调递减,若值范围是________________解:∵∴f(1--1,1)上又是减函数,且满足的取值范围为解:由奇函数的性质得+x)=f(5-2014,A.808解:∵数,且f(2)=成立,则A.4024解:函数是定义在R 上的偶函数,且满足:;②当0≤x ≤1时,是否为周期函数;.)=f (2-x ),)=f (-x ) ⇒x )是周期为2的周期函数.1.5)=f (1.5)=f (2-x )的定义域为(-2,的定义域;为奇函数,并且在定义域上单调递减,的解集.由题意可知,∴⎩⎪⎨⎪⎧-1<x <3,12<x <52,的偶函数,当§2.4 二次函数二次函数虽属于初中内容,在考试大纲中也没有明确要求,但二次函数、一元二次方程和一元二次不等式又是高考的热点内容之一,因此,二次函数的重要性在于它的工具性和基础性,从题型上看,选择、填空、大题都有.掌握好二次函数的关键是掌握其图象,记住它的图象,其性质就很容易掌握.1.二次函数解析式的三种形式(1)一般式:f (x )= (a ≠0); (2)顶点式:f (x )= (a ≠0); (3)零点式:f (x )= (a ≠0). 2.二次函数的图象与性质(1)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,它的对称轴、顶点坐标、开口方向、值域、单调性分别是:①对称轴:x = ; ②顶点坐标: ;③开口方向:a >0时,开口 ,a <0时,开口 ;④值域:a >0时,y ∈ ,a <0时,y ∈ ;⑤单调性:a >0时,f (x )在 上是减函数,在 上是增函数;a <0时,f (x )在⎝⎛⎭⎫-∞,-b2a 上是 ,在⎝⎛⎭⎫-b 2a ,+∞上是____________. (2)二次函数、二次方程、二次不等式三者之间的关系二次函数f (x )=ax 2+bx +c (a ≠0)的零点(图象与x 轴交点的横坐标)是相应一元二次方程ax 2+bx +c =0的 ,也是一元二次不等式ax 2+bx +c ≥0(或ax 2+bx +c ≤0)解集的 .3.二次函数在闭区间上的最值二次函数在闭区间上必有最大值和最小值.它只能在区间的 或二次函数的 处取得,可分别求值再比较大小,最后确定最值.4.一元二次方程根的讨论(即二次函数零点的分布)设x 1,x 2是实系数一元二次方程ax 2+bx +c =0(a >0)的两实根,则x 1,x 2的分布范围与系数之间的关向下④⎣⎡⎭⎫4ac-b24a,+∞⎝⎛⎦⎤-∞,4ac-b24a⑤⎝⎛⎭⎫-∞,-b2a⎝⎛⎭⎫-b2a,+∞增函数减函数(2)根端点值3.端点顶点函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2 B.m=2C.m=-1 D.m=1解:当m=-2时,f(x)=x2-2x+1,对称轴为x=1,其图象关于直线x=1对称,反之也成立.故选A.(2013·重庆)()3-a()a+6()-6≤a≤3的最大值为()A.9 B.92C.3 D.322解:(3-a)(a+6)=-⎝⎛⎭⎫a+322+814≤92,当a=-32时,取等号.故选B.(也可用基本不等式求解)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是()解:A选项中,由于二次函数图象开口向下,所以a<0,且函数与y轴交点在y轴负半轴,所以c<0,又abc>0,所以b>0,函数的对称轴x=-b2a>0,显然A不正确;B选项中,a<0,c>0,所以b<0,所以对称轴x=-b2a<0,所以B不正确;C选项中,a>0,c<0,所以b<0,所以对称轴x=-b2a>0,所以C错.故选D.若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是.解:m=0时,函数在给定区间上是增函数;m≠0时函数是二次函数,由题知m>0,对称轴为x=-12m≤-2,∴0<m≤14,综上0≤m≤14.故填⎣⎡⎦⎤0,14.(2012·江苏改编)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)-c<0的解集为(m,m+6),则实数c的值为________.解:由条件设f(x)-c=(x-m)(x-m-6),∴f(x)=x2-(2m+6)x+m(m+6)+c.由于f(x)的值域为[0,+∞),∴Δ=0,∴(2m+6)2-4[m(m+6)+c]=0,解得c=9.故填9.类型一求二次函数的解析式已知二次函数f(x)满足f(2)=-1, f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.解法一:(利用一般式)设f(x)=ax2+bx+c(a≠0),由题意得⎩⎪⎨⎪⎧4a+2b+c=-1,a-b+c=-1,4ac-b24a=8,解之得⎩⎪⎨⎪⎧a=-4,b=4,c=7.∴所求二次函数为y=-4x2+4x+7.解法二:(利用顶点式)设f(x)=a(x-m)2+n,∵f(2)=f(-1),∴抛物线对称轴为x=2+(-1)2=12,∴m=12,又根据题意,函数有最大值为8,∴n=8,∴f(x)=a⎝⎛⎭⎫x-122+8.∵f(2)=-1,即a⎝⎛⎭⎫2-122+8=-1.解之得a=-4.∴f(x)=-4⎝⎛⎭⎫x-122+8=-4x2+4x+7.解法三:(利用零点式)由已知f(x)+1=0的两根为x1=2,x2=-1,即g(x)=f(x)+1的两个零点为2,-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.⎭⎫32-x 对的两实根之差的绝对值等于析式.解:∵a >b >c 且a +b +c =0, >0,c <0,b 2-4ac >0,图象开口向上,在y 轴上截距为负,且过故选A.【评析】a 决定抛物线开口的方向,c 确定抛物线轴上的截距,b 与a 确定顶点的横坐标(或对称轴,再结合题设条件就不难解答此题了.在同一坐标系中,函数y =ax 2+bx +b (ab ≠0)的图象只可能是( )解:抛物线y =ax 2+bx 过原点排除A ,又直线与抛物线y =ax 2+bx 都过点⎝⎛⎭⎫-ba ,0,排除故选D.类型三 二次函数的最值(2013·济南模拟)已知f (x )=ax (0≤x ≤1),求f (x )的最小值g (a ).解:(1)当a =0时,f (x )=-2x 在[0,1]上单调递减,∴g (a )=f (x )min =f (1)=-2. 当a >0时,f (x )=ax 2-2x 的图象开口方向向上,且其对称轴为x =1a .当0<1a≤1,即a ≥1时,f (x )=ax 2-2x 的图象对上有最小值解:f(x)①当t≤1②当t>1(1)若方程有两根,其中一根在区间另一根在区间(2)若方程两根均在区间1<0,2>0,2<0,5>0⇒⎩⎪⎨⎪⎧m<-m∈m<-m>-的取值范围为⎩⎨⎧m|-56<m<-轴交点落在区间1>0,2>0,4(2m+1)≥0,≤1-2,∴-12<的取值范围为⎩⎨⎧m|-12<m≤1一元二次方程根的分布,即二次函数零点的分布,关键在于作出二次函数的草图,由此列出不等式组,要注意二次函数的对称轴及2012·郑州模拟)已知二次函数bx+c(b,+b=0的两个实数根分别在区间内,求实数解:由题意知2tx+2t+§2.5 基本初等函数(Ⅰ)1. 指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点.会画底数为2,3,10,12,13的指数函数的图象.(4)体会指数函数是一类重要的函数模型. 2. 对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.(3)体会对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0且a ≠1).3. 幂函数(1)了解幂函数的概念.(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x的图象,了解它们的变化情况.指数函数、对数函数在高考中属常考内容.以考查指数函数、对数函数的图象、性质为主,性质又以单调性为主,有时在大题中与其他函数混合出现,一般用导数方法解决.高考中常以5种幂函数为载体,考查幂函数的图象及性质,题目多以选择填空题的形式 出现.(一)指数函数 1. 根式(1)n 次方根:如果x n =a ,那么x 叫做a 的 ,其中n >1,且n ∈N *.①当n 为奇数时,正数的n 次方根是一个 数,负数的n 次方根是一个 数,这时a 的n 次方根用符号 表示.②当n 为偶数时,正数的n 次方根有 个,这两个数互为 .这时,正数a 的正的n 次方根用符号 表示,负的n 次方根用符号 表示.正的n 次方根与负的n 次方根可以合并写成 .③负数没有偶次方根.④0的n (n ∈N *)次方根是 ,记作 . (2)根式:式子na 叫做根式,这里n 叫做 ,a 叫做 .(3)根式的性质:n 为奇数时,na n = ; n 为偶数时,na n = . 2. 幂的有关概念及性质 (1)正整数指数幂:a n =(n ∈N *).(2)零指数幂:a 0= .这里a 0. (3)负整数指数幂:a -n = (a ≠0,n ∈N *). (4)正分数指数幂:a m n= (a >0,m ,n ∈N *,且n >1).(5)负分数指数幂:a -m n= (a >0,m ,n ∈N *,且n >1).(6)0的正分数指数幂等于 ,0的负分数指数幂.(7)有理指数幂的运算性质 ⎩⎪⎨⎪⎧a r a s= (a >0,r ,s ∈Q ),(a r )s= (a >0,r ,s ∈Q ),(ab )r = (a >0,b >0,r ∈Q ).注:无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.3. 指数函数的图象及性质定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数图象a >10<a <1定义域 __________ 值域 __________ 性 质过定点__________在R 上是 __________在R 上是 __________位长度,所得图象与曲线⎛ _________(2)0.75-1614.(1)y=⎝⎛(3)y=2解:(1)(1)y=82(3)y=⎝⎛1 2解:(1)因为列五个关系:①<a<0)A.1个与指数函数有关的比较大小问题,除了应用函数的单调性外,还用到指数函数图象的程度,也就是函数f(x)增(减)的快慢.2013·合肥模拟)函数f(x)=如图所示,其中a,b为常数,则下列结论正确的是)<0>0,b>0,b<0由图象知f(x)是减函数,∴0<a<轴的截距小于1可知a-b<1,即-类型四指数函数的综合问题已知函数f(x)=⎝⎛⎭⎫13x,x∈[-=f 2(x)-x)+3的最小值为h(a).(1)若f(x(2)若2t f的取值范围解:(1)当(1)log535(2)a log(3)(log2(1)(lg2)2(2)(log32(3)lg600lg10,c=A.c>b C.a>c 解:a=-12,则(A.x<yC.z<y解:由对数与指数性质知(1)若f((2)若函数(3)若函数的取值范围;x+3).(1)若f(1)(2)是否存在实数求出a的值;若不存在,说明理由a≠1).f(x)-f⎝⎛(1)求f(x(2)若方程图象,已知,C2,C3数形结合法):如图,作直线的图象与直线x=t的交点为的大小与图象交点的“高低特殊值法):当x=2时,,y4=2-1=12,故填3,2,12,-利用幂函数的性质比较大小,往往伴解:因为幂函数0.7<1,所以1.3x是增函数,并且C .3 ⎝⎛⎭⎫13,23,N ⎝⎛23,13,即α=log 2313,β2313=1.故选A.的方程a ·4x +b ·2x +异号,则下列结论中正确的是.此方程无实根.此方程有两个互异的负实根 .此方程有两个异号实根 .此方程仅有一个实根,则at 2+bt +c =t 2=-b a <0,t 1t 2=2x 单调递增,所以只有一正根,故选D .已知函数f (x )=lg x , .(2x +t )(t§2.6函数与方程结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.从近两年的高考试题来看,函数的零点,方程根的问题是热点,题型既有选择题、填空题,又有解答题.预计今后高考仍有可能以函数的零点,方程根的存在性问题为主要考点,并结合考查相应函数的图象和性质.1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4考点梳理4)【自查自纠】1.(1)f(x)=0(2)有交点有零点2.f(a)·f(b)<0(a,b)(a,b)f(c)=0函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)解:∵f(-1)=12-3<0,f(0)=1>0,∴f(-1)·f(0)<0,因此,函数f(x)在区间(-1,0)内有零点.故选B.(2012·湖北)函数f(x)=x cos x2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7解:若f(x)=0,则x=0或cos x2=0,x2=kπ+π2,k∈Z,又x∈[0,4],k=0,1,2,3,4,所以f(x)共有6个零点.故选C.已知a是函数f(x)=ln x-log12x的零点,若0<x0<a,则()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定解:因为f(x)=ln x-log12x在(0,+∞)上是增函数,所以当0<x0<a时,有f(x0)<f(a)=0,故选C.已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x+a,x<1,-x-2a,x≥1.若f(1-a)=f(1+a),则a的值为.解:⎩⎪⎨⎪⎧a>0,2(1-a)+a=-(1+a)-2a,或⎩⎪⎨⎪⎧a<0,-(1-a)-2a=2(1+a)+a .可得a=-34.故填-34.方程ln x=8-2x的实数根x∈(k,k+1),k∈Z,则k=________.解:令函数f(x)=ln x+2x-8,∴f′(x)=1x+2>0(x>0),则f(x)在(0,+∞)上单调递增,又f(1)=-6<0,f(2)=ln2-4<0,f(3)=ln3-2<0,f(4)=ln4>0,∴f(x)的唯一零点在(3,4)内,因此k=3.故填3..(1)f(x)=(2)f(x)=的零点所在的大致区间是A.(1,C.(1,解:∵f1)内的零点个数是A.0解法一:定义域上单调递增且连续,=2x,y2=2-x3,在同一坐标系中画出两函数的图象如图所示,在区间(0f(x)的零点个数.故选零点个数为(A.1解:函数判断函数在给定区间零点的步骤确定函数的图象在闭区间[a,bb)的值并判断f(a)·f0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.零点个数(方程f(x)=判断二次函数f(x)在R上的零点个数,一般由)=0的判别式Δ>0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断对于一般函数零点个数的判断,点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则长春第二次调研)若a >2,则函数2)内零点的个数为(.2 C .1 (x )=x 2-2ax ,由a 时恒为负数,即f (x )在(0,=83-4a +1<0,则内只有一个零点,故选是函数f (x )=2x +11-x 的一个零点,若,+∞),则( )2)<0 B .f (x 1)<02)<0 D .f (x 1)>0g (x )=11-x =-1x -=2x 在(1,+∞)上单调递增,在(1,+∞)上单调递增,所以函数x),f(x)=§2.7函数的图象1.掌握常见函数的图象(如一次函数、二次函数、指数函数、对数函数、三角函数、幂函数).2.会利用图象变换的知识作出一些简单函数的图象.3.会求经过某种变换后所得图象的函数表达式.4.会运用基本初等函数的图象分析函数的性质.图象是函数的重要表现形式,数形结合是研究函数的重要技巧与方法.在历年高考中,都有直接或间接考查函数图象的题目出现.1.作函数的图象有两种基本方法:(1)利用描点法作图,其一般步骤为:①确定函数定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、最值等);④描点并作出函数图象.(2)图象变换法.2.图象变换的四种形式(1)平移变换①水平平移:y=f(x)的图象向左平移a(a>0)个单位长度,得到________的图象;y=f(x-a)(a>0)的图象可由y=f(x)的图象向________平移a个单位长度而得到.②竖直平移:y=f(x)的图象向上平移b(b>0)个单位长度,得到________的图象;y=f(x)-b(b>0)的图象可由y=f(x)的图象向________平移b个单位长度而得到.总之,对于平移变换,记忆口诀为“左加右减,上加下减”.(2)对称变换①y=f(-x),y=-f(x),y=-f(-x)三个函数的图象与y=f(x)的图象分别关于、、对称;②若对定义域内的一切x均有f(m+x)=f(m-x),则y=f(x)的图象关于直线对称.(3)伸缩变换①要得到y=Af(x)(A>0)的图象,可将y=f(x)的图象上每点的纵坐标伸(A>1时)或缩(A<1时)到原来的;②要得到y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的.(4)翻折变换①y=|f(x)|的图象作法:作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到x轴上方,上方的部分不变;②y=f(|x|)的图象作法:作出y=f(x)在y轴右边的图象,以y轴为对称轴将其翻折到左边得y=f(|x|)在y 轴左边的图象,右边的部分不变.【自查自纠】2.(1)①y=f(x+a)右②y=f(x)+b下(2)①y轴x轴原点②x=m(3)①A倍②1a倍(2013·福建)函数f(x)=ln()x2+1的图象大致是()解:由函数解析式可知f(x)=f(-x),即函数为偶函数,排除C;由函数图象过(0,0)点,排除B,D.故选A.函数f(x)=2x+2-x的图象()解:令x =2,则y =-f (2-x )=-f (0)项可排除,令x =1,则y =-f (2-x )=-可排除A ,C 项,故选B.若将函数y =f (x )的图象向左平移再沿y 轴对折,得到y =lg(x +1)的图象,则 .解:把y =lg(x +1)的图象沿y 轴对折得到y =lg(-x +1)的图象,再将图象向右平移得y =lg[-(x -2)+1]=lg(3-x )的图象.∴f (x )=lg(3-x ),故填lg (3-x ).函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,log c ⎝⎛⎭⎫x +116,x ≥0 的图象如图所示,则abc = .解:依图象有⎩⎪⎨⎪⎧b =2,-a +b =0,log c116=2.得a =(1)y =|x (2)y =|log (3)y =2(1)=log 2x 的图象,然后向左平移轴下方的图象沿x 轴对折,图(3)函数的解析式为y =2x -1x +1=2①本题中(2)(3)的函数的图象是由基本函数通过变换得到的,因此可先作最基本的函数的图象,伸缩、对称等变换作出待作函数的图象;②变换法作函数的图象是经常用到的一种作图方法,在作图时,应注意先作出图象的关键点和关键线(如对称轴、渐近线等函数奇偶性与基本函数图象的特征作图,也是常用方作出下列函数的图象:x -1-1=2(x -1)+1x -1.-∞,1)∪(1,+∞).的图象向右平移1个单位得=1x -1的图象向上平移2个单位可得的图象.类型二 识图2012·山东)函数y =cos6x2x -2 )解:令f (x )=cos6x2x -2-x,由f (-x )=-f (x )知f (x )为奇 )解:由3x-1≠0,得x ≠0,可排除A ;当x <0,可排除B ;当x 趋近于+∞时,y 趋近于0.可排故选C.类型三 用图设a 为实数,且1<x <3,试讨论关于的方程x 2-5x +3+a =0的实数解的个数.解:原方程即a =-x 2+5x -3.分别作出函数y =-x 2+5x -3=-⎝⎛⎭⎫x -522+1343)和y =a 的图象,得a >134或a ≤1时,原方程的实数解的个数为a =134或1<a ≤3时,原方程的实数解的个数3<a <134时,原方程的实数解的个数为2.=x3+x的零点依次为小顺序为(A.b>cC.a>b合理处理识图题与用图题对于给定的图象,要能从图象的左、右、上、下分布的范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性、最大值、最函数图象形象地显示了函数的性质,为研究数量”的直观性,它是探求解题途径,使问题成功获解的重要依托.函数图象主要应用于以下方面:①求函数的解析式;②求函数的定义域;③求函数的值域;④求函数⑤判断函数的奇偶性;⑥求函数的单调区间;⑦解不等式;⑧证明不等式;⑨探求关于方程根的分布问题;⑩比较大小;⑪求函数周期.图象对称性的证明证明函数的对称性,即证明其图象上的任意一或对称轴)的对称点仍在图象上与C2的对称性,即证明或对称轴)的对称点在研究函数的图象必须与函数的性质有机结合起的完美结合,不要将二者割裂易知函数y=e21x-为偶函数,因此排除e21x->0,故排除D.故选C.f(x)=x-cos x,则方程f(x)=0在[0上的实根个数是().没有实根.有且仅有一个实根.有且仅有两个实根.有无穷多个实根令f(x)=x-cos x=0,即x=cos x,画出函和y=cos x的图象(如图),函数y=x与函数的图象仅在x=α⎝⎛⎭⎫0<α<π2处有一个交点.把函数y=log2(x-1)的图象上各点的横坐标缩短到原来的12倍,再向右平移12个单位长度所得图象的)=log2(2x+1) B.y=log2(2x+=log2(2x-1) D.y=log2(2x-把函数y=log2(x-1)图象上各点的横坐标缩短到原来的12倍,得到y=log2(2x-1)的图象,再向右单位长度,所得函数的解析式为⎦⎤⎭⎫12-1=log2(2x-2).故选D.y=2-|x-1|-m的图象与x轴有交点时,取值范围是()。

2015年全国统一高考理科数学真题(新课标I)与答案解析

2015年全国统一高考理科数学真题(新课标I)与答案解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()C DC DC.0.365.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是().B...依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则()﹣,﹣),k+(2k+255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()00)[[[13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式: (Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC .(Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值. 19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.答案解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()C D满足C D.该同学通过测试的概率为5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是().B...=﹣(﹣所以﹣6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则×,故米堆的体积为×(,÷7.(5分)设D为△ABC所在平面内一点,,则()将向量利用向量的三角形法则首先表示为,然后结合已知表示为=;本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,﹣),k+(2k+)的部分图象,可得函数的周期为﹣+==)x+≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()≤﹣﹣≤﹣=﹣=2552,的通项为的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()∴其表面积为:22r+×π12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0))[[[时,,>﹣时,时,,,解得≤二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+x+x+x+x+,14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,)﹣.15.(5分)若x,y满足约束条件.则的最大值为3.的最k=,解得,即=4的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x AE=DE=x+m=+AD=xx+mx+m=+AB=﹣+﹣的取值范围是(﹣,)﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣=﹣﹣)(﹣).18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=EG=BE=,BE=,可得,,﹣)),=,,=,,>=﹣所成角的余弦值为19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.,建立y=c+dw===68 =﹣=563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68x+13.6=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由))联立,利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为,.处的切线方程为:,化为==21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,<﹣,解得.时,,则=a+<﹣<=,∴当内单调递减,在)取得最小值=,即,则,即=,a或时,或时,选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=•N=选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.<,a|=,([2a+1﹣。

2015年高考数学(理)核按钮:第六章《数列》(含解析)

第六章数列§6.1数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表,图象,通项公式).2.了解数列是自变量为正整数的一类特殊函数.高考以考查通项公式及其性质为主,题型主要为:用归纳猜想法求通项;利用a n与S n的关系求通项;由递推数列的关系式求通项;判断数列的单调性等.1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成,其中a n是数列的第n项,叫做数列的通项.常把一般形式的数列简记作{a n}.(2)通项公式:如果数列{a n}的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有,,,.2.数列的分类为,.(2)按项的增减规律分为,,和.递增数列⇔a n+1a n;递减数列⇔a n+1a n;常数列⇔a n+1a n.递增数列与递减数列统称为.3.数列前n项和S n与a n的关系已知S n,则a n=⎩⎨⎧≥=).2(),1(nn4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n=____________;(2)2,4,6,8,…的一个通项公式为a n=____________;(3)3,5,7,9,…的一个通项公式为a n=____________;(4)2,4,8,16,…的一个通项公式为a n=____________;(5)-1,1,-1,1,…的一个通项公式为a n=____________;(6)1,0,1,0,…的一个通项公式为a n=____________;(7)a,b,a,b,…的一个通项公式为a n=____________;(8)9,99,999,…的一个通项公式为a n=.注:据此,很易获得数列1,11,111, (2)22,222,…;…;8,88,888,…的通项公式分别为19(10n-1),29(10n-1),…,89(10n-1).【自查自纠】1.(1)项首项a1,a2,a3,…,a n,…(2)第n项n(3)函数值(4)a n a n-1(5)通项公式(解析法)列表法图象法递推公式2.(1)有穷数列无穷数列(2)递增数列递减数列摆动数列常数列><=单调数列4.(1)n (2)2n (3)2n +1 (4)2n (5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n -1数列-1,43,-95,167,…的一个通项公式是( )A .a n =(-1)n n (n +1)2n -1B .a n =(-1)nn 22n -1C .a n =(-1)nn 22n +1D .a n =(-1)n n3-2n2n -1解:-1=-11,数列1,4,9,16,…对应通项n 2,数列1,3,5,7,…对应通项2n -1,数列-1,1,-1,1,…对应通项(-1)n .故选B .下列有四个命题:①数列是自变量为正整数的一类函数;②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中正确的个数是( ) A .1B .2C .3D .4解:易知①③正确,②④不正确.故选B .若数列a n =1n +1+1n +2+…+12n ,则a 5-a 4=( )A.110B .-110C.190D.1990解:a 5-a 4=⎝⎛⎭⎫16+17+…+110-(15+16+17+18)=19+110-15=190,故选C .数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为____________.∴a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).故填a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).数列{a n }中,a 1=1,对于所有的n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解法一:由a 1a 2a 3=22a 3=32,得a 3=94,由a 1a 2a 3a 4a 5=42a 5=52,得a 5=2516,∴a 3+a 5=6116.解法二:当n ≥1时,a 1·a 2·a 3·…·a n =n 2. 当n ≥2时,a 1·a 2·a 3·…·a n -1=(n -1)2. 两式相除得a n =⎝⎛⎭⎫n n -12,n ≥2. ∴a 3=94,a 5=2516.∴a 3+a 5=6116.故填6116.类型一 数列的通项公式已知数列:45,910,1617,2526,….(1)试写出该数列的一个通项公式;(2)利用你写出的通项公式判断0.98是不是这个数列中的一项.解:(1)各项的分子为22,32,42,52,…,分母比分子大1,因此该数列的一个通项公式为a n =(n +1)2(n +1)2+1.(2)不妨令(n +1)2(n +1)2+1=0.98,得n 2+2n -48=0,解得n =-8(舍)或n =6.故0.98是这个数列中的第6项a 6.【评析】①一个数列只知道前n 项,其通项公式是不能确定的,即使完全知道该数列,其通项公式的形式也不一定是惟一的,如数列1,0,1,0,…的通项公式可写成a n =1+(-1)n +12或a n =⎪⎪⎪⎪sin n π2甚至分段形式a n =⎩⎪⎨⎪⎧1,n 是奇数,0,n 是偶数等.②对于此类归纳猜想求通项的题目,一定要掌握一些常见数列的通项公在此基础之上还要掌握一定的方法,如将各项分解成若干个数的和,差,积,商,分离分子分母等.③由于数列是特殊的函数,因此判断某数是否为数列中的项,即是知a n 判断方程a n =f (n )是否有正整数解.写出下列数列的一个通项公式:(1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)3,33,333,3333,…; (4)23,-1,107,-179,2611,…. 解:(1)a n =(-1)n·1n;(2)a n =2n +1;(3)a n =13(10n -1);(4)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即{n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1.类型二 由前n 项和公式求通项公式(1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n +1,则此数列的通项公式为a n =______________.解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11.当n =1时,2×1-11=-9=a 1.∴a n =2n -11. 故填2n -11.(2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -2n-1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).a n 都存在关系:a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2). 若a 1适合S n-S n -1,则应把它们统一起来,否则就用分段函数表示.另外一种快速判断技巧是利用S 0是否为0来判断:若S 0=0,则a 1=S n -S n -1,否则不符合,这在解小题时比较有用.已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n .(1)S n =2n 2+3n; (2)S n =3n +1.解:(1)当n =1时,a 1=S 1=2×12+3×1=5; 当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4;当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,∴a n =⎩⎪⎨⎪⎧4(n =1),2·3n -1(n ≥2).类型三 由递推公式求通项公式写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n +1=2n ·a n (n ≥1);(2)a 1=1,a n =a n -1+1n (n -1)(n ≥2).解:(1)解法一:∵a n +1=2n ·a n ,∴a n +1a n =2n,∴a 2a 1=2,a 3a 2=22,a 4a 3=23,…,a n a n -1=2n -1. 将上述n -1个式子累乘,得a n a 1=21+2+3+…+(n -1),即a n =2n (n -1)2(n ∈N *).解法二:a n +1=2n ·a n =2n ·2n -1a n -1 =…=2n ·2n -1·…·22·21a 1=21+2+…+n -1+na 1=2n (n +1)2.∴a n =2n (n -1)2.1有a n -a n -1=1n -1-1n(n ≥2).于是有a 2-a 1=11-12,a 3-a 2=12-13,…,a n -a n -1=1n -1-1n. 将上述n -1个式子累加,得a n =2-1n.当n =1时,a 1=1也满足,故a n =2-1n (n ∈N *).【评析】已知a 1和数列递推关系求通项时,可先计算出前若干项,通过分析这些项与序号的关系,归纳猜想出数列的通项公式,但这种不完全归纳得到的结论往往需要进行验证;但对于“a na n -1=f (n )”型递推关系常用“累乘法”求通项;对于“a n -a n -1=f (n )”型递推关系常用累加法求通项;以上两种情形皆可用迭代法求通项.还须注意检验n =1时,是否适合所求.写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n =3n -1+a n -1;(2)a 1=4,a n +1=n +2n a n.解:(1)由a 1=1,a n -a n -1=3n -1(n ≥2),得 a 1=1,a 2-a 1=31,a 3-a 2=32,…, a n -1-a n -2=3n -2,a n -a n -1=3n -1,以上等式两边分别相加得 a n =1+3+32+…+3n -1=3n -12,n =1时,a 1=1也适合,∴a n =3n -12.也可直接利用递推公式,逐项代替等式右边出现的a n -1,直至a 1:由a n =3n -1+a n -1=3n -1+3n -2+a n -2=…=3n -1+3n -2+…+32+31+a 1=3n -12.当n =1时,a 1=1也适合,∴a n =3n -12.(2)由递推关系a 1=4,a n +1=n +2n a n ,有a n +1a n=n +2n ,于是有a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=nn -2,a n a n -1=n +1n -1,将这(n -1)个式子累乘,得a na 1=n (n +1)2,即当n ≥2时,a n =n (n +1)2a 1=2n (n +1),当n =1时,a 1=4也满足.所以a n =2n (n +1).类型四 数列通项的性质在数列{a n }中,a n =(n +1)⎝⎛⎭⎫1011n(n ∈N *). (1)求证:数列{a n }先递增,后递减; (2)求数列{a n }的最大项.解:因a n =(n +1)⎝⎛⎭⎫1011n是积幂形式的式子且a n >0,所以可用作商法比较a n 与a n -1的大小.(1)证明:令a na n -1≥1(n ≥2),即(n +1)⎝⎛⎭⎫1011nn ·⎝⎛⎭⎫1011n -1≥1, 整理得n +1n ≥1110,解得n ≤10.令a na n +1≥1,即(n +1)⎝⎛⎭⎫1011n(n +2)⎝⎛⎭⎫1011n +1≥1, 整理得n +1n +2≥1011,解得n ≥9.∴从第1项到第9项递增,从第10项起递减.(2)解:由(1)知a 9=a 10=1010119最大.【评析】要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大,最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.设函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足()na f 2=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判断数列{a n }的单调性.解:(1)∵2log 2log )(22n a n n a a f -=2=a n -1a n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1,∵x ∈(0,1),∴na 2∈(0,1),a n <0.(2)a n +1-a n =(n +1)-(n +1)2+1-(n -n 2+1)=1-[(n +1)2+1-n 2+1] =1-2n +1(n +1)2+1+n 2+1>1-2n +1(n +1)+n=0,∴a n +1>a n ,则数列{a n }是递增数列.也可由a n =-1n +n 2+1直接判断.1.已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:(1)如果符号正负相间,则符号可用(-1)n 或(-1)n+1来调节.(2)分式形式的数列,分子找通项,分母找通项,要充分借助分子,分母的关系来解决.(3)对于比较复杂的通项公式,要借助于等差数列,等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律),比较(比较已知的数列),归纳,转化(转化为等差,等比或其他特殊数列)等方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),务必注意a n =S n -S n -1是在n ≥2的条件下,还需注意验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项这类问题要求不高,主要掌握由a 1和递推关系先求出前几项,再归纳,猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得: a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得:a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ). 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.1.数列0.9,0.99,0.999,…的一个通项公式是( )A .1+⎝⎛⎭⎫110nB .-1+⎝⎛⎭⎫110nC .1-⎝⎛⎭⎫110nD .1-⎝⎛⎭⎫110n +1解:原数列前几项可改写为1-110,1-1102,1-1103,…,故通项a n =1-⎝⎛⎭⎫110n .故选C .2.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+1a n -2(n ≥3),则a 4等于( )A.5512B.133C .4D .5解:令n =3,4,即可求得a 4=133.故选B .3.(2012·青岛二模)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解:若a n +1>|a n |(n =1,2,…),则由|a n |≥a n ,知a n +1>a n ,即{a n }为递增数列,充分性成立.当{a n }为递增数列时,若该数列为-2,0,1,…,则a 2>|a 1|不成立,即a n +1>|a n |(n =1,2,…)不一定成立,亦即必要性不成立.故选B .4.已知数列{a n }的前n 项和S n =n (n -40),则下列判断中正确的是( )A .a 19>0,a 21<0B .a 20>0,a 21<0C .a 19<0,a 21>0D .a 19<0,a 20>0解:当n =1时,a 1=S 1=-39;当n ≥2时,a n =S n -S n -1=n (n -40)-(n -1)(n -41)=2n -41.将n =1代入满足上式.所以a 19=2×19-41=-3<0,a 20=2×20-41=-1<0,a 21=2×21-41=1>0.故选C .5.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n 的值为( )A .2+lg nB .2+(n -1)lg nC .2+n lg nD .1+n lg n解法一:∵a n +1-a n =lg n +1n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=lgn n -1+lg n -1n -2+…+lg 21+2=lg ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·32·21+2=lg n +2.解法二:a n +1=a n +lg(n +1)-lg n ,a n +1-lg(n +1)=a n -lg n ,所以数列{a n -lg n }是常数列,a n -lg n =a 1-lg1=2,a n =2+lg n .故选A .6.(2013·北京东城区一模)对于函数y =f (x ),部数列{x n }满足x 1=2,且对任意n ∈N ,点(x n ,x n +1)都在函数y =f (x )的图象上,则x 1+x 2+x 3+x 4+…+x 2012+x 2013的值为( )A .9394B .9380C .9396D .9400解:∵x 1=2,x 2=f (x 1)=f (2)=4,x 3=f (x 2)=f (4)=8,同理,x 4=2,x 5=4,x 6=8,因此,x 3k+1=2,x3k +2=4,x 3k +3=8,k ∈N .∴x 1+x 2+x 3+…+x 2012+x 2013=(x 1+x 2+x 3)+…+(x 2011+x 2012+x 2013) =(2+4+8)×671=9394.故选A .7.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.解:a 8=S 8-S 7=82-72=15.故填15.8.根据下面的图形及相应的点数,在空格和括号中分别填上适当的图形和点数,并写出点数构成的数列的一个通项公式a n =________.解:五个方向上点的个数每次多一个,因此第四由此得a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,a 4=16=5×4-4,…,故a n =5n -4,n ∈N *.故填5n -4,n ∈N *.9.根据数列{a n } 的前几项,分别写出下列数列的一个通项公式.(1)7,77,777,7777,…;(2)4,-52,2,-74,85,…;(3)3,5,3,5,…; (4)1,2,2,4,3,8,4,16,….解:(1)将各项改写如下79(10-1),79(102-1),79(103-1),79(104-1),… 易知a n =79(10n -1).(2)将各项绝对值改写如下41,52,63,74,85,…综合考查分子,分母, 以及各项符号可知a n =(-1)n-1n +3n. (3)a n =⎩⎪⎨⎪⎧3(n 为奇数),5(n 为偶数), 或a n =(3+5)+(-1)n -1(3-5)2=4+(-1)n .(4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,∴a n=⎩⎨⎧n +12(n 为奇数),2n 2(n 为偶数).10.数列{a n }中,a n =n -n 2+2,求数列{a n }的最大项和最小项.解:a n +1a n =n +1-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1, 又a =n -n +2<0,∴a <a +,数列{a }是∴数列{a n }的最小项为a 1=1-3,没有最大项. 亦可将a n =n -n 2+2分子有理化,得a n =-2n +n 2+2,从而得出同样的判断.11.已知数列{a n }的前n 项和为S n ,并且满足a 1=2,na n +1=S n +n (n +1).(1)求数列{a n }的通项公式;(2)令T n =S n2n ,当n ≥3时,求证:T n >T n +1.解:(1)∵na n +1=S n +n (n +1)(n ∈N *), 当n =1时,a 2=S 1+2=a 1+2=4; 当n ≥2时,(n -1)a n =S n -1+(n -1)n . ∴na n +1-(n -1)a n =S n -S n -1+2n . ∴n (a n +1-a n )=2n .∴a n +1=a n +2(n ≥2). 又∵a 2-a 1=2,a 1=2,∴a n +1=a n +2=a n -1+2×2=…=a 1+2n=2(n +1). 从而有a n =2n .(2)证明:由(1)可求得S n =n (2+2n )2=n 2+n .∴T n =n 2+n 2n .∴T n -T n +1=n 2+n 2n -(n +1)2+(n +1)2n +1 =2n 2+2n -n 2-2n -1-n -12n +1 =n 2-n -22n +1=(n +1)(n -2)2n +1. ∴当n ≥3时,有T n -T n +1>0,即T n >T n +1.已知数列{a n }的通项a n =n -98n -99(n ∈N *),求{a n }的最大项及最小项.解:设a n =f (n )=n -98n-99,则a n =1+99-98n -99.如图(方便起见,画成连续曲线进行研究).当1≤n ≤9时,a n <1,且此时{a n }递减, 即a 1>a 2>…>a 9;当n ≥10时,a n >1,并且此时{a n }仍递减, 即有a 10>a 11>…>a n >….综上有(a n )max =a 10=10-9810-99,(a n )min =a 9=9-989-99.§6.2等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式,前n项和公式及等差中项公式,并能应用这些知识解决相应的问题.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.等差数列作为最基本的数列模型之一,一直是高考重点考查对象,多数为中低档题,也有难题.其中选择,填空题“小而巧”,主要以通项公式,前n项和公式为载体,结合等差数列性质考查分类讨论,转化与化归,函数与方程等数学思想,注重通性通法的考查;解答题“大而全”,注重题目的综合性与新颖性,突出对逻辑思维能力的考查.1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的都等于同一个,那么这个数列就叫做等差数列,这个常数叫做等差数列的,通常用字母d表示,即=d(n∈N+,且n≥2)或=d(n∈N+).2.等差中项由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做a与b的____________.3.等差数列的通项公式若{a n}是等差数列,则其通项公式a n=.①{a n}成等差数列⇔a n=pn+q,其中p=,q=,点(n,a n)是直线上一群孤立的点.②单调性:d>0时,{a n}为数列;d<0时,{a n}为数列;d=0时,{a n}为.4.等差数列的前n项和公式(1)等差数列前n项和公式S n==.其推导方法是.(2){a n}成等差数列,求S n的最值:若a1>0,d<0,且满足⎩⎨⎧+1nna,a时,S n最大;若a1<0,d>0,且满足⎩⎨⎧+1nna,a时,S n最小;或利用二次函数求最值;或利用导数求最值.5.等差数列的判定方法(1)定义法:a n+1-a n=d(常数)(n∈N*)⇔{a n}是等差数列;(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)通项公式法:a n=kn+b(k,b是常数)(n∈N*)⇔{a n}是等差数列;(4)前n项和公式法:S n=An2+Bn(A,B是常数)(n∈N*)⇔{a n}是等差数列.6.等差数列的性质(1)a m-a n=d,即d=a m-a nm-n.(2)在等差数列中,若p+q=m+n,则有a p+a q =a m+;若2m=p+q,则有a m=a p +a q(p,q,m,n∈N*).(3)若{a n},{b n}均为等差数列,且公差分别为d1,d2,则数列{pa n},{a n+q},{a n±b n}也为数列,且公差分别为,,.(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n,a n+m,a n+2m,…为等差数列,公差为md.(5)等差数列的前n项和为S n,则S n,S2n-S n,S3n -S2n,…为等差数列,公差为n2d.(6)若等差数列的项数为2n,则有S偶-S奇=nd,S奇S偶=a na n+1.(7){a n}为等差数列,S n为前n项和,则S2n-1=(2n -1)a n;{b n}为等差数列,S′n为前n项和,则S′2n-1=(2n-1)b n,a nb n=S2n-1S′2n-1.(8)等差数列{a n}前m项与后m项的和等于m(a1+a n).1.差 常数 公差 a n -a n -1 a n +1-a n 2.等差中项3.a 1+(n -1)d ①d a 1-d y =dx +(a 1-d ) ②单调递增 单调递减 常数列4.(1)n (a 1+a n )2 na 1+n (n -1)d 2 倒序相加法(2)≥0 ≤0 ≤0 ≥06.(1)(m -n ) (2)a n 2 (3)等差 pd 1 d 1 d 1±d 2(2012·福建)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4解:∵a 1+a 5=2a 3=10,∴a 3=5.又a 4=7, ∴d =a 4-a 3=2.故选B .已知等差数列{a n }中,a 2=7,a 4=15,则其前10项的和为( )A .100B .210C .380D .400解:在等差数列{a n }中,∵a 2=7,a 4=15,∴d =a 4-a 22=4,a 1=a 2-d =3,∴S 10=10×3+10×92×4=210.故选B .等差数列{a n }中,S n 是{a n }前n 项和,已知S 6=2,S 9=5,则S 3=( )A .-1B .-13C.13D .1解:由S 3,S 6-S 3,S 9-S 6成等差数列得:2(2-S 3)=S 3+(5-2).解得S 3=13.故选C .在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解:因为a 3+a 7=a 4+a 6=a 2+a 8=37,所以a 2+a 4+a 6+a 8=74,故填74.已知递增的等差数列{}a n 满足a 1=1,a 3=a 22-4,则a n =________.解:∵{}a n 是等差数列,a 1=1,a 3=a 22-4,∴1+2d =()1+d 2-4得d 2=4,又{}a n 是递增数列,∴d >0.∴d =2,a n =2n -1.故填2n -1.类型一 等差数列的判定与证明设数列{a n }的前n 项和为S n ,若对于所有的正整数n ,都有S n =n (a 1+a n )2,证明{a n }是等差数列.证明:当n ≥2时,由题设知a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2=12[a 1+na n -(n -1)a n -1], 同理a n +1=12[a 1+(n +1)a n +1-na n ].从而a n +1-a n =12[(n +1)a n +1-2na n +(n -1)a n -1].整理得(n -1)a n +1+(n -1)a n -1=2(n -1)a n , ∵n ≥2,∴a n +1+a n -1=2a n . 所以{a n }是等差数列.【评析】判定数列是等差数列的方法可参看本节“考点梳理”,证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法判断数列是否为等差数列.已知数列{a n }的通项公式为a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.解:(1)欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,∴只有2p =0,即p =0时,数列{a n }是等差数列.(2)∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q 又(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数,∴数列{a n +1-a n }是等差数列.类型二 等差数列基本量的计算(1)已知a 15=33,a 45=153,求a n ; (2)已知a 6=10,S 5=5,求S n ;(3)已知前3项和为12,前3项积为48,且d >0,求a 1.解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎪⎨⎪⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎪⎨⎪⎧a 1=-23,d =4. ∴a n =-23+(n -1)×4=4n -27.解法二:由d =a n -a m n -m ,得d =a 45-a 1545-15=153-3330=4,由a n =a 15+(n -15)d ,得a n =4n -27.(2)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3.∴S n =-5n +n (n -1)2·3=32n 2-132n .(3)设数列的前三项分别为a -d ,a ,a +d ,依题意有:⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12,(a -d )·a ·(a +d )=48, 即⎩⎪⎨⎪⎧a =4,a (a 2-d 2)=48, 解得⎩⎪⎨⎪⎧a =4,d =±2.∵d >0,∴d =2,a -d =2.∴a 1=2.【评析】在等差数列五个基本量a 1,d ,n ,a n ,S n 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式,前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.(1)(2013·四川)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项,公差及前n 项和.解:设该数列公差为d ,前n 项和为S n .由已知可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ). 的首项为4,公差为0,或首项为1,公差为3.所以数列{a n }的前n 项和S n =4n 或S n =3n 2-n2.(2)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n ,求a n 及S n .解:设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2.所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n .类型三 等差数列的性质(1)已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;(2)(2012·江西)设数列{}a n ,{}b n 都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;(3)若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;(4)已知S n 为等差数列{a n }的前n 项和,S n =m ,S m =n (n ≠m ),则S m +n =________. 解:(1)S 11=11(a 1+a 11)2=11a 6=1100.故填1100.(2)因为数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.(3)∵a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3, ∴4(a 1+a n )=160,即a 1+a n =40.∴S n =n (a 1+a n )2=20n =780,解得n =39.故填39.(4)解法一:令S n =An 2+Bn ,则⎩⎪⎨⎪⎧An 2+Bn =m ,Am 2+Bm =n ⇒A (n 2-m 2)+B (n -m )=m -n . ∵n ≠m ,∴A (n +m )+B =-1.2S m -S n =a n +1+a n +2+a n +3+…+a m -1+a m =(m -n )(a n +1+a m )2=n -m ,∴a 1+a m +n =a n +1+a m =-2.∴S m +n =(m +n )(a 1+a m +n )2=-(m +n ).解法三:∵{a n }是等差数列, ∴⎩⎨⎧⎭⎬⎫S n n 为等差数列,D 为公差. ∴S m +n m +n -S m m=nD ,S n n -S mm =(n -m )D .∴m n -n m n -m =S m +n m +n -nm n ,解得S m +n =-(m +n ).故填-(m +n ).【评析】(1)可利用等差数列的性质S 2n +1=(2n +1)a n +1来求解,这一性质表明:若等差数列有奇数项,则正中间一项是该数列的和的平均数;(2)利用等差数列的性质及等差中项来求;(3)可利用“等差数列前m 项与后m 项的和等于m (a 1+a n )”这一性质来求解;(4)可利用等差数列下标和性质:若“p +q =m +n ,则a p +a q =a m +a n ”来求解.等差数列的性质是其定义,通项公式及前n 项和公式等基础知识的推广与变形,解题时灵活应用这些性质常常可化繁为简,起到事半功倍的效果.(1)(2013·贵州六校联考)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则a 9=( )A .8B .12C .16D .24解:在等差数列中,S 3=3a 2=6⇒a 2=2. ∴3d =a 5-a 2=6⇒d =2. 所以a 9=a 5+4d =16.故选C .(2)含2n +1个项的等差数列其奇数项的和与偶数项的和(非零)之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n解:∵S 奇=a 1+a 3+a 5+…+a 2n +1=(n +1)(a 1+a 2n +1)2,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2, a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n .故选B .类型四 等差数列的最值问题在等差数列{a n }中,已知a 1=20,前n项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,解得d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,而d <0,故当n ≤12时,a n >0,n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为 S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130. 解法二:同解法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+312524.∵n ∈N +,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.【评析】求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值.(2013·全国新课标Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________.解:设S n =an 2+bn (a ,b ∈R ).则⎩⎪⎨⎪⎧100a +10b =0,225a +15b =25,解得a =13,b =-103,∴S n =13n (n -10),nS n =13(n 3-10n 2).考查函数f (x )=x 3-10x 2(x ≥1),f ′(x )=3x 2-20x ,∴f (x )的极小值点为203,当n =6时,nS n =-48,n =7时,nS n =-49,∴nS n 的最小值为-49. 故填-49.1.等差数列中,已知五个元素a 1,a n ,n ,d ,S n中的任意三个,便可求出其余两个.2.求等差数列{a n }前n 项的绝对值{|a n |}之和,首先应分清这个数列哪些项是负的,哪些项是非负的,然后再分段求和.3.等差数列前n 项和的最值通常是在正负项分界的位置产生,利用这一性质可求其最值;另一种方法是利用二次函数的性质.4.灵活运用等差数列的性质,如等差中项的性质,可简化运算.5.等差数列的前n 项和满足:⎩⎨⎧⎭⎬⎫S n n也是等差数列.1.等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=( )A .15B .30C .31D .64解:a 7+a 9=a 4+a 12,∴a 12=16-1=15.故选A .2.(2013·昆明模拟)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1等于( )A .-65B .-35C .65D .35解:由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.故选D .3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( )A .-23B .-13C .13D .23解:a 10=a 1+9d =10,S 10=10(a 1+10)2=70,解得d =23.故选D .4.(2013·北京海淀模拟)已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4解:由2a 2n =a 2n +1+a 2n -1(n ≥2)可知数列{a 2n }是等差数列,且以a 21=1为首项,以a 22-a 21=4-1=3为公差,所以数列{a 2n }的通项公式为a 2n =1+3(n -1)=3n -2,所以a 26=3×6-2=16,即a 6=4.故选D . 5.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( ) A.94B.32C.53D .4解:设S 2=x ,则S 4=4x ,因为S 2,S 4-S 2,S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x 4x =94.故选A . 6.(2013·全国新课标Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解法一:a m =S m -S m -1=2,a m +1=S m +1-S m =3,公差d =a m +1-a m =3-2=1.又S m +1=(m +1)a 1+(m +1)m2=3,①,a m +1=a 1+m =3.将a 1=3-m 代入①得m 2-5m =0,解得m =5或0(舍去).解法二:设S n =an 2+bn ,通过题意建立并解方程组获解.故选C .7.(2012·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.解:∵S 2=a 3,∴a 1+a 2=a 3,又{a n }为等差数列.∴a 1+a 1+d =a 1+2d .∴d =a 1=12.∴a 2=a 1+d =1.S n =na 1+n (n -1)2d =14n (n +1).故填1;14n (n +1).8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解:a 1+a 2+a 3+a 4=3,a 9+a 8+a 7=4,所以4a 1+6d =3,3a 1+21d =4.解得a 1=1322,d =766.所以a 5=6766.故填6766.9.(2013·大纲)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }公差为d ,由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1. 10.已知S n 为等差数列{a n }的前n 项和,a 1=25,a 4=16.(1)当n 为何值时,S n 取得最大值; (2)求a 2+a 4+a 6+a 8+…+a 20的值. 解:(1)∵等差数列{a n }中,a 1=25,a 4=16,∴ 公差d =a 4-a 14-1=-3.∴a n =-3n +28.令a n =-3n +28>0,则n ≤9.∴当n ≤9时,a n >0;当n >9时,a n <0. ∴当n =9时,S n 取得最大值. (2)∵数列{a n }是等差数列, ∴a 2+a 4+a 6+a 8+…+a 20=10(a 2+a 20)2=10a 11=10×(-5)=-50.11.(2012·湖北)已知等差数列{}a n 前3项的和为-3,前三项的积为8.(1)求等差数列{}a n 的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{}||a n 的前n 项和.解:(1)设等差数列{}a n 的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎨⎧3a 1+3d =-3,a 1()a 1+d ()a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3, 所以由等差数列通项公式可得a n =2-3()n -1=-3n +5,或a n =-4+3()n -1=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故||a n =||3n -7=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{}||a n 的前n 项和为S n .当n =1时,S 1=||a 1=4;当n =2时,S 2=||a 1+||a 2=5;当n ≥3时,S n =S 2+||a 3+||a 4+…+||a n =5+()3×3-7+()3×4-7+…+()3n -7 =5+()n -2[]2+()3n -72=32n 2-112n +10,当n =2时,满足上式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2.已知公差大于零的等差数列{a n }的前n项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)若数列{b n }满足b n =S nn +c ,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由;(3)在(2)的条件下求数列{|101-b n |}的前n 项和T n .解:(1)由等差数列的性质得,a 2+a 5=a 3+a 4=22,所以a 3,a 4是关于x 的方程x 2-22x +117=0的解,又公差大于零,即a 4>a 3,所以a 3=9,a 4=13.易知a 1=1,d =4,故通项为a n =1+(n -1)×4=4n -3.(2)由(1)知S n =n (1+4n -3)2=2n 2-n ,所以b n =S nn +c =2n 2-n n +c.解法一:所以b 1=11+c ,b 2=62+c ,b 3=153+c (c ≠0).令2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-n n -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.解法二:由b n -b n -1为常数求c . (3)设c n =101-b n =101-2n , ①当1≤n ≤50时,T n =100n -n 2,②当n≥51时,T n=c1+c2+c3+…+c50-c51-…-c n=2(c1+c2+c3+…+c50)-(c1+c2+…+c n) =5000+n2-100n,综上有T n=⎩⎪⎨⎪⎧100n-n2,1≤n≤50,n2-100n+5000,n≥51.§6.3 等比数列1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.本节主要考查等比数列的定义,等比中项,通项公式,前n 项和公式,等比数列的性质及证明是历年高考的常考内容.高考考查的题型既有基本题,也有与等差数列,函数,方程,解析几何等有关的综合题.1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的 等于同一个 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,通常用字母q 表示(q ≠0).2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的 ,且G 2= 或G = .3.等比数列的通项公式(1)若{a n }是等比数列,则通项a n = 或a n = .当n -m 为大于1的奇数时,q 用a n ,a m 表示为q = ;当n -m 为正偶数时,q = .(2)a n =a 1q n-1可变形为a n =Aq n ,其中A= ;点(n ,a n )是曲线 上一群孤立的点.4.等比数列的前n 项和公式等比数列{a n }中,S n =⎩⎨⎧ ,q =1,= ,q ≠1.求和公式的推导方法是: ,为解题的方便,有时可将求和公式变形为S n =Bq n-B (q ≠1),其中B = 且q ≠0,q ≠1.5.等比数列的判定方法(1)定义法:a n +1=a n q 且a 1≠0(q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.(4)前n 项和公式法:S n =a 1q -1q n -a 1q -1=Bq n -B ⎝⎛⎭⎫B =a 1q -1是常数,且q ≠0,q ≠1⇔{a n }是等比数列.6.等比数列的性质(1)在等比数列中,若p +q =m +n ,则a p ·a q =a m ·a n ;若2m =p +q ,则a 2m =a p ·a q (p ,q ,m ,n ∈N *).(2)若{a n },{b n }均为等比数列,且公比为q 1,q 2,则数列⎩⎨⎧⎭⎬⎫1a n ,{p ·a n }(p ≠0),{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍为等比数列且公比为 , , , .(3)在等比数列中,按序等距离取出若干项,也构成一个等比数列,即a n ,a n +m ,a n +2m …仍为等比数列,公比为 .(4)等比数列前n 项和为S n (≠0),则S n ,S 2n -S n ,S 3n -S 2n ,…构成等比数列,且公比为 .(5)对于一个确定的等比数列,在通项公式a n =a 1q n -1中,a n 是n 的函数,这个函数由正比例函数a n=a 1q·u 和指数函数u =q n (n ∈N *)复合而成. ①当a 1>0, 或a 1<0, 时,等比数列{a n }是递增数列;②当a 1>0, 或a 1<0, 时,等比数列{a n }是递减数列;③当 时,它是一个常数列;④当 时,无法判断数列的单调性,它是一个摆动数列.【自查自纠】 1.比 常数 公比 2.等比中项 ab ±ab 3.(1)a 1qn -1a m qn -mn -m a n a m ±n -m a na m(2)a 1qy =⎝⎛⎭⎫a 1q q x 4.na 1 a 1(1-q n )1-q a 1-a n q 1-q乘公比,错位相减 a 1q -16.(2)1q 1 q 1 q 1q 2 q 1q 2(3)q m (4)q n (5)①q >1 0<q <1 ②0<q <1 q >1 ③q =1 ④q <0(2012·安徽)公比为2的等比数列{}a n 的各项都是正数,且a 3a 11=16,则a 5=( )A .1B .2C .4D .8解:由等比数列的性质知a 3a 11=a 27=16,又a n >0,所以解得a 7=4,由a 7=a 5·22=4a 5,得a 5=1.故选A .(2013·大纲)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)解:由3a n +1+a n =0,得a n +1=-13a n ,所以{a n }为等比数列,公比为-13.由a 2=-43得a 1=4,由等比数列前n 项和公式得S 10=3(1-3-10).故选C .已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n )D.323(1-2-n ) 解:∵a 2=2,a 5=14,∴a 1=4,q =12.a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C .(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解:由题意⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40, 解得⎩⎪⎨⎪⎧q =2,a 1=2.故S n =2(1-2n )1-2=2n +1-2.故填2;2n +1-2.(2012·江西)等比数列{a n }的前n 项和为S n ,公比不为1,若a 1=1,且对任意的n ∈N *都有a n +2+a n +1-2a n =0,则S 5=________.解:设数列{a n }的公比为q ,因为a n +2+a n +1-2a n=a n q 2+a n q -2a n =0,显然a n ≠0,所以q 2+q -2=0,解得q =-2或q =1(已知q ≠1,故舍去).所以S 5=1×[1-(-2)5]1-(-2)=11.故填11.类型一 等比数列的判定与证明已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n ∈N *.(1)对任意实数λ,证明数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列,并证明你的结论.解:(1)证明:假设存在一个实数λ,使{a n }是等比数列 ,则有a 22=a 1·a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-4⇔ 49λ2-4λ+9=49λ2-4λ⇔ 9=0,矛盾.所以数列{a n }不是等比数列.(2)因为b n =(-1)n (a n -3n +21), b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎣⎡⎦⎤23a n +n -4-3(n +1)+21 =(-1)n +1⎝⎛⎭⎫23a n -2n +14=23(-1)n +1(a n -3n +21)=-23b n . 又b 1=-(λ+18),所以当λ=-18,b 1=0,易得b n =0(n ∈N *),此时数列{b n }不是等比数列;当λ≠-18,b 1≠0,由上可知b n ≠0, ∴b n +1b n =-23(n ∈N *),此时数列{b n }是等比数列. 【评析】(1)证明数列{a n }不是等比数列,只需举一个反例;(2)证明数列{b n }是等比数列,常用方法:①定义法;②等比中项法.(2013·陕西) 设{}a n 是公比为q 的等比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


x=-1-t, 1.极坐标方程 ρ=cosθ 和参数方程 y=2+3t (t 为参数) 所表示的图形分别是( ) A.圆、直线 B.直线、圆 C.圆、圆 D.直线、直线 2 解:由 ρ=cosθ 得 ρ =ρcosθ,所以 x2+y2=x,即 2 x-1 +y2=1,它表示以1,0为圆心,1为半径的 2 2 4 2 圆.由 x=-1-t 得 t=-1-x,所以 y=2+3t=2+ 3(-1-x)=-3x-1 表示直线.故选 A. x=-4+t, 2. 设直线的参数方程为 (t 为参数), y=t 点 P 在该直线上,且与点 M0(-4,0)的距离为 2,则 这个方程中点 P 对应的 t 值为( ) 1 3 A.± 1 B.0 C.± D.± 2 2

3 10 cosθ=- 10 .
7 10 所以曲线 C 上到直线 l 距离为 的点的个数为 10 2.故选 B. x2 4.已知点 P(x,y)在椭圆 +y2=1 上,且 x+y 3 +a≥0 恒成立,则 a 的取值范围是( ) A.a≥2 B.a≥-2 C.a≥0 D.a<0

x2 解:设椭圆 +y2=1 上的点 P( 3cosθ,sinθ), 3 π π 则 x+y= 3cosθ+sinθ=2sin θ+3,当 θ=6时,x+ 7π y 取得最大值 2;当 θ= 时,x+y 取得最小值-2.所 6 以-2≤x+y≤2,-2≤-(x+y)≤2.因为 a≥-(x+y)恒成 立,所以 a≥2.故选 A. 3 5.直线 y= x+ 2与圆心为 D 的圆 3 x= 3+ 3cosθ, (θ∈[0,2π)) 交于 A,B 两点,则 y=1+ 3sinθ 直线 AD 与 BD 的倾斜角之和为( ) 7 5 4 5 A. π B. π C. π D. π 6 4 3 3 3 解:将圆的参数方程代入 y= x+ 2,得 3 π 2 π π π 3π θ- = ,θ∈[0,2π),∴θ1= + ,θ2= + , sin 6 2 6 4 6 4 4π 它们分别是 BD,AD 的倾斜角,θ1+θ2= .故选 C. 3 x=a+2cosθ, 6.如果曲线 C: (θ 为参数)上有 y=a+2sinθ 且仅有两个点到原点的距离为 2,则实数 a 的取值范 围是( ) A.(-2 2,0) B. (0,2 2) C.(-2 2,0)∪(0,2 2) D.(1,2 2) x=a+2cosθ, 解: 将曲线 C 的参数方程 (θ 为参 y=a+2sinθ 数)转化为普通方程,即(x-a)2+(y-a)2=4,由题意 可知,问题可转化为以原点为圆心,以 2 为半径的圆 与圆 C 总相交,根据两圆相交的充要条件得 0< 2a2 <4,∴0<a2<8,解得 0<a<2 2或-2 2<a<0.故选 C. 广东)已知曲线 C 的极坐标方程为 ρ= 7.(2013· 2cosθ.以极点为原点,极轴为 x 轴的正半轴建立直角 坐标系,则曲线 C 的参数方程为____________. 解:曲线 C 的普通方程为(x-1)2+y2=1, 其参数 x=1+cosθ x=1+cosθ 方程为 (θ 为参数).故填 (θ 为 y=sinθ y=sinθ 参数). 湖北)在直角坐标系 xOy 中,椭圆 C 的 8.(2013· x=acosφ 参数方程为 (φ 为参数,a>b>0).在极坐标系 y=bsinφ (与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,直线 l 与圆 O 的极 π 2 坐标方程分别为 ρsin θ+4= 2 m(m 为非零常数)与 ρ =b.若直线 l 经过椭圆 C 的焦点,且与圆 O 相切,则 椭圆 C 的离心率为__________. 解:直线 l 的方程为 x+y=m,作出图形借助直 6 线的斜率可得 c= 2b,∴c2=2(a2-c2),解得 e= . 3
6 . 3 9 . 在 平 面 直 角 坐 标 系 xOy 中 , 求 过 椭 圆 x=5cosφ, x=4-2t, (φ 为参数)的右焦点,且与直线 y=3sinφ y=3-t (t 为参数)平行的直线的普通方程. x2 y2 解:由题意知,椭圆的普通方程为 + =1,右 25 9 焦点 F(4,0),直线的普通方程为 x-2y+2=0,斜率 1 1 k= ,所以所求直线方程为 y= (x-4),即 x-2y-4 2 2 =0. 福建)在平面直角坐标系中,以坐标原 10.(2013· 点为极点,x 轴的非负半轴为极轴建立极坐标系.已 π 知点 A 的极坐标为 2,4,直线 l 的极坐标方程为 π ρcos θ-4=a,且点 A 在直线 l 上. (1)求 a 的值及直线 l 的直角坐标方程; x=1+cosα, (2)圆 C 的参数方程为 (α 为参数), y=sinα 试判断直线 l 与圆 C 的位置关系. π π 解:(1)由点 A 2,4在直线 ρcosθ-4=a 上, 可得 a= 2 ,所以直线 l 的方程可化为 ρcosθ+ρsinθ =2 ,从而直线 l 的直角坐标方程为 x+y-2=0. (2)由已知得圆 C 的普通方程为(x-1)2+y2=1 , 所以圆心为(1,0),半径 r=1,∴圆心(1,0)到直线 l 2 的距离 d= <1,∴直线 l 与圆 C 相交. 2 x=-4+cost, 11.已知曲线 C1: (t 为参数), y=3+sint x=8cosθ, C2: (θ 为参数). y=3sinθ (1)化 C1,C2 的方程为普通方程,并说明它们分 别表示什么曲线; π (2)若 C1 上的点 P 对应的参数为 t= ,Q 为 C2 上 2 x=3+2t, 的动点, 求 PQ 中点 M 到直线 C3: (t 为参 y=-2+t 数)距离的最小值. 解:(1)易知曲线 C1 和 C2 的普通方程分别为(x+ x2 y2 4)2+(y-3)2=1, + =1,C1 是圆心为(-4,3), 64 9 半径为 1 的圆, C2 是中心在坐标原点, 焦点在 x 轴上, 长半轴长为 8,短半轴长为 3 的椭圆. π (2)当 t= 时,P(-4,4),Q(8cosθ,3sinθ),则 2 3 M(-2+4cosθ,2+ sinθ), 易知直线 C3 的普通方程为 2 x-2y-7=0, 5 ∵点 M 到直线 C3: x-2y-7=0 的距离 d= |4cosθ 5 故填
解: 由题意知 (-4+t+4)2+(t-0)2= 2, 解得 t=1 或 t=-1.故选 A. x=2+3cosθ, 3.设曲线 C 的参数方程为 (θ 为 y=-1+3sinθ 参数),直线 l 的方程为 x-3y+2=0,则曲线 C 上到 7 10 直线 l 距离为 的点的个数为( ) 10 A.1 B.2 C.3 D.4 解:曲线 C 上的点到直线 l 的距离 |(2+3cosθ)-3(-1+3sinθ)+2| d= 10 |3cosθ-9sinθ+7| = , 10 7 10 若 d= ,则|3cosθ-9sinθ+7|=7, 10 即 cosθ=3sinθ 或 3cosθ-9sinθ=-14(舍去). 10 sinθ= , 10 cosθ=3sinθ, 联立 2 解得 或 2 sin θ+cos θ=1, 3 10 cosθ= , 10 10 sinθ=- , 10
4 3 8 5 -3sinθ-13|,∴当 cosθ= ,sinθ=- 时,dmin= . 5 5 5 在直角坐标系 xOy 中,直线 l 的参数方 2 x=3- t, 2 程为 (t 为参数),在极坐标系(与直角坐 2 y= 5+ t 2 标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,圆 C 的方程为 ρ=2 5sinθ. (1)求圆 C 的直角坐标方程; (2)设圆 C 与直线 l 交于点 A,B.若点 P 的坐标为 (3, 5),求|PA|+|PB|. 解:(1)由 ρ=2 5sinθ,得 x2+y2-2 5y=0, 即 x2+(y- 5)2=5. (2)解法一:易知直线 l 的普通方程为 y=-x+3 + 5. 2 2 x +(y- 5) =5, 2 联立 得 x -3x+2=0, y=-x+3+ 5 x=1, x=2, 解得 或 y=2+ 5 y=1+ 5. 不访设 A(1,2+ 5),B(2,1+ 5),又点 P 的坐 标为(3, 5), 故|PA|+|PB|= 8+ 2=3 2. 解法二:将 l 的参数方程代入圆 C 的直角坐标方 程,得 2 2 3- 2t + 2t =5,即 t2-3 2t+4=0. 2 2 由于 Δ=(3 2)2-4× 4=2>0,故可设 t1,t2 是上 t1+t2=3 2, 述方程的两实根,所以 t2=4. t1· 又直线 l 过点 P(3, 5),故由上式及 t 的几何意 义得 |PA|+|PB|=|t1|+|t2|=|t1+t2|=3 2.
相关文档
最新文档