解一元二次方程练习题-公式法
初中数学:用公式法解一元二次方程练习

初中数学:用公式法解一元二次方程练习01 基础题知识点 用公式法解一元二次方程1.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a,b,c 的值,下列叙述正确的是(D)A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =2,c =-3D .a =3,b =-2,c =32.方程x 2+x -1=0的一个根是(D)A .1- 5 B.1-52C .-1+ 5 D.-1+523.一元二次方程x 2-px +q =0(p 2-4q>0)的两个根是(A) A.p ±p 2-4q 2 B.-p ±p 2-4q 2 C.p ±p 2+4q 2 D.-p ±p 2+4q 24.已知关于x 的方程ax 2-bx +c =0的一个根是x 1=12,且b 2-4ac =0,则此方程的另一个根x 2=12. 5.用公式法解下列方程:(1)x 2+4x -1=0;解:a =1,b =4,c =-1,Δ=b 2-4ac =42-4×1×(-1)=20.x =-4±202×1,x 1=-2+5,x 2=-2- 5.(2)x 2+3x =0;解:a =1,b =3,c =0,Δ=b 2-4ac =32-4×1×0=9.x =-3±92×1,x 1=0,x 2=-3.(3)2x 2-3x -1=0;解:a =2,b =-3,c =-1,Δ=b 2-4ac =(-3)2-4×2×(-1)=17.x =-(-3)±172×2,x 1=3+174,x 2=3-174.(4)x 2+10=25x ;解:x 2-25x +10=0,a =1,b =-25,c =10,∵Δ=(-25)2-4×1×10=-20<0,∴此方程无实数根.(5)2y 2+4y =y +2;解:2y 2+3y -2=0,a =2,b =3,c =-2,Δ=b 2-4ac =32-4×2×(-2)=25.y =-3±252×2, y 1=12,y 2=-2.(6)x(x -4)=2-8x.解:x 2+4x -2=0,a =1,b =4,c =-2,Δ=b 2-4ac =42-4×1×(-2)=24.x =-4±242×1, x 1=-2+6,x 2=-2- 6.易错点 错用公式6.用公式法解方程:2x 2+7x =4.解:∵a =2,b =7,c =4,∴b 2-4ac =72-4×2×4=17. ∴x=-7±174, 即x 1=-7+174,x 2=-7-174. 上述解法是否正确?若不正确,请指出错误并改正.解:不正确.错误原因:没有将方程化成一般形式,造成常数项c 的符号错误. 正解:移项,得2x 2+7x -4=0,∵a=2,b =7,c =-4,∴b 2-4ac =72-4×2×(-4)=81. ∴x=-7±812×2=-7±94.即x 1=-4,x 2=12. 02 中档题7.方程2x 2+43x +62=0的根是(D)A .x 1=2,x 2= 3B .x 1=6,x 2= 2C .x 1=22,x 2= 2D .x 1=x 2=- 68.方程2x 2-6x +3=0较小的根为p,方程2x 2-2x -1=0较大的根为q,则p +q 等于(B)A .3B .2C .1D .2 39.(凉山中考)若关于x 的方程x 2+2x -3=0与2x +3=1x -a 有一个解相同,则a 的值为(C)A .1B .1或-3C .-1D .-1或310.方程2x 2-6x -1=0的负数根为x =211.若8t 2+1与-42t 互为相反数,则t 4 12.(易错题)等腰三角形的底和腰长是方程x 2-22x +1=0的两根,则它的周长是13.用公式法解下列方程:(1)0.3y 2+y =0.8;解:移项,得0.3y 2+y -0.8=0.a =0.3,b =1,c =-0.8,Δ=b 2-4ac =12-4×0.3×(-0.8)=1.96. y =-1± 1.962×0.3=-1±1.40.6,y 1=23,y 2=-4.(2)6x 2-11x +4=2x -2;解:原方程可化为6x 2-13x +6=0.a =6,b =-13,c =6.Δ=b 2-4ac =(-13)2-4×6×6=25.x =13±252×6=13±512,x 1=32,x 2=23.(3)3x(x -3)=2(x -1)(x +1);解:原方程可化为x 2-9x +2=0.a =1,b =-9,c =2.Δ=b 2-4ac =(-9)2-4×1×2=73.x =9±732,x 1=9+732,x 2=9-732.(4)(x +2)2=2x +4;解:原方程可化为x 2+2x =0.a =1,b =2,c =0.Δ=b 2-4ac =22-4×1×0=4.x =-2±42=-1±1,x 1=0,x 2=-2.(5)x 2+(1+23)x +3-3=0.解:a =1,b =1+23,c =3-3.Δ=b 2-4ac =(1+23)2-4×1×(3-3)=25.x =-1-23±252, x 1=2-3,x 2=-3- 3.14.(教材第二十一章引言的变式)如图所示,要设计一座1 m 高的抽象人物雕塑,使雕塑的上部(腰以上)AB 与下部(腰以下)BC 的高度比,等于下部与全部(全身)AC 的高度比,雕塑的下部应设计为多高?解:设雕塑的下部应设计为x m,则上部应设计为(1-x)m.根据题意,得 1-x x =x 1. 整理,得x 2+x -1=0.解得x 1=-1+52,x 2=-1-52(不合题意,舍去). 经检验,x =-1+52是原分式方程的解. 答:雕塑的下部应设计为5-12m.03 综合题15.已知方程x2+3x+m=0有整数根,且m是非负整数,求方程的整数根.解:∵方程有整数根,∴Δ=32-4m≥0.∴m≤9 4 .又∵m是非负整数,∴m=0,1或2. 当m=0时,方程为x2+3x=0,解得x1=0,x2=-3;当m=1时,方程为x2+3x+1=0,解得x1=-3+52,x2=-3-52,方程无整数根;当m=2时,方程为x2+3x+2=0,解得x1=-1,x2=-2.。
一元二次方程公式法计算题10道

一元二次方程公式法计算题10道一、题目。
1. 解方程x^2 - 2x - 3 = 02. 求解方程2x^2+3x - 2 = 03. 解一元二次方程x^2+4x+1 = 04. 求方程3x^2-5x + 2 = 0的解。
5. 解方程x^2-6x+9 = 06. 求解4x^2+4x+1 = 07. 解5x^2-x - 4 = 08. 求方程x^2+3x - 10 = 0的解。
9. 解方程2x^2-7x+3 = 010. 求解3x^2+x - 1 = 0二、解析。
1. 对于方程x^2-2x - 3=0,其中a = 1,b=- 2,c=-3。
- 根据一元二次方程求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac=<=ft(-2)^2-4×1×<=ft(-3)=4 + 12=16。
- 则x=(2±√(16))/(2)=(2±4)/(2),解得x_1=3,x_2=-1。
2. 对于方程2x^2+3x - 2 = 0,这里a = 2,b = 3,c=-2。
- 判别式Δ=b^2-4ac=3^2-4×2×<=ft(-2)=9 + 16 = 25。
- 由求根公式可得x=(-3±√(25))/(2×2)=(-3±5)/(4),解得x_1=(1)/(2),x_2=-2。
3. 对于方程x^2+4x + 1 = 0,a = 1,b = 4,c = 1。
- 判别式Δ=b^2-4ac=4^2-4×1×1=16 - 4 = 12。
- 则x=(-4±√(12))/(2)=(-4±2√(3))/(2)=-2±√(3),即x_1=-2+√(3),x_2=-2-√(3)。
4. 对于方程3x^2-5x + 2 = 0,a = 3,b=-5,c = 2。
公式法解一元二次方程练习题及答案

公式法解一元二次方程练习题一.选择题(共11小题)1.一元二次方程x2+x﹣1=0的根为()A .B .C .D .2.如果一元二次方程x2+px+q=0能用公式法求解,那么必须满足的条件是()A.p2﹣4q≥0B.p2﹣4q≤0C.p2﹣4q>0D.p2﹣4q<03.当﹣1<k<0时,关于x的一元二次方程x2+4x﹣k =0根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有一个实数根D.没有实数根4.关于x的一元二次方程x2﹣(2m﹣1)x﹣2m=0(其中m)的根的情况是()A.没有实数根B.有实数根C.有两个相等的实数根D.有两个不等的实数根5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m B.m C.mD.m6.在平面直角坐标系中,若直线y=﹣2x+a不经过第一象限,则关于x的方程ax2+x+2=0的实根的个数是()A.0B.1C.2D.1或27.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k且k≠1C.k D.k8.关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.49.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k B.kC.k且k≠0D.k且k≠010.如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0B.b2﹣4ac≤0C.b2﹣4ac>0D.b2﹣4ac<011.下列各项中,以x为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0二.填空题(共2小题)12.关于x的一元二次方程(m﹣2)x2+3x﹣1=0有两个不等实数根,则实数m的取值范围是.13.如图,点A在数轴的负半轴,点B在数轴的正半轴,且点A对应的数是2x﹣1,点B对应的数是x2+x,已知AB=5,则x的值为.三.解答题(共5小题)14.已知关于x的方程x2﹣(k+3)x+3k=0.(1)求证:无论k取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a,b,c,其中a =1,并且b,c恰好是此方程的两个实数根,求此三角形的周长.15.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?16.已知关于x的方程kx2﹣(k+2)x+2=0.(1)证明:不论k为何值,方程总有实数根;(2)k为何整数时,方程的根为正整数.17.(1)解方程(x﹣3)2=2x(3﹣x);(2)已知关于x的一元二次方程(a+c)x2+2bx+(a ﹣c)=0,其中a,b,c分别为△ABC三边的长.①如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.18.已知关于x 的方程.(1)求证:无论k取何值,此方程总有实数根;(2)若x=1是这个方程的一个根,求k的值和它的另一个根;(3)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求这个等腰三角形的周长是多少?公式法解一元二次方程练习题参考答案与试题解析一.选择题(共11小题)1.一元二次方程x2+x﹣1=0的根为()A .B .C .D .【解答】解:x2+x﹣1=0由题意可得,a=1,b=1,c=﹣1,∵,∴,即,故选:B.2.如果一元二次方程x2+px+q=0能用公式法求解,那么必须满足的条件是()A.p2﹣4q≥0B.p2﹣4q≤0C.p2﹣4q>0D.p2﹣4q<0【解答】解:∵a=1,b=p,c=q,∴Δ=b2﹣4ac=p2﹣4q≥0时,一元二次方程x2+px+q=0能用公式法求解,故选:A.3.当﹣1<k<0时,关于x的一元二次方程x2+4x﹣k =0根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有一个实数根D.没有实数根【解答】解:x2+4x﹣k=0,Δ=42+4k=4(4+k),∵﹣1<k<0,∴4+k>0,∴Δ>0,∴该方程有两个不等的实数根.故选:B.4.关于x的一元二次方程x2﹣(2m﹣1)x﹣2m=0(其中m)的根的情况是()A.没有实数根B.有实数根C.有两个相等的实数根D.有两个不等的实数根【解答】解:由题意,Δ=b2﹣4ac=[﹣(2m﹣1)]2﹣4×1×(﹣2m)=4m2﹣4m+1+8m=4m2+4m+1=(2m+1)2.∵m,∴(2m+1)2>0,∴方程有两个不相等的实数根.故选:D.5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m B.mC.m D.m 【解答】解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴Δ=32﹣4×2m=9﹣8m=0,解得:m.故选:C.6.在平面直角坐标系中,若直线y=﹣2x+a不经过第一象限,则关于x的方程ax2+x+2=0的实根的个数是()A.0B.1C.2D.1或2【解答】解:∵直线y=﹣2x+a不经过第一象限,∴a≤0,∵ax2+x+2=0,当a=0,方程ax2+x+2=0为一元一次方程,即x+2=0,解得x=﹣2;方程有一个实数根,当a<0时,方程ax2+x+2=0为一元二次方程,∵Δ=1﹣8a>0,∴方程有2个实数根.故选:D.7.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k且k≠1C.k D.k【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k,故选:D.8.关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.4【解答】解:∵关于x的一元二次方程x2+bx+c=0有两个相等的实数根,∴Δ=b2﹣4c=0,∴b2=4c,∴b2﹣2(1+2c)=b2﹣4c﹣2=0﹣2=﹣2.故选:A.9.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k B.kC.k且k≠0D.k且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x+3=0,∴k≠0,∵方程有两个实数根,∴Δ=(﹣2)2﹣4k×3≥0,解得k,∴k的取值范围是k且k≠0,故选:D.10.如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0B.b2﹣4ac≤0C.b2﹣4ac>0D.b2﹣4ac<0【解答】解:若一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,则b2﹣4ac≥0;故选:A.11.下列各项中,以x为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0【解答】解:利用公式法可知:A.x,故不符合题意.B.x,故不符合题意.C.x,故不符合题意.D.x,故符合题意.故选:D.二.填空题(共2小题)12.关于x的一元二次方程(m﹣2)x2+3x﹣1=0有两个不等实数根,则实数m 的取值范围是m且m≠2.【解答】解:∵关于x的一元二次方程(m﹣2)x2+3x ﹣1=0总有两个不相等的实数根,∴Δ>0且m﹣2≠0,∴9﹣4(m﹣2)×(﹣1)>0且m﹣2≠0,∴m 且m≠2.故答案为:m且m≠2.13.如图,点A在数轴的负半轴,点B在数轴的正半轴,且点A对应的数是2x﹣1,点B对应的数是x2+x,已知AB=5,则x的值为.【解答】解:根据题意,得:x2+x﹣(2x﹣1)=5,整理,得:x2﹣x﹣4=0,∵a=1,b=﹣1,c=﹣4,∴Δ=(﹣1)2﹣4×1×(﹣4)=17>0,则x,∴x1,x2,∵点A在数轴的负半轴,∴2x﹣1<0,即x,∴x,故答案为:.三.解答题(共5小题)14.已知关于x的方程x2﹣(k+3)x+3k=0.(1)求证:无论k取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a,b,c,其中a =1,并且b,c恰好是此方程的两个实数根,求此三角形的周长.【解答】(1)证明:∵关于x的方程x2﹣(k+3)x+3k =0,∴Δ=[﹣(k+3)]2﹣12k=k2+6k+9﹣12k=k2﹣6k+9=(k﹣3)2≥0,则无论k取何实数值,方程总有实数根;(2)解:当b=c时,k=3,方程为x2﹣6x+9=0,解得:x1=x2=3,此时三边长为1,3,3,周长为1+3+3=7;当a=b=1或a=c=1时,把x=1代入方程得:1﹣(k+3)+3k=0,解得:k=1,此时方程为:x2﹣4x+3=0,解得:x1=3,x2=1,当x'=1时,此时三边长为1,1,3,不能组成三角形,当x=3时,此时三边长为1,3,3,周长为3+3+1=7,综上所述,△ABC的周长为7.15.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?【解答】解:(1)[(m﹣1)x﹣(m+1)](x﹣1)=0,(m﹣1)x﹣(m+1)=0或x﹣1=0,所以x 1,x2=1;(2)x 1,由于m为整数,所以当m﹣1=1或2时,x为正整数,此时m=2或m=3,所以m为2或3时,此方程的两个根都为正整数.16.已知关于x的方程kx2﹣(k+2)x+2=0.(1)证明:不论k为何值,方程总有实数根;(2)k为何整数时,方程的根为正整数.【解答】解:(1)当k=0时,方程有根x=1;当k≠0时,Δ=(k+2)2﹣8k=(k﹣2)2≥0,综上,无论k为何值时,这个方程总有两个实数根;(2)当k=0时,方程有根x=1,符合题意;当k≠0时,∵kx2﹣(k+2)x+2=0,∴(kx﹣2)(x﹣1)=0,∴x 1,x2=1,∵方程的两个实数根都是正整数,∴k=1或2.综上,k的整数值为0、1、2.17.(1)解方程(x﹣3)2=2x(3﹣x);(2)已知关于x的一元二次方程(a+c)x2+2bx+(a ﹣c)=0,其中a,b,c分别为△ABC三边的长.①如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)(x﹣3)2=2x(3﹣x);移项得,(x ﹣3)2+2x(x﹣3)=0,∴(x﹣3)(x﹣3+2x)=0,∴(x﹣3)(3x﹣3)=0,∴x1=3,x2=1;(2)①△ABC为等腰三角形;理由如下:把x=﹣1代入方程得a+c﹣2b+a﹣c=0,则a=b,∴△ABC为等腰三角形;②△ABC为直角三角形;理由如下:∵方程有两个相等的实数根,∴Δ=(2b)2﹣4(a+c)(a﹣c)=0,即b2+c2=a2,∴△ABC为直角三角形;③∵△ABC为等边三角形,∴a=b=c,∴方程化为x2+x=0,解得x1=0,x2=﹣1.18.已知关于x 的方程.(1)求证:无论k取何值,此方程总有实数根;(2)若x=1是这个方程的一个根,求k的值和它的另一个根;(3)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求这个等腰三角形的周长是多少?【解答】解:(1)Δ=(2k+1)2﹣4×1×4(k)=4(k)2≥0,此时方程有两个实数根.综上所述,无论k取何值,此方程总有实数根.(2)若x=1是这个方程的一个根,则1﹣(2k+1)+4(k)=0,解得k=1,∴关于x的方程x2﹣3x+2=0,解方程得x1=1,x2=2,∴方程的另一根是2;(3)当a=4为底边,则b,c为腰长,则b=c,则Δ=0.∴4(k)2=0,解得:k.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为4,2,2,构不成三角形,当a=4为腰,则b=4为腰长,c为底,则16﹣4(2k+1)+4(k)=0,求得k,∴关于x的方程为x2﹣6x+8=0.解得x=2或4,∴c=2,∴周长为4+4+2=10.故这个等腰三角形的周长是10.。
10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
初中数学:《公式法解一元二次方程》练习(含答案)

初中数学:《公式法解一元二次方程》练习(含答案)一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥24.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0二、填空题5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2=______.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______.9.写出一个一元二次方程,使它有两个不相等的实数根______.10.一次二元方程x2+x+=0根的情况是______.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______.13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=______.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.《公式法》参考答案与试题解析一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2【解答】解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选C.二、填空题5.一元二次方程x2+x=3中,a= ,b= 1 ,c= ﹣3 ,则方程的根是x1=﹣1+,x2=﹣1﹣.【解答】解:移项得, x+x﹣3=0∴a=,b=1,c=﹣3∴b2﹣4ac=7∴x1=﹣1+,x2=﹣1﹣.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2= 3 .【解答】解:根据题意得x1+x2=3.故答案为3.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c <5 .【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是k>﹣2且k≠﹣1 .【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)•(﹣1)>0,解得k>﹣2且k≠﹣1.故答案为k>﹣2且k≠﹣1.9.写出一个一元二次方程,使它有两个不相等的实数根x2+x﹣1=0 .【解答】解:比如a=1,b=1,c=﹣1,∴△=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.10.一次二元方程x2+x+=0根的情况是方程有两个相等的实数根.【解答】解:∵△=12﹣4×=0,∴方程有两个相等的实数根故答案为方程有两个相等的实数根.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x= 1±.【解答】解:根据题意得:7x(x+5)﹣6x2﹣37x﹣9=0,这里的:x2﹣2x﹣9=0,这里a=1,b=﹣2,c=﹣9,∵△=4+36=40,故答案为:1±13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是k>4 .【解答】解:依题意可得x2﹣4x+k=0无解,也就是这个一元二次方程无实数根,那么根据根的判别式△=b2﹣4ac=16﹣4k,没有实数根,那么16﹣4k<0,解此不等式可得k>4.故答案为:k>4.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0, 解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.【解答】解:(1)这里a=4,b=﹣4,c=1, ∵△=32﹣16=16,(2)这里a=1,b=﹣,c=﹣3,∵△=2+12=14,∴x=.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.【解答】解:①△=32﹣4×2×(﹣4)=41>0,所以方程两个不相等的实数根;②方程化为一般式为3x2﹣2x+2=0,△=(﹣2)2﹣4×3×2=0,所以方程有两个相等的实数根;③方程化为一般式为x2﹣x+1=0,△=(﹣)2﹣4××1<0,所以方程无实数根.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.【解答】证明:当m=0时,原方程为x﹣2=0,解得x=2;当m≠0时,△=(3m﹣1)2﹣4m(2m﹣2)=(m+1)2≥0,所以方程有两个实数根,所以无论m为何值原方程有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0, ∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a、b为腰,则a=b=4,即2k﹣1=4,解得k=,此时三角形的周长=4+4+2=10;当b、c为腰时,b=c=2,此时b+c=a,故此种情况不存在.综上所述,△ABC的周长为10.。
10道公式法解一元二次方程练习题

10道公式法解一元二次方程练习题公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
解一元二次方程练习题公式法
解一元二次方程练习题公式法1、一元二次方程的根的判别式是b2-4ac。
根据判别式的值可以判断方程的根的情况:当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根。
2、对于(m2-n2)(m2-n2-2)-8=0,可以化简得到m4-2m2n2+n4-2m2+2n2-8=0.根据题目条件可知m2-n2是方程的一个根,因此代入方程得到m4-2m2(m2-n2)+m2-n2-8=0,即m4-2m4+2n2m2-n2-8=0,化简可得(m2-n2+2)(m2-n2-4)=0.因此m2-n2的值可以是4或-2.4、关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一个根为-1,代入方程得到(m-1)-m+2m-3=0,即2m-4=0,解得m=2.5、根据判别式b2-4ac,可以得到5x2-7x+5的判别式为b2-4ac=49-100<0,因此方程没有实数根。
6、根据判别式b2-4ac,可以得到(2m+1)2-4(m-2)21.7、使用公式法解方程x2+2x+3=0,根据公式x=(-b±√(b2-4ac))/2a得到x=-1±i√2.8、使用公式法解方程5x2-4x-12=0,根据公式x=(-b±√(b2-4ac))/2a得到x=2或x=-1.2.9、根据方程(x-2)(3x-5)=0可得到x=2或x=5/3,因此方程有两个实数根。
10、使用公式法解方程x2-2x-1=0,根据公式x=(-b±√(b2-4ac))/2a得到x=1±√2.11、使用公式法解方程2x2+3x+1=0,根据公式x=(-b±√(b2-4ac))/2a得到x=-0.5或x=-1.12、使用公式法解方程3x2+2x-1=0,根据公式x=(-b±√(b2-4ac))/2a得到x=1/3或x=-1.13、使用公式法解方程5x2-3x+2=0,根据公式x=(-b±√(b2-4ac))/2a得到x=1/5或x=2.14、使用公式法解方程7x2-4x-3=0,根据公式x=(-b±√(b2-4ac))/2a得到x=3/7或x=-1.15、使用公式法解方程-4x2-x+12=0,根据公式x=(-b±√(b2-4ac))/2a得到x=3/4或x=-4.16、使用公式法解方程4x2+4x+9=0,根据公式x=(-b±√(b2-4ac))/2a得到方程没有实数根。
(完整版)解一元二次方程(公式法)__习题精选.doc
解一元二次方程(公式法)习题精选基础测试一、选择题(每题 5 分,共 15 分)1.用公式法解方程 4x 2-12x=3,得到()A .x=C .x=3 6 3 62B .x=23 2 332 32D .x=22.方程 2 x 2+4 3 x+6 2 =0 的根是()A .x =2,x =3B .x =6,x =21212C .x 1=2 2 ,x 2= 2D .x 1=x 2=-63.(m 2-n 2)(m 2-n 2-2)- 8=0,则 m 2-n 2的值是()A .4B .-2C .4 或-2D .-4或 2二、填空题(每题 5 分,共 15 分)1.一元二次方程 ax 2+bx+c=0(a ≠0)的求根公式是________,条件是 ________.2.当 x=______时,代数式 x 2-8x+12 的值是- 4.3.若关于 x 的一元二次方程(m -1)x 2+x+m 2+2m- 3=0 有一根为 0,则 m 的值是 _____.三、用公式法解下列方程(每题6 分,共 18 分)1.3x 2+5x -2=02.3x 2-2x -1=03.8(2- x )=x 2四、当 m 为何值时,方程 x2-(2m+2)x+m2+5=0 (20 分)(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根能力测试题1.用公式法解关于 x 的方程: x2-2ax-b2+a2=0.(12 分)2 2.某数学兴趣小组对关于 x 的方程( m+1)x m 2 + (m-2)x-1=0 提出了下列问题.(1)若使方程为一元二次方程, m 是否存在?若存在,求出 m 并解此方程.(2)若使方程为一元二次方程 m 是否存在?若存在,请求出.你能解决这个问题吗?(20 分)拓展测试题1.如果关于 x 的一元二次方程 a(1+x2)+2bx-c(1-x2)=0 有两个相等的实数根,那么以 a,b,c为三边的△ ABC 是什么三角形?请说明理由.(10 分)2.某电厂规定:该厂家属区的每户居民一个月用电量不超过 A 千瓦时, ?那么这户居民这个月只交 10元电费,如果超过 A 千瓦时,那么这个月除了交 10?A元用电费外超过部分还要按每千瓦时100 元收费.(1)若某户 2 月份用电 90 千瓦时,超过规定 A千瓦时,则超过部分电费为多少元?( ?用 A 表示)(2)下表是这户居民 3 月、4 月的用电情况和交费情况月份用电量(千瓦时)交电费总金额(元)3802544510根据上表数据,求电厂规定的 A 值为多少?( 10 分)参考答案基础测试一、 1.D 2.D 3.Cbb2 4ac二、 1.x= 2a ,b2-4ac≥0 2.4 3.-31三、 1.x1=-2,x2= 3 2.x1=1,x2=-1/3 3. x14 4 2, x2 4 4 2四、 m>2,m=2,m<2能力测试题2a4a24b24a21.x= 2 =a±│ b│2、解:(1)存在.根据题意,得:m2+1=2m2=1m=±1当 m=1 时, m+1=1+1=2≠0当 m=-1 时, m+1=-1+1=0(不合题意,舍去)∴当 m=1 时,方程为 2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(- 1)2-4×2×(- 1)=1+8=9(1)9 1 3x= 2 2 41x1=,x2=-2因此,该方程是一元二次方程时,m=1,1两根 x1=1,x2=-2.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当 m=0 时,(m+1)+(m-2)=2m-1= -1≠0所以 m=0 满足题意.②当 m2+1=0,m 不存在.③当 m+1=0,即 m=-1 时, m-2=-3≠0所以 m=-1 也满足题意.当 m=0 时,一元一次方程是 x-2x-1=0,解得: x=-1当 m=-1 时,一元一次方程是- 3x-1=01解得 x=-3因此,当 m=0 或- 1 时,该方程是一元一次方程,并且当 m=0 时,其根为 x=-1;当 m=-?1 时,其一1元一次方程的根为x=-3.拓展测试题1.直角三角形,理由略.A19 2.(1)超过部分电费 =(90-A )·100 =-100 A 2+ 10 AA(2)依题意,得:(80-A)·100 =15,A1=30(舍去),A 2=50。
九年级数学(一元二次方程的解法--公式法)同步练习 试题
轧东卡州北占业市传业学校一元二次方程的解法用适当的方法解以下方程:(1)2 x 2+x -6=0; (2) 0422=+-x x ; (3)5x 2-4x -12=0; (4)4x 2+4x +10=1-8x.〔5〕3x 2-4x =2x ; 〔6〕31〔x +3〕2=1; 〔7〕x 2+(3+1)x =0; 〔8〕x 〔x -6〕=2〔x -8〕;〔9〕〔x +1〕〔x -1〕=x 22; 〔10〕x 〔x +8〕=16;11、用公式法解方程:3x (x -3) =2(x -1) (x +1).12、不解方程,判别方程05752=+-x x 的根的情况。
13、假设关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,求m 的取值范围。
14、y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2?15、课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道〔如图〕,要使种植面积为600平方米,求小道的宽.达标测评1.用公式法解以下方程:〔16〕2220x x +-=; 〔17〕23470x x +-=;〔18〕22810y y +-=; 〔19〕212308x x -+=. 2.用适当的方法解以下方程:〔20〕2(2)3y -=; 〔21〕2(23)3(43)x x +=+; 〔22〕2320x x --=; 〔23〕(1)(2)5x x -+=. 解方程〔1—3配方法,4—6公式法,7、8因式分解法〕〔24〕2230x x --= 〔25〕2450x x +-= 〔26〕(1)(3)8x x --= 〔27〕2310x x --= 〔28〕23740x x -+= 〔29〕(23)46x x x +=+〔30〕(x -3)2+2x(x -3)=0 〔31〕()963222+-=+x x x 32、关于x 的方程04)2(2=+++k x k kx 〔1〕当k 为何值时,方程有两个不相等的实数根,〔2〕当k 为何值时,方程有两个相等的实数根, 〔3〕当k 为何值时,方程没有实数根,33、关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值。
一元二次方程的解法(公式法)练习题
一元二次方程的解法(公式法)练习题本文将会提供针对一元二次方程解法的公式法练题。
在练中我们将回顾一下方程的基本概念并且深入理解方程的求解过程。
第一部分:选择题1. 求解方程 $x^2 + 5x - 14 = 0$ 的根,正确的式子是:A. $x = \frac{-5 \pm \sqrt{219}}{2}$B. $x = \frac{-5 \pm \sqrt{209}}{2}$C. $x = \pm \frac{5 \pm \sqrt{219}}{2}$2. 求解方程 $3x^2 - 7x + 2 = 0$ 的根,正确的式子是:A. $x = \frac{-1}{3}$ 或 $x = \frac{2}{7}$B. $x = \frac{1}{3}$ 或 $x = \frac{2}{7}$C. $x = \frac{-1}{3}$ 或 $x = \frac{-2}{7}$3. 求解方程 $4x^2 - 9x + 2 = 0$ 的根,正确的式子是:A. $x = \frac{1}{4}$ 或 $x = \frac{2}{3}$B. $x = \frac{-1}{4}$ 或 $x = \frac{-2}{3}$C. $x = \frac{1}{4}$ 或 $x = \frac{-2}{3}$4. 求解方程 $6x^2 - 13x + 5 = 0$ 的根,正确的式子是:A. $x = \frac{1}{3}$ 或 $x = \frac{5}{2}$B. $x = \frac{-1}{3}$ 或 $x = \frac{5}{2}$C. $x = \frac{1}{2}$ 或 $x = \frac{5}{3}$第二部分:计算题1. 求解方程 $x^2 - 4x - 45 = 0$ 的根。
2. 求解方程 $x^2 - 2x + 5 = 0$ 的根。
3. 求解方程 $3x^2 - 4x - 2 = 0$ 的根。
4. 求解方程 $2x^2 + 7x - 10 = 0$ 的根。