习题一解答
第1章流体流动习题解答

第一章 流体流动1-1某敞口容器内盛有水与油。
如图所示。
已知水及油的密度分别为1000和860kg/m 3,解:h 1=600mm ,h 2=800mm ,问H 为多少mm ?习题1-1附图mH H H m kg m kg mm h mm h 32.181.91080.081.91060.081.9860?,/860/10,800,6003333321=∴⨯=⨯⨯+⨯⨯===== 油水,解:ρρ1-2有一幢102层的高楼,每层高度为4m 。
若在高楼范围内气温维持20℃不变。
设大气静止,气体压强为变量。
地平面处大气压强为760mmHg 。
试计算楼顶的大气压强,以mmHg 为单位。
⎰⎰=∴-=⨯⨯⨯-=⨯⨯-=⎩⎨⎧---⨯=⨯⨯=----=---127.724,04763.040810190.181.9)760/(10190.181.910190.1)2.2938314/(29151408055P P p mmHgp p Ln dz p dp p p gdz d ②代入①,得②①解:ρρ1-3某水池,水深4米,水面通大气,水池侧壁是铅垂向的。
问:水池侧壁平面每3米宽度承受水的压力是多少N ?外界大气压为1atm 。
解:N dz gz P F 64023501045.12/481.9103410013.13)(3⨯=⨯⨯⨯+⨯⨯⨯=+=⎰水ρ 1-4外界大气压为1atm ,试按理想气体定律计算0.20at (表压)、20℃干空气的密度。
空气分子量按29计。
543(1.013100.209.8110)291.439/8314293.2PM kg m RT ρ⨯+⨯⨯⨯===⨯解:1-5有个外径为R 2、内径为R 1为的空心球,由密度为ρ’的材料制成。
若将该球完全淹没在某密度为ρ的液体中,若球能在任意位置停留,试求该球的外径与内径之比。
设球内空气重量可略。
3/1'1232'3132)/1(/)3/4())3/4(--=∴=-ρρρπρπR R gR g R R (解:1-6为放大以U 形压差计测气体压强的读数,采用倾斜式U 形压差计。
仪器分析习题习题解答-1

何谓元素的共振线、灵敏线、最后线、分析线,它们之间有何联系? 4. 何谓元素的共振线、灵敏线、最后线、分析线,它们之间有何联系?
由激发态向基态跃迁所发射的谱线称为共振线 共振线(resonance line)。 解:由激发态向基态跃迁所发射的谱线称为共振线(resonance line)。共 振线具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。 振线具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。 灵敏线(sensitive 是元素激发电位低、 强度较大的谱线, 灵敏线 (sensitive line) 是元素激发电位低 、 强度较大的谱线 , 多是共 振线(resonance line)。 振线(resonance line)。 最后线(last 是指当样品中某元素的含量逐渐减少时, 最后线(last line) 是指当样品中某元素的含量逐渐减少时,最后仍能观 察到的几条谱线。它也是该元素的最灵敏线。 察到的几条谱线。它也是该元素的最灵敏线。 分析线(analytical line)。 进行分析时所使用的谱线称为 分析线(analytical line)。 由于共振线是最强的谱线,所以在没有其它谱线干扰的情况下, 由于共振线是最强的谱线,所以在没有其它谱线干扰的情况下,通常选择 共振线作为分析线。 共振线作为分析线。
π→π* 跃迁产生的 。 它的特点是 :跃迁所需要的能量较 R 吸收带大 , 跃迁产生的。它的特点是:跃迁所需要的能量较R吸收带大,
吸收带是共轭分子的特征吸收带, 摩尔吸收系数εmax>104。K吸收带是共轭分子的特征吸收带,因此用 于判断化合物的共轭结构。紫外-可见吸收光谱中应用最多的吸收带。 于判断化合物的共轭结构 。紫外 - 可见吸收光谱中应用最多的吸收带 。
第九章 紫外吸收光谱分析
统计热力学部分习题解答[1]
![统计热力学部分习题解答[1]](https://img.taocdn.com/s3/m/b53609fd700abb68a982fb33.png)
部分习题解答2002/01/071.1试证明,在体积V 内,在ε 到ε + d ε 的能量范围内,三维自由粒子的量子态数为εεπεεd )2(2d )(21233m h V D =.D (ε)称为态密度.证明: 由(1.1.25)得知:在动量p 到p +d p 范围内的量子态(微观状态)数为p p h V d 423π, (1.1)根据三维自由粒子的能量动量关系m p 2/2=ε,易得m p p /d d =ε,即:εm p 22=, εεεd )2/(d /d 2/12/1m p m p ==, (1.2)将(1.2)代入(1.1),整理可得εεπεεd )2(2d )(21233m h V D =.1.2 试证明,在面积S = L 2内,在ε 到ε + d ε 的能量范围内,二维自由粒子的量子态数为επεεd 2d )(2m h SD =.D (ε)称为态密度.证明:仿照由(1.1.23)导出(1.1.25)之过程:在四维μ空间体积元d p x d p y d x d y 中可能的微观状态数为d p x d p y d x d y /h 2.可得,在面积S 中, 动量绝对值p 到p +d p 范围内的量子态(微观状态)数为p p h S y x p p h L Ld 2d d d d 1200202πϕπ=⎰⎰⎰, (1.3)根据二维自由粒子的能量动量关系m p 2/2=ε,易得m p p /d d =ε,即: 2/1)2(εm p =, εεεd )2/(d /d 2/12/1m p m p ==, (1.4)将(1.4)代入(1.3),整理可得επεεd 2d )(2m h SD =.1.4 已知一维线性谐振子的能量为.试求在ε 到ε + d ε 的能量范围内, 一维线性谐振子的量子态数.解:此题的能量动量关系中含有坐标,若采用1.1和1.2的方法,涉及到耦合变量的积分,不易求解.可从另一角度处理,导出结论.先计算在ε 到ε + d ε 的能量范围内,谐振子占据二维μ空间面积元的面积.根据一维线性谐振子的能量动量关系,可得μ空间能量≤ε 的面积为.因此, 在ε 到ε + d ε 的能量范围内面积元的面积为.又知,谐振子一个量子态占据μ空间的面积为h . 可得,在ε 到ε + d ε 的能量范围内, 一维线性谐振子的量子态数为.2.1 若一温度为T 1的高温热源向另一温度为T 2的低温物体传递热量Q ,用熵增加原理证明这一过程为不可逆过程.证明:熵增加原理适用于孤立系.可将热源与物体之总体视为孤立系.由于热源很大,在传热过程中,其温度不变,且经历的过程为可逆过程,熵增加为.由于熵为态函数,可设物体经历一可逆等温过程由初态变为末态,在该过程中的熵增加为,该值与这一热传导过程的熵变相等.于是,孤立系经历热传导过程的熵变为1112>⎪⎪⎭⎫⎝⎛-=∆+∆=∆T T Q S S S r t (2.1)据熵增加原理, 这一过程为不可逆过程(即:热传导是不可逆的).2.2 物体的初始温度T 1的高于热源的温度T 2 .有一热机在此物体和热源之间工作,直到物体的温度降低到T 2为止,若热机从物体吸收的热量为Q ,根据熵增加原理证明,此热机输出的最大功为),(212S S T Q W --=最大其中21S S -表示物体熵的减少量.证明: 熵增加原理适用于孤立系.可将物体、热源与热机之总体视为孤立系. 在过程(循环)中,物体的熵变为122S S S -=∆.设热机为可逆机,则热机的熵变1S ∆为零.若热机对外作功为W , 则在一温度为T 2的等温可逆过程中,热源的熵变为2T WQ S r -=∆.根据熵增加原理,有021212≥-+-=∆+∆+∆=∆T WQ S S S S S S r t , (2.2)所以 )(212S S T Q W --≤,物体对外做最大功时,等号成立,则)(212S S T Q W --=最大.2.3 由理想气体绝热自由膨胀的不可逆性证明热力学第二定律的开氏说法是正确的,即:不可能从单一热源吸热使之完全变成有用功而不引起其它变化.证明:设一热机仅从与外界绝热的一汽缸顶进行热交换,压缩该汽缸的活塞而作功.设汽缸的工作物质为理想气体.若在热机的一个循环中, 可从单一热源(汽缸)吸热Q ,完全变成对气体所做的功W , 而不引起其它变化,则热机压缩活塞所作的功与气体放热相等,即W = Q ,理想气体经历的过程为等内能过程,故而,温度不变.热机和汽缸经历此过程的总体效果是:理想气体在温度不变的情况下,体积减小而不引起其它变化.这正是理想气体绝热自由膨胀的逆过程.违背了理想气体绝热自由膨胀的不可逆性.所以, 不可能从单一热源吸热使之完全变成有用功而不引起其它变化.即开氏说法是正确的.另一方面,设一热机以理想气体为工作物质,从温度为T的一个恒温热源吸热,通过等温过程推动活塞对外作功,由于理想气体在等温过程中内能不变,吸收的热量完全变成对外所做的功.若理想气体的绝热自由膨胀为可逆过程,则在作功过程完成后,可绝热收缩且恢复到初始状态而不引起其它变化.从整个循环看来,总效果是: 从单一热源吸热使之完全变成有用功而不引起其它变化,这就违背了开氏说法.若开氏说法正确,则理想气体的绝热自由膨胀是不可逆的.综合上述两步的证明可得出:理想气体绝热自由膨胀的不可逆性与开氏说法等价.2.4 根据热力学第二定律证明两条绝热线不能相交.证:假设两条绝热线可以相交,如图所示,可由这两条绝热线与一等温线构成一个循环.V可令一可逆热机以该循环工作,即:由初态a出发经历等温膨胀过程到达b,在此过程中热机从热源吸热且对外界作功,再由b经历绝热膨胀过程到达c, 在此过程中热机对外界作功,最后,由c 经历绝热压缩过程返回初态a .在整个循环中,热机从单一热源吸热使之完全变成有用功(由三条线围成的封闭图形之面积)而不引起其它变化,这就违背了开氏说法.若开氏说法正确,则两条绝热线不能相交.3.1 试证明,对正则分布,熵可表示为∑-=sss k S ρρln ,其中,Z e sE s /βρ-=是系统处于s 态的几率. 证:对正则分布,有⎪⎪⎭⎫⎝⎛∂∂-=ββZ Z k S ln ln()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑∑--Z E e Z Z e k ss E s E s s βββln()∑⎥⎦⎤⎢⎣⎡---=-s s E Z E Z e k s ln ββ∑-=sss k ρρln , 证毕.3.3 设一维线性谐振子能量的经典表达式为2222121q m p m ωε+=,试计算经典近似的振动配分函数、内能和熵.解: 设系统由N 个一维线性谐振子组成,则经典近似的正则分布振动配分函数为∏⎰⎰=∞∞-∞∞---=N i i i i i N q m p m q p h Z 1222)22ex p(d d 1ωββNNq m p m q p h⎪⎪⎭⎫ ⎝⎛--=⎰⎰∞∞-∞∞-)22ex p(d d 1222ωββNh ⎪⎪⎭⎫⎝⎛=βωπ2, 这里,由于是振动配分函数,不必考虑粒子置换带来的影响N !.内能NkT Z E =∂∂-=ln β,熵⎪⎪⎭⎫⎝⎛∂∂-=ββZ Z k S ln ln⎪⎭⎫⎝⎛+=12ln ωπh kT Nk . 3.6 当选择不同的能量零点时,粒子第l 个能级的能量可取为l ε或*l ε.以∆表示两者之差.试证明相应的粒子配分函数存在以下关系z e z ∆-=β*.并讨论由配分函数z 和z *求得的热力学函数有何差别.解: 当粒子第l 个能级的能量取l ε时,粒子的配分函数为∑-=ll le z βεω.当粒子第l 个能级的能量取*l ε时,粒子的配分函数为∑∆-∆+-==ll ze e z l βεβω)(*.以下讨论基本热力学函数的差别:系统内能∆-=∆-∂∂-=∂∂-=N E N z N z NE **ln ln ββ,物态方程 ,ln ln **p z V N z V N p =∂∂=∂∂=ββ熵可见,由于能量零点的不同选择,仅对系统内能有影响,而对物态方程和熵无影响.5.2 表面活性物质的分子在液面上作二维自由运动,可以看作二维理想气体.试写出在二维理想气体中分子的速度分布和速率分布.并求出平均速率,最可几速率和方均根速率.解: 仿§5.2.2, 根据麦-玻分布,可求得在面积S 内d p x d p y 范围中的平均分子数为 .代入动量与速度的关系,可得在面积S 内速度范围d v x d v y 中的平均分子数yx y x v v v v v kT m h Sm a d d )(2exp 2222⎥⎦⎤⎢⎣⎡+--=α,(5.1)根据分子数为N 的条件,有yx y x v v v v kT m h Sm eN d d )(2exp 2222⎰⎰∞∞-∞∞-⎥⎦⎤⎢⎣⎡+-=α,可求得 mkT h n mkT h S N eππα2222==-,(5.2)将(5.2)代入(5.1),可得在单位面积中,速度范围d v x d v y 中的平均分子数yx y x v v v v kT m kT m nd d )(2ex p 222⎥⎦⎤⎢⎣⎡+-π.(5.3)(5.3)和(5.1)为二维理想气体中分子的速度分布.若将平面直角坐标换为极坐标d v x d v y →v d v d θ,并对角度积分,可得在单位面积中,速率范围d v 中的平均分子数v v v kT m kT m nd 2ex p 2⎥⎦⎤⎢⎣⎡-.(5.4)这就是二维理想气体分子的速率分布.由(5.4)可知,一个分子处于单位速率间隔内的几率密度为v v kT m kT m v ⎥⎦⎤⎢⎣⎡-=22ex p )(ρ平均速率m kT v v v kT m kTm v v v v 2d 2exp d )(022πρ=⎪⎭⎫ ⎝⎛-==⎰⎰∞. 由 02exp d )(d 2=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=v v kT m kT m v ρ,可得最可几速率m kT v m =.因为m kT v v v kT m kTm v v v v 2d 2exp d )(03222=⎪⎭⎫ ⎝⎛-==⎰⎰∞ρ, 则方均根速率m kTv v s 22==.5.3 根据麦克斯韦速度分布求出速率和平均动能的涨落. 解: 据(5.2.5),麦克斯韦速度分布律为zy x z y x v v v v v v kT m kT m n d d d )(2exp 22222/3⎥⎦⎤⎢⎣⎡++-⎪⎭⎫ ⎝⎛π,进行坐标变换zy x v v v d d d →ϕθθd d sin d 2v v ,并对角度积分⎰⎰=πππϕθθ204d d sin ,可得麦克斯韦速率分布vv v kT m kT m n d 2exp 24222/3⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛ππ.一个分子处于单位速率间隔内的几率密度为222/32exp 24)(v v kT m kT m v ⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛=ππρ.根据涨落的定义,速率的绝对涨落为:222)(v v v v -=-,因为⎰⎰∞⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛==0422/322d 2exp 24d )(vv v kT m kT m v v v v ππρ,对上述积分,可设kT m2=λ,则有[]⎰∞-⎪⎭⎫⎝⎛=0422/32d exp 4vv v v λπλπ[]⎰∞-∂∂⎪⎭⎫ ⎝⎛=02222/3d exp 4v v λλπλπλπλπλπ222/32∂∂⎪⎭⎫ ⎝⎛=2/52/3432-⎪⎭⎫ ⎝⎛=λππλπ=m kT 3又有[]⎰∞-⎪⎭⎫ ⎝⎛=0322/3d exp 4vv v v λπλπ[]⎰∞-⎪⎭⎫ ⎝⎛=02222/3d exp 2vv v λπλπ,令x v =2,则[]⎰∞-⎪⎭⎫ ⎝⎛=02/3d exp 2x x x v λπλπ=xex⎰∞-⎪⎭⎫⎝⎛02/1d 2λπλm kTπ8=,所以)83()(2π-=-m kT v v .欲计算平均能量的涨落,需仿上面先计算[]⎰∞-⎪⎭⎫⎝⎛=0622/34d exp 4vv v v λπλπλπλπλπ332/32∂∂⎪⎭⎫ ⎝⎛-=22215m T k =. 平均能量涨落())32215(2)(2222242πεε-=⎥⎦⎤⎢⎣⎡-=-m T k v v m . 5.4 气柱的高度为H ,截面为S ,处在重力场中.试求此气柱的平均势能和热容量.解: 视气柱为理想气体,根据经典麦-玻分布,可得一个分子处于μ空间体积元zy x p p p z y x d d d d d d 的几率为,理想气体分子在重力场中的能量.分子的平均势能为 .上述计算过程的第一步到第二步体现了分子动能和势能的统计独立性.若气体的数密度为n ,则气柱的平均势能为 . 不考虑动能的热容量 .5.6 试求双原子分子理想气体的振动熵.解: 此题类似于 3.3题,这里先计算分子的配分函数. 经典双原子分子的振动能量为一维线性谐振子,则分子振动配分函数为, 振动熵⎪⎭⎫ ⎝⎛+=12ln ωπh kT Nk . 这里,由于是振动配分函数,不必考虑分子置换带来的影响N !.7.1 根据玻色系统的微观状态数∏--+=ll l l l B a a W !)!1()!1(ωω,在11>>+≈-+l l l l a a ωω,11>>≈-l l ωω和1>>l a 的条件下,仿§3.3.2的最可几法导出玻色分布.解:对玻色系统,若粒子总数和总能量为常数,则有约束条件∑=l la N ,∑=lll a E ε.由拉格朗日未定乘子法,可对微观状态数的对数求有约束条件的变分极值,从而得到最可几分布,即0)(ln =--E N W B βαδ.其中,α和β为未定乘子,分别由两个约束条件为常数来确定.应用斯特林公式,有⎪⎪⎭⎫⎝⎛+≈∏l l l l l B a a W !!)!(ln ln ωωδδ ()∑+-+-+-++=ll l l l l l l l l l l l a a a a a a ln ln )()ln()(ωωωωωωδ()lll l l a a a δω∑-+=ln )ln(,则∑=⎪⎪⎭⎫⎝⎛--+=--ll l l lB a a E N W 0)1ln()(ln δβεαωβαδ,由于所有的l a 独立,所以)1ln(=--+βεαωlla ,整理可得 1-=+l e a ll βεαω,即欲求的玻色分布.7.3 证明,对于玻色系统,熵可表为[]∑++--=ss s s s f f f f k S )1ln()1(ln .其中s f 为量子态s 上的平均粒子数, ∑s 表示对所有粒子的所有量子态求和.证明:由(7.1.11)式,得巨配分函数的对数为∑----=Ξss e )1ln(ln βεα.根据熵的表达⎥⎦⎤⎢⎣⎡Ξ∂∂-Ξ∂∂-Ξ=ln ln ln ββααk S ()E N k βα++Ξ=ln∑⎥⎦⎤⎢⎣⎡---+--=++--s s ss s e e e k 11)1ln(βεαβεαβεαβεα. (7.1)又因11-=+s e f s βεα,(7.2)可有s sf f e s +=+1βεα,)1ln(ln s s s f f ++-=+βεα,(7.3)sf e s +=---111βεα,(7.4)将(7.2),(7.3)和(7.4)代入(7.1),并整理可得[]∑++--=ss s s s f f f f k S )1ln()1(ln .7.5 试求绝对零度下电子气体中电子的平均速率.解: 在体积V 中,速率v v v d +→范围内,考虑自旋时电子的态密度为2338)(v m h V v g π=,绝对零度时,费米函数为 ⎩⎨⎧><=F F,0,1v v v v f ,电子的平均速率m v vv v vv v v f v g v f v vg v F F F/24343d d d )(d )(00203μ====⎰⎰⎰⎰,其中0,μF v 分别为费米速度和费米能量.7.6 在极端相对论情形下电子能量与动量的关系为cp =ε,其中c 为光速.试求自由电子气体在0K 时的费米能量,内能和简并压.解: 在体积V 中,ε 到ε + d ε 的能量范围内电子的量子态数为εεππεεd 8d 8d )(23323c h V p p h V g ==.绝对零度时,费米函数为 ⎩⎨⎧><=00 ,0 ,1μεμε f .总电子数满足⎰⎰===0033323338d 8d )(μμπεεπεεc h V ch Vfg N ,可求出费米能量hcV N 3/1083⎪⎭⎫⎝⎛=πμ.电子气的内能⎰⎰====00040333334348d 8d )(μμμπεεπεεεN c h V ch Vfg E .气体的简并压043μV NV E p d ==.关于简并压的公式,可参见习题3.5.7.9 根据热力学公式⎰=TT C S Vd 及V V T E C ⎪⎭⎫ ⎝⎛∂∂=,求光子气体的熵. 解: 由(7.4.6),可得光子气的内能V T h c k E 43345158π=. 所以 V V T E C ⎪⎭⎫ ⎝⎛∂∂==V T h c k 333451532π,⎰⎰===T V V T h c k T V T h c k T T C S 033345233454532d 1532d ππ.7.11 铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是2Ak =ω.试证明在低温下,这种准粒子的激发所导致的热容与2/3T成正比.证明: 在体积V 中,ω到ω+ d ω的频率范围内准粒子的量子态数为ωωπωωd d 4d )(2/123B p p h V g ==,推导上式时,用到关系k p =.这里B 为常数.由于准粒子数不守恒,玻色分布中的0=α.系统的内能为⎰⎰-=-=mm e B g e E ωωωβωβωωωωω002/3d 1d )(1 ,考虑到态密度在高频时发散,需引入截止频率m ω.但在低温下1>>ωβ ,在积分中可令∞→m ω.设x =ωβ ,则有2/502/32/5d 1T x e x CT E x ∝-=⎰∞,其中,C 为常数.易得 2/3TT E C VV ∝⎪⎭⎫ ⎝⎛∂∂=.。
电路理论习题解答 第一章

1.5
u /V
内阻不为零
+ us
R0
I
+
u
RL
−
伏安关系曲线
−
I/A 0.15
0
1.5
u /V
注:这里的伏安关系曲线只能在第一象限,原因也是,一旦出了第一象限, u 和 I 的比值就 变为负的了,反推出的 RL 就变为负值了,与题意不符。
V
V
1.5V
1.5V
R 内阻为零时 内阻不为零时
R
1-9 附图是两种受控源和电阻 RL 组成的电路。现以 RL 上电压作为输出信号,1)求两电路的电 压增益(A,gmRL);2)试以受控源的性质,扼要地说明计算得到的结果。
1) 如果不用并联分压(在中学就掌握的东西),当然也可以用两个回路的 KVL 方程和顶部 节点的 KCL 方程,得出上面的 H(jω)的表达式,但是显然这样做是低效的。 2) 事实上,本课程的目的是希望学习者能够根据不同的题目,尽可能采用多种方法中的一 种最简单的方法去解决问题。因此, a) 只要没有要求,任意的逻辑完整的解题思路都是可取的; b) 学习者可以视自己的练习目的选择一种简单熟悉的方法、或者一种较为系统的方法、 或者多种方法来完成习题。
第一章习题答案 1-1 已知电路中某节点如图,I1=-1A,I2=4A,I4=-5A,I5=6A,用 KCL 定律建立方程并求解 I3 ( 4A )
图 1-1 解:由 KCL 定律:任一集中参数电路中的任一节点,在任一时刻,流入该节点的电流之和与 流出该节点的电流之和相同。 即: I1+I3+I4+I5=I2 =〉-1+(-5)+6+I3=4 =〉I3=4(A)
1 2
概率论第二章习题参考解答1

概率论第二章习题参考解答1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为⎪⎩⎪⎨⎧≥<≤<=11105.000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3因此分布律由下表所示ξ0 1 P 1/32/3而分布函数为⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ⎩⎨⎧≥<=ax a x x F 10)(, 它的图形为4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)(1),(2)代入(3)得:2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为)3,2,1(271)(3=⨯==-i i P i ξ或列表如下:5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.解: 基本事件总数为420C n =,有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为ii i C C n -=4155, 则001.01731911718192051234)4(031.0171952121545171819201234)3(2167.01718191415231212141545171819201234)2(4696.01718191314151231314155171819201234)1(2817.01719137123412131415171819201234)0(445420115354202152542031515420415=⋅⋅=⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===C C P C C C P C C C P C C C P C C P ξξξξξ 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有),3,2,1(1331310)(1=⎪⎭⎫⎝⎛⋅===-i pq i P i i ξ7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品 已经全部代换为正品, 因此必然抽到正品, 这样ξ的取值为1,2,3,4. 不难算出,0027.0131132133)4(0328.01312132133)3(1953.01311133)2(7692.01310)1(=⋅⋅===⋅⋅===⋅=====ξξξξP P P P8. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有P (ξ=i )=p (1-p )i , (i =0,1,2,…)9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P {ξ<1|ξ≠0}.解: 根据概率函数的性质有1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P即1167854321=+++cc c c 得2.3125163716710128167854321==+++=+++=c 设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则32.0258167852121}2{}1{}1{}1{)0{}01{)()(}0|1{==++==+=+-=-==≠≠⋂<==≠<ξξξξξξξξξP P P P P P B P AB P P 10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31327/6217/410)(x x x x x F第9题:当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=⨯=c 当0≤x <1时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)=5405.03125.243214321=⎪⎭⎫ ⎝⎛+=+c c 当1≤x <2时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=8108.03125.2854321854321=⎪⎭⎫ ⎝⎛++=++c c c 当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤--<=21218108.0105405.0012162.010)(x x x x x x F 11. 已知ξ~⎪⎩⎪⎨⎧<<=其它1021)(x xx ϕ, 求ξ的分布函数F (x ), 画出F (x )的图形.解: 当x <0时: F (x )=0;当0≤x <1时:xx xt x t dt t dt t dt dt t x F xxx=-==+-⋅==+==+--∞-∞-⎰⎰⎰⎰00012112121210)()(12102100ϕ 当x ≥1时: F (x )=1 综上所述, 最后得⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F 图形为12. 已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P {ξ≤0.5}; P (ξ=0.5);F (x ).解: 25.005.020)(}5.0{225.0025.005,0|=-==+==≤⎰⎰⎰∞-∞-x xdx dx dx x P ϕξ, 因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0,求F (x ): 当x <0时, F (x )=0 当0≤x <1时, 220|20)()(x t tdt dt dt t x F xxx==+==⎰⎰⎰∞-∞-ϕ 当x ≥1时, F (x )=1 综上所述, 最后得:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度⎪⎩⎪⎨⎧≥=其它0100100)(2x x x ϕ, 某一个电子设备内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:3215010012100100)()150(|150121502150==+-===≥∞++-+∞+∞⎰⎰x dx xdx x P ϕξ 则3个这样的电子管构成贝努里独立试验概型, 试验三次发生三次的概率为2963.027832)3(33==⎪⎭⎫⎝⎛=p14. 设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Ax x x F 求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ).解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F P (0.3<ξ<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4概率密度φ(x )为⎩⎨⎧<≤='=其它0102)()(x x x F x ϕ15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0, 得A +Barctg (-∞)=02=-πB A(1)再由F (+∞)=1,得12)arctg(=+=+∞+πB A B A(2)综和(1),(2)两式解得π1,21==B A 即x x F arctg 121)(π+=5.0214411111)1()1()11()1|(|==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==--=--=<<-=<πππππξξarctg arctg F F P P2111)()(x x F x +⋅='=πϕ16. 服从拉普拉斯分布的随机变量ξ的概率密度||)(x Ae x -=ϕ, 求系数A 及分布函数F (x ).解: 这实际上是一个分段函数, φ(x )可重新写为⎩⎨⎧<≥=-0)(x Aex Ae x xxϕ 根据性质1)(=⎰+∞∞-dx x ϕ, 又因φ(x )为偶函数, 因此有1222)(|==-==∞+-+∞-+∞∞-⎰⎰A Aedx Aedx x x xϕ, 则有A =1/2因此⎪⎩⎪⎨⎧<≥==--02102121)(||x e x e ex x x x ϕ.求分布函数F (x ). 当x <0时, 有xxtxt x e e dt e dt t x F 212121)()(====∞-∞-∞-⎰⎰ϕ当x ≥0时, 有x x xtxt t x e e e dt e dt e dt t x F ----∞-∞--=+-=-=+==⎰⎰⎰21121212121212121)()(00ϕ 综上所述, 最后得⎪⎩⎪⎨⎧≥-<=-0211021)(x e x e x F x x17. 已知⎩⎨⎧<<+-=其它01031212)(~2x x x x ϕξ, 计算P {ξ≤0.2|0.1<ξ≤0.5}解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而)()()|(B P AB P B A P =, 而事件AB ={ξ≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2} 因此有148.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()364(d )31212()(}2.01.0{)(2.01.0232.01.022.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-==≤<=⎰⎰x x x xx x dx x P AB P ϕξ256.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()364(d )31212()(}5.01.0{)(5.01.0235.01.025.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-===≤<=⎰⎰x x x xx x dx x P B P ϕξ最后得5781.0256.0148.0)()()|(}5.01.0|2.0{====≤<≤B P AB P B A P P ξξ18. 已知xxce x +-=2)(~ϕξ, 确定常数c .解: 首先证明普阿松广义积分π=⎰+∞∞--x e xd 2, 因为函数2x e -并不存在原函数, 因此需要一技巧. 令⎰+∞∞--=x eI x d 2, 则⎰⎰⎰+∞∞-+∞∞-+-+∞∞--=⎥⎦⎤⎢⎣⎡=y x e x e I y x x d d d )(22222作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且θd d d d r r y x =, 因此有πππθπ====∞+-+∞-+∞-⎰⎰⎰020202222)d(212rr r e r e rdr ed I , 所以I =π.现确定常数c , 由性质1)(=⎰+∞∞-dx x ϕ,1d d 41)21(414141212222====⎰⎰⎰+∞∞---+∞∞-+-⋅⋅+-+∞∞-+-πcedx ecex cex cex x x xx得421πe c =19. 已知⎩⎨⎧>>=-其它)0()(~λλϕξλa x e c x x, 求常数c 及P {a -1<ξ≤a +1}.解: 由性质1)(=⎰+∞∞-dx x ϕ得1d d 0)(|==-=+=-∞+-+∞-∞-+∞∞-⎰⎰⎰aax ax ace ce x e c x dx x λλλλϕ 解得 aec λ=, 因此有⎩⎨⎧>>=--其它)0()()(λλϕλa x e x a x则λλλλλλϕξ---+---+--=-==+==+≤<-⎰⎰⎰⎰e e due x ex x x a a P u u a aa x a a a a 1d d 0d )()11(|111)(111求边缘概率分布, 与是否独立?解: 按下表计算ξ与η的边缘分布:得的边缘分布如下表所示:当i =1及j =0时,因202.026.0}0{}1{0}0,1{)2(0)1(110⨯====≠====ηξηξP P p p P p因此ξ与η相互间不独立.21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数. 若ξ与η的联合分布如下表所示: 试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等;(3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数. 则事件A 发生的概率为上表中头两排概率之和52.008.006.005.004.002.001.009.007.005.003.001.001.0)(104=++++++++++++==∑∑==i j ij p A P事件B 发生的概率为上表中从0行0列开始的斜对角线之和14.006.005.002.001.0)(3=+++==∑=i ii p B P事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):89.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得312132)2|2()2()2,2(312132)2|1()2()1,2(31131)1|2()1()2,1(0031)1|1()1()1,1(22211211=⨯=========⨯=========⨯=========⨯========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P p23. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而η只取0,31,1这三个值, 因此总共可构成九个. 概率分布表及η的边缘分布计算如下即η的边缘分布率如下表所示24. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 第一次取到号码1,2,3的概率为P{ξ=1}=P(ξ=3)=1/4P{ξ=2}=1/2在第一次取到号码i条件下,第二次取到号码j的概率各为P{η=1|ξ=1}=P{η=3|ξ=3}=0P{η=2|ξ=1}=P{η=2|ξ=3}=2/3P{η=3|ξ=1}=P{η=1|ξ=3}=1/3P{η=1|ξ=2}=P{η=3|ξ=2}=1/3P{η=2|ξ=2}=1/3则p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6p13=P{ξ=1,η=3}=P{ξ=1}P{η=3|ξ=1}=1/12p21=P{ξ=2,η=1}=P{ξ=2}P{η=1|ξ=2}=1/6p22=P{ξ=2,η=2}=P{ξ=2}P{η=2|ξ=2}=1/6p23=P{ξ=2,η=3}=P{ξ=2}P{η=3|ξ=2}=1/6p31=P{ξ=3,η=1}=P{ξ=3}P{η=1|ξ=3}=1/12p32=P{ξ=3,η=2}=P{ξ=3}P{η=2|ξ=3}=1/6p33=P{ξ=3,η=3}=P{ξ=3}P{η=3|ξ=3}=025. 表示随机地在1-4的4个整数中取出的一个整数,η表示在1-ξ中随机地取出的一个整数值,求(ξ,η)的联合概率分布.解: 因ξ取四个数中的任何一个概率相等, 因此有P{ξ=i}=1/4, (i=1,2,3,4)而在ξ=i的条件下, (i=1,2,3,4), η取1到i的概率也相同,为1/i, 即P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)因此有p ij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4; j=1-i),联合概率分布如下表所示:26. 已知(ξ,η)~⎪⎩⎪⎨⎧≤≤+=其它04,0)sin(),(πϕy x y x c y x ,试确定常数c 并求η的边缘概率密度.解: 根据性质1),(=⎰⎰+∞∞-+∞∞-dydx y x ϕ, 有1)12(]220122[)]4sin([sin )]4cos([cos )]cos([)sin(40440404040=-=+--=+-=+-=+-=+⎰⎰⎰⎰c c x x c x x dx c y x dx c dydx y x c ππππππππ解得12)12)(12(12121+=+-+=-=c ,因此,⎪⎩⎪⎨⎧≤≤++=其它04,0)sin()12(),(πϕy x y x y x求η的边缘概率密度: 当40π≤≤y 时:)8sin(22)12()]4cos()[cos 12()cos()12()sin()12(),()(4042ππϕϕκπ+-+==+-+==++-=++==⎰⎰∞+∞-y y y y x dx y x dx y x y上式后一等式利用了三角函数公式2sin 2sin2cos cos A B A B B A -+=-, 而计算三角函数8sin π的值, 又是在已知224cos=π的前提下,利用半角公式2cos 12sin θθ-=得222222124cos18sin-=-=-=ππ当y 取区间]4,0[π之外的值时, 0)(1=y ϕ.因此最后得:⎪⎩⎪⎨⎧≤≤+-+=其它040)8sin(22)12()(2ππϕy y y27. 已知ξ服从参数p =0.6的0-1分布, 在ξ=0及ξ=1条件下, 关于η的条件分布分别如下二表所示:求二元随机变量(,)的联合概率分布, 以及在≠1时关于的条件分布. 解: 根据题意已知P {ξ=0}=1-p =1-0.6=0.4, P {ξ=1}=p =0.6 则根据乘法法则有:p 01=P {ξ=0,η=1}=P {ξ=0}P {η=1|ξ=0}=0.4×(1/4)=0.1 p 02=P {ξ=0,η=2}=P {ξ=0}P {η=2|ξ=0}=0.4×(1/2)=0.2 p 03=P {ξ=0,η=3}=P {ξ=0}P {η=3|ξ=0}=0.4×(1/4)=0.1 p 11=P {ξ=1,η=1}=P {ξ=1}P {η=1|ξ=1}=0.6×(1/2)=0.3 p 12=P {ξ=1,η=2}=P {ξ=1}P {η=2|ξ=1}=0.6×(1/6)=0.1 p 13=P {ξ=1,η=3}=P {ξ=1}P {η=3|ξ=1}=0.6×(1/3)=0.2由表中可以算出P {η≠1}=1-P {η=1}=1-(p 01+p 11)=1-0.4=0.6 P {ξ=0,η≠1}=p 02+p 03=0.2+0.1=0.3 P {ξ=1,η≠1}=p 12+p 13=0.1+0.2=0.3 因此有5.06.03.0}1{}1,1{}1|1{5.06.03.0}1{}1,0{}1|0{==≠≠==≠===≠≠==≠=ηηξηξηηξηξP P P P P P则在η≠1时关于ξ的条件分布律如下表所示:28. 第22题中的两个随机变量ξ与η是否独立?当ξ=1时η的条件分布是什么?: , 因为 P {ξ=1}=1/3, P {η=1}=1/3 而P {ξ=1,η=1}=0≠P {ξ=1}P {η=1} 在ξ=1条件下, 因13/13/1}1{}2,1{}1|2{03/10}1{}1,1{}1|1{================ξηξξηξηξξηP P P P P P因此在此条件下η服从单点分布或退化分布, 只取值为2, 取值为2的条件概率为1.=p i (1)p j (2), 算得联合分布律如下表所示 根据此联合分布律可算出43129611211)2/1,2/1()1,1(1)0(1)0(121484481161)1,0()3,2()1(==--==-==-=-=-==+-=≠+==+===+=-===+ηξηξηξηξηξηξηξP P P P P P P30. 测量一矩形土地的长与宽, 测量结果得到如下表所示的分布律(长与宽相互独立), 求周解: 因ζ=2ξ+2η, 可知ζ的取值为96,98,100,102,104, 又因ξ与η独立, 因此有 P {ζ=96}==P {ξ=29}P {η=19}=0.3×0.3=0.09P {ζ=98}=P {ξ=29}P {η=20}+P {ξ=30}P {η=19}=0.3×0.4+0.5×0.3=0.27 P {ζ=100}=P {ξ=29}P {η=21}+P {ξ=30}P {η=20}+P {ξ=31}}P {η=19}==0.3×0.3+0.5×0.4+0.2×0.3=0.35P {ζ=102}=P {ξ=30}P {η=21}+P {ξ=31}P {η=20}=0.3×0.5+0.2×0.4=0.23 P {ζ=104}=P {ξ=31}P {η=21}=0.2×0.3=0.06η的分布.解: 因周长=2πR , 面积=πR , 因此当半径R 取值10,11,12,13时, ξ的取值为62.83, 69.12,32. 一个商店每星期四进货, 以备星期五,六,日3天销售, 根据多周统计, 这3天销售件数 ξ问三天销售总量∑==31i iξη这个随机变量可以取哪些值?如果进货45件, 不够卖的概率是多少? 如果进货40件, 够卖的概率是多少?解: 因η的取值为ξ1,ξ2,ξ3三个随机变量可能取值之和, 因此可能的取值为从10+13+17=40到12+15+19=46之间的每一个整数值, 即40,41,42,43,44,45,46. 因此, 如进货15件, 不够卖的概率在η取值为46时出现, 即 P {η=46}=P {ξ1=12}P {ξ2=15}P {ξ3=19}=0.1×0.1×0.1=0.001 如进货40件, 够卖的概率发生在η取值为40时出现, 即P {η=40}=P {ξ1=10}P {ξ2=13}P {ξ3=17}=0.2×0.3×0.1=0.006 33. 求出第22题中ξ+η的分布律.ξ与η的联合分布律如下表: 则P {+=2}=P {=1,=1}=0P {ξ+η=3}=P {ξ=1,η=2}+P {ξ=2,η=1}=2/3 P {ξ+η=4}=P {ξ=2,η=2}=1/334. 求出第23题中ξ-η的分布律 解: 因(ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12.因此ξ-η也只取0-0=0, -1-1=-2, -1-1/3=-4/3, 2-0=2这四个值, 相应的概率也还是依次为1/6, 35. 已知P {ξ=k }=a /k , P {η=-k }=b /k (k =1,2,3), ξ与独立, 确定a ,b 的值; 求出(ξ,η)的联合概率分布以及ξ+η的概率分布. 解: 由概率分布的性质有131211}{31=⎪⎭⎫⎝⎛++==∑=a k P k ξ, 解得 5455.0116312111==++=a,191411}{31=⎪⎭⎫⎝⎛++=-=∑=b k P k η 解得 7347.04936914111==++=b 因此有P {ξ=1}=0.5455, P {ξ=2}=0.5455/2=0.2727, P {ξ=3}=0.1818 P {η=-1}=0.7347, P {η=-2}=0.1837, P {η=-3}=0.0816 因ξ与η独立, 则有p 11=P {ξ=1,η=-1}=P {ξ=1}P {η=-1}=0.5455×0.7347=0.4008 p 12=P {ξ=1,η=-2}=P {ξ=1}P {η=-2}=0.5455×0.1837=0.1002 p 13=P {ξ=1,η=-3}=P {ξ=1}P {η=-3}=0.5455×0.0816=0.0445 p 21=P {ξ=2,η=-1}=P {ξ=2}P {η=-1}=0.2727×0.7347=0.2004 p 22=P {ξ=2,η=-2}=P {ξ=2}P {η=-2}=0.2727×0.1837=0.0501 p 23=P {ξ=2,η=-3}=P {ξ=2}P {η=-3}=0.2727×0.0816=0.0223 p 31=P {ξ=3,η=-1}=P {ξ=3}P {η=-1}=0.1818×0.7347=0.1336 p 32=P {ξ=3,η=-2}=P {ξ=3}P {η=-2}=0.1818×0.1837=0.0333 p 33=P {ξ=3,η=-3}=P {ξ=3}P {η=-3}=0.1818×0.0816=0.0148计算+的概率分布: P {ξ+η=-2}=p 13=0.0445P {ξ+η=-1}=p 12+p 23=0.1002+0.0223=0.1225P {ξ+η=0}=p 11+p 22+p 33=0.4008+0.0501+0.0148=0.4657 P {ξ+η=1}=p 21+p 32=0.2004+0.0333=0.2337 P{ξ+η=2}=p 31=0.1336即ξ+η的概率分布率如下表所示36. 已知服从区间[0,1]上的均匀分布, 求的函数=3+1的概率分布. 解: 根据题意知ξ的概率密度φξ(x )为⎩⎨⎧≤≤=其它0101)(x x ξϕ 则η的分布函数为)31(}31{}13{}{)(-=-≤=≤+=≤=x F x P x P x P x F ξηξξη 对其求导得η的概率密度与ξ的概率密度间的关系为⎪⎩⎪⎨⎧≤≤=⎪⎩⎪⎨⎧≤-≤=-=-'='=其它其它041310131031)31(31)31(31)()(x x x x F x F x ϕϕξηη即η服从在区间[1,4]上的均匀分布.37. 已知ξ~⎪⎩⎪⎨⎧>+=其它0)1(2)(2x x x πϕ, ξηln =, 求η的概率密度.解: 求η的分布函数F η(x )为)(}{}{ln }{)(x x e F e P x P x P x F ξηξξη=≤=≤=≤=因e x 总大于0, 而当x 大于0时F ξ(x )为x t t t dt t x F x xxarctg 2arctg 2d )1(2)()(|002πππϕξ==+==⎰⎰∞- 因此有x x e e F x F arctg 2)()(πξη==则η的概率密度为其分布函数的求导:xxee x F x 212)()(+⋅='=πϕηη。
《电磁场与电磁波》课后习题解答第一章

n(x2
y2
z2)
(x2 y2 z2)2 (x2 y2 z2)
(n 3)rn
【习题 1.20 解】
1
已知 r (x2 y2 z2 )2
r xex yey zez
所以
(1)
r
(ex
x
ey
y
ez
z
)
(
xex
yey
zez )
ex ey ez
xyz
Bx ex By ey Bz ez
取一线元: dl exdx eydy ezdz
则有
B dl
ex ey ez Bx By Bz 0 dx dy dz
则矢量线所满足的微分方程为
dx dy dz Bx By Bz
或写成
dx dy dz =k(常数) a2 z a3 y a3x a1z a1 y a2x
对(3)(4)分别求和
(4)
d (a1x) d (a2 y) d (a3 z) 0 xdx ydy zdz 0
d (a1x a2 y a3 z) 0 d(x2 y2 z2) 0
所以矢量线方程为
a1x a2 y a3 z k1
x2 y2 z2 k2
【习题 1.6 解】
ex ey ez A B (ex 9ey ez ) (2ex 4ey 3ez ) 1 9 1
2 4 3
31ex 5ey 14ez
【习题 1.3 解】
已知 A ex bey cez , B ex 3ey 8ez ,
(1)要使 A B ,则须散度 A B 0
所以从 A B 1 3b 8c 0 可得: 3b 8c 1
即 12ex 9ey ez • aex bey 12a 9b 0 ⑴
高教社第一章习题及习题解答
习题一、判断题1、计算机区别于其他工具的本质特点是具有逻辑判断的能力。
()2、计算机的性能指标完全由CPU决定。
()3、RAM中的信息在计算机断电后会全部丢失。
()4、计算机软件包括系统软件和应用软件。
()5、声音、图片等属于计算机信息处理的表示媒体。
()6、存储地址是存储器存储单元的编号,CPU要存取某个存储单元的信息,一定要知道这个存储单元的地址。
()7、通常把计算机的运算器、控制器及内存储器称为主机。
()8、计算机的硬件和软件是互相依存、互相支持的,硬件的某些功能可以用软件来完成,而软件的某些功能也可以用硬件来实现。
()9、复制软件会妨害版权人的利益,是一种违法行为。
()10、计算机病毒可以通过光盘或网络等方式进行传播。
()二、选择题1、操作系统是一种()。
A、系统软件B、应用软件C、软件包D、游戏软件2、以下设备中不属于输出设备的是()。
A、打印机B、绘图仪C、扫描仪D、显示器3、计算机内所有的信息都是以()数字形式表示的。
A、八进制B、十六进制C、十进制D、二进制4、ASCII码是一种对()进行编码的计算机代码。
A、汉字B、字符C、图像D、声音5、个人计算机使用的键盘中,Shift键是()。
A、换档键B、退格键C、空格键D、回车换行键6、目前大多数计算机,就其工作原理而言,基本上采用的是科学家()提出的设计思想。
A、比尔.盖茨B、冯.诺依曼C、乔治.布尔D、艾仑.图灵7、现代信息技术的核心是()。
A、电子计算机和现代通信技术B、微电子技术和材料技术C、自动化技术和控制技术D、数字化技术和网络技术8、完整的计算机系统由()组成。
A、硬件系统B、系统软件C、软件系统D、操作系统9、计算机病毒是指()。
A、编制有错误的计算机程序B、设计不完善的计算机程序C、已被破坏的计算机程序D、以危害系统为目的的特殊计算机程序10、我国将计算机软件的知识产权列入()权保护范畴。
A、专利B、技术C、合同D、著作三、简答题1、计算机的特点有哪些?2、计算机的硬件系统分为哪五部分?3、什么是计算机软件?4、什么是多媒体计算机?5、试写出3种常见的计算机输入设备。
微分几何习题解答(曲面论一)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
工程光学习题解答(第1章)
第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用.答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。
应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。
(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播.说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。
2.已知真空中的光速c≈3×108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1。
65)、加拿大树胶(n=1.526)、金刚石(n=2。
417)等介质中的光速。
解:v=c/n(1)光在水中的速度:v=3×108/1。
333=2。
25×108 m/s(2)光在冕牌玻璃中的速度:v=3×108/1。
51=1。
99×108 m/s(3)光在火石玻璃中的速度:v=3×108/1。
65=1.82×108 m/s(4)光在加拿大树胶中的速度:v=3×108/1。
526=1。
97×108 m/s(5)光在金刚石中的速度:v=3×108/2。
417=1。
24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。
那时候的玻璃极不均匀,多泡沫。
除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。
3.一物体经针孔相机在屏上成像的大小为60mm,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离.解:⇒l=300mm4.一厚度为200mm的平行平板玻璃(设n=1。
5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。
概率论与数理统计习题解答第章 (1)
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、习题1参考答案1. 求下列排列的逆序数,并说明它们的奇偶性.(1)41253; (2)3712456; (3)57681234; (4)796815432 解(1)()4125330014τ=+++= 偶排列(2)()37124562500007τ=+++++= 奇排列(3)()576812344544000017τ=+++++++= 奇排列 (4)()7968154326755032129τ=+++++++= 奇排列 2. 确定i 和j 的值,使得9级排列.(1)1274569i j 成偶排列; (2)3972154i j 成奇排列. 解 (1) 8,3i j == (2) 8,6i j == 3.计算下列行列式.(1) 412-3- (2) 2211a a a a ++-1 (3) cos sin sin cos x xx x -(5)2322a abab(6)1loglog 3b aa b(7) 000x y x z y z--- 解(1)4(3)2(1)4212=-⨯--⨯=--3-(2)()22322211(1)11a a a a a a a a a a =-++-=--++-1 (3)22cos sin cos sin 1sin cos x x x x x x -=+= (4)233232220a a a b a b bab=-=(5)1log 3log log 2log 3b b aa ab a b=-=(6) 0000000xyxz xyz xyz y z -=+----=--4. 当x 取何值时3140010xx x≠ ? 解 因为314010xx x2242(2)x x x x =-=-所以当0x ≠且2x ≠时,恒有3140010xx x ≠5. 下列各项,哪些是五阶行列式ij a 中的一项;若是,确定该项的符号.1225324154(1);a a a a a 3112435224(2);a a a a a 4221351254(3)a a a a a解 (1)不是 (2)不是 (3)不是6. 已知行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a ,写出同时含21a 和21a 的那些项,并确定它们的正负号.解 12213443a a a a 12213344a a a a 符号分别为正,负. 7. 用行列式定义计算下列行列式.(1) 11121314152122232425313241425152000000a a a a a a a a a a a a a a a a (2)020200002200(3) 01000200001000n n-解 (1)行列式的一般项为12345()1122334455(1)j j j j j j j j j j a a a a a τ-若345,,j j j 中有两个取1,2列,则必有一个取自3,4,5列中之一的零元素,故该行列式的值为零,即原式0=(2)行列式中只有一项(3241)13223441(1)16a a a a τ-=不为零,所以原式16= (3)行列式的展开项中只有(2,3,4)11223341,1(1)(1)!n n n n n a a a a a n τ---=- 一项不为零,所以原式1(1)!n n -=-8. 用行列式性质计算下列行列式.(1) 111314895(2)1234234134124123(3)41241202105200117⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)2141312112325062⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦(5)ab ac aebd cd debf cf ef---(6)a b aa a bb a aa b a解 (1) 11131489512213333r r rr r r-+→-+→111021013--21513-==-(2)123423413412412312341c c c c c+++→10234103411041210123123413411014121123=122133144r r rr r rr r r-+→-+→-+→123401131002220111------按第一列展开11320111111------311322r r rr r r+→+→00420022111------按第一列展开042016022--=--(3)412412021052001173223447c c cc c c-+→-+→4121012021032140010---按第四行展开434110(1)12210314+----411012210314-=-32213112c c cc c c+→+→99100020171714-=(4)2141312112325062-244c c c -+→2140312212305062-244r r r -+→2140312212302140- 144r r r -+→21403122123000-0= (5)ab ac aebd cd debfcfef ---每列都提取公因式b c eadf bc ebc e ---每列都提取公因式111111111adfbce --- 122133r r r r r r +→+→11102020abcdef -按第一列展开0220abcdef-4abcdef = (6)0000a b a a a b b a a a b a 43211r r r r r +++→2222000a b a b a b a b a a bb a a a b a ++++()11110200aa b a b b a a aba=+122133144ar r r br r r ar r r -+→-+→-+→()1111002000a b aa b a b b a bb a a--+----- 按第一列展开()020ab aa b a bb a b b a a--+-----按第二列展开()()2a b aa b b b a a--+---()()()[]2242242b a b a b a b b a -=---+=9. 证明下列等式.(1) 111222222222111333333333a b c b c a c a b a b c a b c b c a c a b a b c =-+(2)11122122111211121112111221222122212221220000a a a a a a b b c c b b a a b b c c b b = (3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++=33()xy z a b y z x zxy+(4) 222244441111a b c da b c d a b c d ()()()()()a b a c a d b c b d =-----()()c d a b c d ⋅-+++ 证明 (1)左式123123123321213132a b c b c a c a b a b c a b c a b c =++--- 133321233212332()()()a b c b c b a c a c c a b a b =---+- =222222111333333b c a c a b a b c b c a c a b -+=右式 (2)1112212211121112212221220000a a a a c c b b c c b b 按第一行展开222111121112121111122221222121220000a a a c b b a c b b c b b c b b - 111211121122122121222122b b b b a a a a b b b b =-1112111221222122a ab b a a b b =(3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++ 按第一行分开x ay bzaz bxa y az bx ax by z ax by ay bz ++++++ y ay bzaz bxb z az bx ax by x ax by ay bz +++++++200xay bzza y az bx x z ax byy ++++++分别再分yz az bxb z xax by x y ay bz+++33x y z y z x a y z x b z x y zxy x yz +分别再分332(1)x y z x y za yz x b yz x z xy zxy=+-=右边 (4) 222244441111a b c d a b c d a b c d 122133144c c c c c c c c c -+→-+→-+→ 22222224444444100a b a c a d aab ac ad a a b a c a d a ---------按第一列展开222222222222222()()()b ac ad ab ac ad a b b a c c a d d a --------- 每列都提取公因式222111()()()()()()b ac ad a b a c a d a b b a c c a d d a ---++++++ 122133c c c c c c -+→-+→()()()b ac ad a ---222221()()()()()b ac bd bb b ac c a b b ad d a b b a +--++-++-+ 按第一列展开()()()()()b ac ad a c b d b -----222211()()()()c bc b a c bd bd b a d b ++++++++ ()()()()()a b a c a d b c b d =-----()()c d a b c d -+++10.设行列式30453221--,求含有元素2的代数余子式的和. 解 含有元素2的代数余子式是12222313A A A A +++()()()()345453343050111121212222--=-+-+-+---11161026=---=- 11. 设行列式3040222207005322D =--,求第四行各元素余子式之和的值是多少? 解 第四行各元素余子式之和的值为41424344M M M M +++040340300304222222222222700000070070=+++---780314(7)(1)(2)28=-⨯++⨯+-⨯-⨯-=-12.已知 1012110311101254D -=- ,试求: (1) 12223242A A A A -+- (2) 41424344A A A A +++解 (1)虽然可以先计算处每个代数余子式,然后再求和,但是这很烦琐.对于代数余子式的性质应灵活运用.能观察到112131411,1,1,1a a a a ==-==-,那么就知1222324212122122313241420A A A A a A a A a A a A -+-=+++=(2)由于,ij ij A a 无关,可构造一个新的行列式,即1012110311101111D -'=,则有,D D '的代数余子式41424344,,,A A A A 是完全一样的. 而41424344414243441111D A A A A A A A A '=⋅+⋅+⋅+⋅=+++1012110311101111D -'=344r r r -+→1012110311100001-4按第行展开101110111-1=-13. 计算下列行列式.(1)3214235110235413--- (2) 1111111111111111a a b b+-+-(3) 22222a a a a a a a a a a a a a a a a a a a a (4) 122222222232222n(5) 121131121112312311111n n n n nx a a a a x a a a a xa D a a a x a a a a ---+=(6) 5100011000110011011aaa a D a aa a a---=------解(1)3214235110235413---322311344235r r r r r r r r r -+→-+→-+→025503951023041112-----按第一列展开25539541112----322c c c +→253454112-----1332r r r -+→25345012----- 2332c c c -+→253413010----按第二列展开2541313-=---(2)22222a a a a a a a a a a a a a a a a a a a a (42)a +各列都加到第一列提出()11242121212a a a a a a a a a a a a a a a a a +第一行乘以(-1)加到各行()1020042002000020002a a a a a a aa a-+--- ()()4224a a -+=(3)1111111111111111a a b b+-+-211433c c c c c c -+→-+→001111001111a aa b b b--122344r r r r r r -+→-+→000110000101a a b b--按第一行展开000001a a b b--按第一行展开22201b a a b b-=-(4)122222222232222n 2-1第列乘()加到各列上120002002100202n -- 按第1列展开200210(1)20n 2-- 2(n 2)!=-- (5) 121131121112312311111n n n n nx a a a a x a a a a xa D a a a x a a a a ---+=-1第(n+1)列乘()加到各列上112231223123110101000101n n n n n n nx a a a a a a a x a a a a a a x a a a x a -------------()()()12n x a x a x a =---(6) 51000110001100011011aa a a D a aa a a---=------各列均加到第1列按第1列展开51514440010(1)(1)110011a a a D a D a a a a a a++---=------ 继续使用这个递推公式,有 4134433(1)D D a a D a +=--=+3123323(1)D D a a D a +=--=-而初始值221D a a =-+ 故 234551D a a a a a =-+-+- 14.求下列方程的根.(1) 653322022x x x--+=- (2) 2211231223023152319x x -=-解 (1) 65332222x x x --+-211c c c +→15312202x x x x--+122r r r -+→15303102x x x---1按第列展开()3112x x x---()()1[32]x x x =--+()()212x x =-- 所以有()()2120x x --= 方程的根是12312x x x ===(2)221123122323152319x x --12213314422r r r r r r r r r -+→-+→-+→221123010001310133x x -----按第2行展开()221231031033xx -----按第1列展开()2231133x x----- ()()()()()22213333122x x x x x ⎡⎤----=-+-⎣⎦所以有()()()231220xx x -+-= 方程的根是12341122xx x x ==-=-=15. 用克拉姆法则解下列方程组.123412341242342121(1)21x x x x x x x x x x x x x x ---=-⎧⎪+-+=⎪⎨++=⎪⎪+-=⎩ (2)1234134123123422244321224x x x x x x x x x x x x x x -+-=⎧⎪-+=⎪⎨++=-⎪⎪-+-+=-⎩解 (1) 因为系数行列式 1112112110011010111D ----==-≠- 故方程组有惟一解,而111121121921011111D -----==-- 211121121812010111D ----==-- 311121111511210111D ---==-- 411111121311020111D ----==- 所以线性方程组的解为312412349413,,,105210D D D D x x x x D D D D ======== 解 (2) 因为系数行列式 111120142032101212D --==-≠-- 故方程组有惟一解,而121114014212104212D --==---- 112112414431101412D -==---- 311212044032101242D -==--- 411122014132111214D --==-----所以线性方程组的解为3124123411,2,0,2D D D D x x x x D D D D ====-==== 16. 问λ取何值时,下列齐次线性方程组有非零解?(1)123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩ (2)141241241234020(2)40230x x x x x x x x x x x x λλλ+=⎧⎪+-=⎪⎨+-+=⎪⎪++++=⎩解(1)124231111D λλλ--=--13421111λλλλ--+=-- 3(1)(3)4(1)2(1)(3)λλλλλ=-+------- 32(1)2(1)3λλλ=-+-+-齐次线性方程组有非零解,则0D = 所以 0,23λλλ===或方程组有非零解.(2)00101120131213(55)2104214213D λλλλλλ-==--=--+-+- 齐次线性方程组有非零解,则0D = 所以 1λ=方程组有非零解.17. k 取什么值时,齐次线性方程组 0020kx y z x ky z x y z +-=⎧⎪+-=⎨⎪-+=⎩仅有零解.解 系数行列式为1111211kD k-=--322311r r r r r r +→+→200310211k k +--()()202131k k k k +==+--若齐次方程组仅有零解,则必有0D ≠,所以 ()()210k k +-≠,即21k k ≠-≠且.二、第1章自测题参考答案与评分标准(一)填空题(本大题共10个小题,每小题2分,共20分)1. 行列式1234543232122418的122a =的代数余子式及其值是____________. 2. 若1203210101λλ-=,则1λ=____________,2λ=____________. 3. 123123120(1)00x kx x kx x k x x kx ++=⎧⎪+++=⎨⎪+=⎩ 有非零解,则____________.4. 在五阶行列式中,项1231544325a a a a a 的符号应取____________.5. 在函数10123()232112xx x f x x x=中,3x 的系数是____________. 6. 设1578111120361234D =,则41424344A A A A +++=____________. 7. 四阶行列式中,带负号且包含因子23a 和31a 的项为____________.8.2100121001230012=____________. 9. 已知111213212223313233a a a a a a n a a a =,则212223311132123313112112221323222323232a a a a a a a a a a a a a a a ---=+++____________. 10. 21200111kk =-的充分条件是k =____________. 解1.532(1)31228218-= 2. 3,任意实数 3.1k =-或1k = 4.正 5.1- 6. 0 7.14233142a a a a 8. 1 9. 6n 10. -2或3(二)单项选择题(本大题共5个小题,每小题2分,共10分)1.下列( )是4级奇排列A.4321B.4123C.124D.234152. 1223545i j k a a a a a 是5阶行列式ij a 中前面冠以负号的项,那么,,i j k 的值可以是( ) A . 1,,3i j k k === B. 4,1,3i j k === C. 3,1,4i j k === D. 4,3,1i j k ===3. 已知行列式101111111111111x D ---=----,则行列式D 中x 的一次项系数是( )A.1B. 1-C. 22 D. 22-4. 当( )时,02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩有非零解A. 0k =B. 1k =-C. 2k =D. 2k =-5. 设22112()112211f x x x =-+,则()0f x =的根是( ) A.1,1,2,2 B. 1,1,2,2-- C. 1,1,2,2-- D. 1,1,2,2----解 1.B 2.B 3.D 4.C 5.C (三)计算题(本大题共6小题,每小题8分,共48分)1.0345341002226272--- 2.2512371459274612----- 3.100110011001a b c d --- 4. a b b b b a b b b b a b b bb a5. 1111111111111111x x x x ---+---+-- 6.0000000000000000xyx y x x y y x解:(1) 296 02220 01435430--=D …………3分 2 9 62- 2 254 33=…………3分.96=…………2分(2)2512371459274612-----13c c↔2461759243712251------…………2分1221331442r r rr r rr r r-+→-+→-+→213116122251----…………2分4334222r r rr r r+→+→2133632251---…………2分24r r↔933212251-=--…………2分(3)100110011001abcd---211ar r r+→010110011001ab abcd+---…………2分按第一列展开21(1)(1)+--101101ab acd+--…………2分233dc c c+→111010ab a adc cd+-+-…………2分按第三行展开32(1)(1)+--111ab adcd+-+=1abcd ab cd ad++++…………2分(4)a b b bb a b bb b a bb b b a43211r r r r r+++→abbbbabbbbabbabababa3333++++…………2分提取公因式()ab b bb a b b bb a bb a 11113+ …………2分 122133144br r r br r r br r r -+→-+→-+→()ba b a b a b a ---+00000000011113 ............2分 3(3)()a b a b =+- (2)(5)1111111111111111x x x x ---+---+--23411111111111111x x x x c c c c c x x x ---+-+++→---- …………2分提取公因式1111111111111111x x xx ---+----- …………2分 122133144r r r r r r r r r -+→-+→-+→11110000000x x xxx x----- …………2分40000x xx x x x x-=-=- …………2分(6)0000000000000000x y x y x x y yx按第一列展开10000000000(1)00000000000n x y y x x y x y x y y xxy++-…………4分111(1)n n n x x y y -+-=⋅+-⋅ …………2分1(1)n n n x y +=+- …………2分(四)解答题(本大题共8分)问,λμ,取何值时,齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解 1111121D λμμμλμ==-, …………4分齐次线性方程组有非零解,则0D = …………2分 即 0μμλ-= 得 01μλ==或所以当01,μλ==或时该齐次线性方程组确有非零解. …………2分 (五)证明题(本大题共2小题,每小题7分,共14分)(1)222222111111p r r q q p p r r q q p p r r q qp +++++++++2221112r q p r q p r q p = (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++=++++++证明:(1) 222222111111p r r q q p p r r q q p pr r q qp +++++++++ 把第一列分成两项1111122222p q r r p p q r r p p q r r p ++++++2222211111p r r q q p r r q q pr r q q +++++++ …………2分把第一个行列式第三列分成两项把第二个行列式第二列分成两项11112222pq r rp q r r p q r r +++22221111p r r q p r r q pr r q++++…………2分 把第一个行列式第二列分成两项把第二个行列式第三列分成两项222111r q p r q p rq p=222111p r q p r q pr q + …………2分2221112r q p r q p rq p = …………1分 (2) 2222222222222222(21)(2)(3)(21)(2)(3)(21)(2)(3)(21)(2)(3)a a a a a b b b b b c c c c c d d d d d ++++++++=++++++++左边2212221332144214469214469214469214469a a a a c c cb b b b cc c c c c c dd d d c c c +++-+→++++++-+→+++-+→ …………2分222244694469244694469a a a ab b b b cc c cd dd d ++++++++把第二列分成二项222214469144691446914469a a ab b b cc cd d d +++++++++ …………2分2323242423232424449649494499c c c a a c c c b b cc c c c dd c c c -→-→-→-→第一项第二项2222146146146146a a a b b bc c cd d d+ …………2分0= …………1分。