甘肃省武威市铁路中学2014届高三数学(理)专题训练:选择填空限时练(六)Word版含答案

合集下载

甘肃省武威市第六中学2014届高三第四次月考数学(理)试题(含答案)

甘肃省武威市第六中学2014届高三第四次月考数学(理)试题(含答案)

甘肃武威市第六中学2014届高三第四次月考数学(理)试题(本试卷共3页,大题3个,小题22个。

答案要求写在答题卡上)一、选择题(本大题共12小题,每小题5分,满分60分.)1. 若复数a +3i1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .13 C.32 D.132.若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π33.已知集合{1,2,3,4,5},{(,)|,,}A B x y x A y A x y A ==∈∈-∈则B 中所含元素的个数为( ) A .3 B .6 C .8 D .104.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.125.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( )A .2n -1 B.n +1nC .n 2D .n6.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m )作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时F (x )作的功为( )A.3JB.233JC.433J D .23J7.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( )A .1∶2B .2∶3C .3∶4D .1∶38.函数f (x )=log 2x 2的图象的大致形状是( )9.已知a =21.2,b =⎝⎛⎭⎫12-0.2,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a10. P 是△ABC 所在平面上一点,若P A →·PB →=PB →·PC →=PC →·P A →,则P 是△ABC 的( )A .外心B .内心C .重心D .垂心11.已知函数f (x )=x e x -ax -1,则关于f (x )零点叙述正确的是( )A .当a =0时,函数f (x )有两个零点B .函数f (x )必有一个零点是正数C .当a <0时,函数f (x )有两个零点D .当a >0时,函数f (x )只有一个零点12.设f (x )是定义在R 上的函数,满足条件y =f (x +1)是偶函数,当x ≥1时,f (x )=⎝⎛⎭⎫12x-1,则f ⎝⎛⎭⎫23,f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫13的大小关系是( )A .f ⎝⎛⎭⎫23>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫13B .f ⎝⎛⎭⎫23>f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32C .f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23>f ⎝⎛⎭⎫13D .f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23 二、填空题(本大题共4小题,每小题5分,满分20分.)13.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.14.tan 15°+tan 30°+tan 15°·tan 30°的值是________.15.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________.16.在等差数列{a n }中,若a 1<0,S 9=S 12,则当n 等于________时,S n 取得最小值.武威六中第一轮高考复习阶段性过关测试卷(四)数 学(理)答题 卡一、选择题(本大题共12小题,每小题5分,满分60分.)二、填空题(本大题共4小题,每小题5分,满分20分.)13. . 14. . 15. . 16. . 三、解答题:(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状.18. 在数列}{n a 中,11=a ,并且对于任意n ∈N *,都有121+=+n nn a a a .(1)证明数列}1{na 为等差数列,并求}{n a 的通项公式; (2)求数列}{1+n n a a 的前n 项和n T19.已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m ·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.20.已知a 是实数,函数2()()f x x x a =-.(Ⅰ)若(1)3f '=,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[]2,0上的最大值.21.已知等差数列{a n }的公差大于0,且a 3,a 5是方程x 2-14x +45=0的两个根,数列{b n }的前n 项和为S n ,且S n =1-b n2(n ∈N *).(1)求数列{a n },{b n }的通项公式; (2)若c n =a n ·b n ,求数列{c n }的前n 项和T n .22. 设函数f(x)=21xe x ax ---.(Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x ≥0时f(x)≥0,求a 的取值范围.(2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, - - - - - - - - - - - - -9分 ∴cos A =0或sin A -sin B =0,- - - - - - - - - - - - -10分 当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形. - - - - - - - - - - - - -12分19. 【解】 (1)∵m ·n =1,即3sin x 4cos x 4+cos 2x4=1,即32sin x 2+12 cos x 2+12=1, ∴sin ⎝⎛⎭⎫x 2+π6=12.- - - - - - - - - - - - -- - 3分∴cos ⎝⎛⎭⎫2π3-x =cos ⎝⎛⎭⎫x -2π3=-cos ⎝⎛⎭⎫x +π3 - - - - - - - - - - - - -- - 4分 =-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫x 2+π6 =2·⎝⎛⎭⎫122-1=-12. - - - - - - - - - - - - -- - 6分20. 【答案】(Ⅰ)()232f x x ax '=-,由'(1)3f =易得a =0,从而可得曲线()y f x =在(1,(1))f 处的切线方程为320.x y --= - - - - - - - - - - - - -- - 5分(Ⅱ令'()0f x =,得1220,3ax x ==.当20,3a≤即0a ≤时,()f x 在[0,2]上单调递增, max ()(2)84f x f a ==-; 当22,3a≥即3a ≥时,()f x 在[0,2]上单调递减, max ()(0)0f x f ==; - - -9分 当202,3a <<即03a <<时,()f x 在2[0,]3a 上单调递减,在2[,2]3a上单调递增,函数f (x )(0≤ x ≤2)的最大值只可能在x =0或x =2处取到,因为f (0) =0,f (2)=8-4a ,令f (2) ≥ f (0),得a ≤ 2,所以max84,02;()0,2 3.a a f x a -<≤⎧=⎨<<⎩- - - - - - - - - - - - -- - 11分 综上,max84,2;()0, 2.a a f x a -≤⎧=⎨>⎩- - - - - - - - - - - - -- - 12分 21.【解】 (1)∵a 3,a 5是方程x 2-14x +45=0的两根,且数列{a n }的公差d >0,∴a 3=5,a 5=9,公差d =a 5-a 35-3=2.∴a n =a 5+(n -5)d =2n -1. - - - - - - - - - - - -- - 3分 又当n =1时,有b 1=S 1=1-b 12,∴b 1=13,当n ≥2时,有b n =S n -S n -1=12(b n -1-b n ),∴b n b n -1=13(n ≥2).∴数列{b n }是首项b 1=13,公比q =13的等比数列,∴b n =b 1q n -1=13n . - - - - - - - - - - - - -- - 6分(2)由(1)知c n =a n b n =2n -13n ,∴T n =131+332+533+…+2n -13n ,①13T n =132+333+534+…+2n -33n +2n -13n +1,② - - - - - - - - - - - - -- - 9分 ①-②得23T n =13+232+233+…+23n -2n -13n +1=13+2132+133+…+13n -2n -13n +1,整理得T n =1-n +13n . - - - - - - - - - - - - -- - 12分。

甘肃省武威市铁路中学高考数学专题训练 选择填空限时练(四)文(1)

甘肃省武威市铁路中学高考数学专题训练 选择填空限时练(四)文(1)

甘肃省武威市铁路中学高考数学专题训练 选择填空限时练(四)文(推荐时刻:45分钟)一、选择题1. 已知集合A ={y |x 2+y 2=1}和集合B ={y |y =x 2},那么A ∩B 等于( )A .(0,1)B .[0,1]C .(0,+∞)D .{(0,1),(1,0)}答案 B2. 复数(3+4i)i(其中i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 因为(3+4i)·i=-4+3i ,因此在复平面上对应的点位于第二象限,选B. 3.“α=2k π-π4(k ∈Z )”是“tan α=-1”的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件答案 A解析 由α=2k π-π4(k ∈Z )可得tan α=-1;而由tan α=-1得α=k π-π4(k ∈Z ),应选A.4. 一个几何体的三视图如下图,那么此几何体的体积是( )A .112B .80C .72D .64答案 B解析 依题意得,该几何体的下半部份是一个棱长为4的正方体,上半部份是一个底面是边长为4的正方形,高为3的四棱锥,故该几何体的体积为43+13×4×4×3=80.应选B. 5. 将参加夏令营的500名学生编号为:001,002,…,500,采纳系统抽样的方式抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽中的人数为( ) A .20,15,15 B .20,16,14 C .12,14,16D .21,15,14答案 B解析 依照系统抽样特点,被抽到号码l =10k +3,k ∈N .第353号被抽到,因此第二营区应有16人,因此三个营区被抽中的人数为20,16,14.6. 要取得函数y =sin ⎝⎛⎭⎪⎫2x -π3的图象,只需将函数y =sin 2x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π6个单位D .向右平移π6个单位答案 D解析 要取得函数y =sin ⎝ ⎛⎭⎪⎫2x -π3,只需将函数y =sin 2x 中的x 减去π6,即取得y =sin 2⎝ ⎛⎭⎪⎫x -π6=sin ⎝⎛⎭⎪⎫2x -π3.7. 设数列{a n }是等差数列,假设a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( )A .14B .21C .28D .35答案 C解析 由a 3+a 4+a 5=12得a 4=4, 因此a 1+a 2+a 3+…+a 7=7a 1+a 72=7a 4=28.8. 某程序的框图如下图,那么运行该程序后输出的B 值是( )A .5B .11C .23D .47答案 C解析 第一次循环:B =2×2+1=5,A =4; 第二次循环:B =2×5+1=11,A =5; 第三次循环:B =2×11+1=23,A =6; 第四次循环:输出B =23,选C.9. 已知概念在R 上的函数f (x ),其导函数f ′(x )的图象如下图,那么以下表达正确的选项是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d ) 答案 C解析 依照函数f (x )的特点图象可得:f (c )>f (b )>f (a ).10.假设实数x ,y 知足不等式组:⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,那么该约束条件所围成的平面区域的面积是( )A .3 B.52C .2D .22答案 C解析 可行域为直角三角形,其面积为S =12×22×2=2.11.如图,过抛物线y 2=2px (p >0)的核心F 的直线l 交抛物线于点A 、B ,交其准线于点C ,假设|BC |=2|BF |,且|AF |=3,那么此抛物线方程为( ) A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x答案 C解析 如图,∵|BC |=2|BF |, ∴由抛物线的概念可知∠BCD =30°, |AE |=|AF |=3,∴|AC |=6. 即F 为AC 的中点,∴p =|FF ′|=12|EA |=32,故抛物线方程为y 2=3x .12.已知函数y =f (x )是概念在R 上且以3为周期的奇函数,当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=ln(x 2-x +1),那么函数f (x )在区间[0,6]上的零点个数为( )A .3B .5C .7D .9答案 C解析 当x ∈⎝ ⎛⎭⎪⎫-32,0时,-x ∈⎝ ⎛⎭⎪⎫0,32,f (x )=-f (-x )=-ln(x 2+x +1);则f (x )在区间⎝ ⎛⎭⎪⎫-32,32上有3个零点(在区间⎣⎢⎡⎭⎪⎫0,32上有2个零点).依照函数周期性,可得f (x )在⎝ ⎛⎭⎪⎫32,92上也有3个零点,在⎝ ⎛⎦⎥⎤92,6上有2个零点.故函数f (x )在区间[0,6]上一共有7个零点. 二、填空题13.在区间[0,9]上随机取一实数x ,那么该实数x 知足不等式1≤log 2x ≤2的概率为________.答案 29解析 由1≤log 2x ≤2得:2≤x ≤4,故所求概率为29.14.向量a =(-1,1)在向量b =(3,4)方向上的投影为________.答案 15解析 设向量a =(-1,1)与b =(3,4)的夹角为θ,那么向量a 在向量b 方向上的投影为|a |·cos θ=a ·b|b |=-1,1·3,432+42=15. 15.抛物线y =2x 2的准线方程是________.答案 y =-18解析 由题意知:抛物线的开口方向向上,且2p =12,因此准线方程为y =-18.16.下面四个命题:①已知函数f (x )=sin x ,在区间[0,π]上任取一点x 0,那么使得f (x 0)>12的概率为23;②函数y =sin 2x 的图象向左平移π3个单位取得函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象;③命题“∀x ∈R ,x 2-x +1≥34”的否定是“∃x 0∈R ,x 20-x 0+1<34”; ④假设函数f (x )是概念在R 上的奇函数,那么f (x +4)=f (x ),那么f (2 012)=0. 其中所有正确命题的序号是________. 答案 ①③④解析 ②错误,应该向左平移π6;①使得f (x 0)>12的概率为p =56π-16ππ=23;④f (2 012)=f (0)=0.。

甘肃省武威市铁路中学高考数学专题训练 中档大题保分练(六)文

甘肃省武威市铁路中学高考数学专题训练 中档大题保分练(六)文

甘肃省武威市铁路中学高考数学专题训练 中档大题保分练(六)文(推荐时间:50分钟)1. 如图,在平面直角坐标系xOy 中,点A 在x 轴正半轴上,直线AB 的 倾斜角为3π4,|OB |=2,设∠AOB =θ,θ∈⎝⎛⎭⎫π2,3π4. (1)用θ表示点B 的坐标及|OA |;(2)若tan θ=-43,求OA →·OB →的值. 解 (1)由题意,可得点B 的坐标为(2cos θ,2sin θ).在△ABO 中,|OB |=2,∠BAO =π4,∠B =π-π4-θ=3π4-θ. 由正弦定理,得|OB |sin π4=|OA |sin B , 即|OA |=22sin ⎝⎛⎭⎫3π4-θ.(2)由(1),得OA →·OB →=|OA →|·|OB →|·cos θ=42sin ⎝⎛⎭⎫3π4-θcos θ.因为tan θ=-43,θ∈⎝⎛⎭⎫π2,3π4, 所以sin θ=45,cos θ=-35. 又sin ⎝⎛⎭⎫3π4-θ=sin 3π4cos θ-cos 3π4sin θ=22×⎝⎛⎭⎫-35-⎝⎛⎭⎫-22×45=210, 故OA →·OB →=42×210×⎝⎛⎭⎫-35=-1225. 2. 设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. 解 (1)若分成的三条线段的长度均为正整数,则三条线段的长度所有可能情况是1,1,4;1,2,3;2,2,2,共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x 、y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧ 0<x <60<y <60<6-x -y <6,即⎩⎪⎨⎪⎧ 0<x <60<y <60<x +y <6,所表示的平面区域为△OAB .若三条线段x ,y,6-x -y 能构成三角形,则还要满足⎩⎪⎨⎪⎧x +y >6-x -yx +6-x -y >y y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y>3y <3x <3,所表示的平面区域为△DEF ,由几何概型知,所求概率为P =S △DEF S △AOB =14.3. 如图,在三棱柱ABC -A 1B 1C 1中,棱AA 1与底面ABC 垂直,△ABC为等腰直角三角形,AB =AC =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.(1)求证:DE ∥平面ABC ;(2)求证:平面AB 1F ⊥平面AEF .证明 (1)取AB 中点G ,连接DG ,GC .因为D 是AB 1的中点,所以DG ∥BB 1,且DG =12BB 1,又因为BB 1∥CC 1,CE =12CC 1,所以DG ∥CE 且DG =CE ,所以四边形DGCE 为平行四边形,所以DE ∥GC .又DE ⊄平面ABC ,GC ⊂平面ABC ,所以DE ∥平面ABC .(2)因为△ABC 为等腰直角三角形,F 为BC 的中点, 所以BC ⊥AF ,由题意知B 1B ⊥平面ABC ,所以B 1B ⊥AF .又因为B 1B ∩BC =B ,所以AF ⊥平面B 1BF ,所以AF ⊥B 1F .设AB =AA 1=2,则B 1F =6,EF =3,B 1E =3, 所以B 1F 2+EF 2=B 1E 2,所以B 1F ⊥EF ,又AF ∩EF =F ,所以B 1F ⊥平面AEF .又因为B 1F ⊂平面AB 1F ,所以平面AB 1F ⊥平面AEF .4. 已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的正整数n 的最小值.解 (1)设等比数列{a n }的公比为q .由⎩⎪⎨⎪⎧ 2a 1+a 3=3a 2,a 2+a 4=2(a 3+2),得⎩⎪⎨⎪⎧a 1(2+q 2)=3a 1q , ①a 1(q +q 3)=2a 1q 2+4, ② 由①,得q 2-3q +2=0,解得q =1或q =2. 当q =1时,不合题意舍去;当q =2时,代入②,得a 1=2.则a n =2·2n -1=2n .(2)因为b n =a n +log 21a n =2n +log 212n =2n -n , 所以S n =b 1+b 2+b 3+…+b n=2-1+22-2+23-3+…+2n -n=(2+22+23+…+2n )-(1+2+3+…+n ) =2(1-2n )1-2-n(1+n )2=2n +1-2-12n -12n 2.因为S n -2n +1+47<0, 所以2n +1-2-12n -12n 2-2n +1+47<0,即n 2+n -90>0,解得n >9或n <-10. 又n ∈N *, 故使S n -2n +1+47<0成立的正整数n 的最小值为10.。

甘肃省武威市凉州区2014届高三数学下学期第一次诊断考试试题 理 新人教B版

甘肃省武威市凉州区2014届高三数学下学期第一次诊断考试试题 理 新人教B版

甘肃省武威市某某区2014届高三数学下学期第一次诊断考试试题理 新人教B 版一.选择题:〔本大题共12小题,每一小题5分,共60分。

每题只有一个正确答案,将正确答案的序号涂在答题卡上.〕1.假设非空集合A={x|2135a x a +≤≤-},B={x|3≤x ≤22},如此能使A ⊆B,成立的实数a 的集合是A.{a|6≤a ≤9} B .{a|1≤a ≤9} C .{a|a ≤9} D .∅2.设1z i =+(i 是虚数单位),如此22z z+= A .1i --B .1i +C .1i -D .1i -+3.等比数列}{n a 的前n 项和为n S ,6,2105==S S ,如此=++++2019181716a a a a a A .54B .48C .32D .164.:b a ,均为正数,241=+ba ,如此使cb a ≥+恒成立的c 的取值范围是 9.,2A ⎛⎤-∞ ⎥⎝⎦ B .(]1,0C .(]9,∞-D .(]8,∞-5.执行右面的程序框图,那么输出S 的值为A .9B .10C .45D .55 6.假设()0210=+⎰dx mx x,如此实数的值为A .31-B .32- C .1- D .2- 7.假设x ,y 满足10,220,40.x y x x y ⎧⎪⎨⎪⎩-+≥-y -≤+-≥如此x +2y 的最大值为A .132B .6C .11D .10 8.某几何体的三视图如下列图,如此它的侧面积为 A .24 B .242C . 125 D .1239、函数)sin()(ϕω+=x A x f 〔0,>ωA 〕的图象如右图所示,为了得到x A x g ωcos )(-=的图象,可以将)(x f 的图象 A.向右平移12π个单位长度 B.向右平移125π个单位长度C.向左平移12π个单位长度 D.向左平移125π个单位长度10.如下函数中,在(0,)2π上有零点的函数是A .()sin f x x x =-B .2()sin f x x x π=-C .2()sin f x x x =-D .22()sin f x x x π=-11 .假设抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,如此点P 的坐标为 A .12(,)44±B .12(,)84± C .12(,)44D .12(,)8412.双曲线)0,0(12222>>=-b a by ax 的右焦点为F,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,如此此双曲线离心率的取值范围是 A.(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)第2卷(90分)二、填空题:〔本大题共4小题,每一小题5分,共20分〕 13.在等差数列{}n a 中,n S 是其前n 项的和,且12a =,20092007220092007S S -=,如此数列1n S ⎧⎫⎨⎬⎩⎭的前n 项的和是__________。14.点O 为ABC ∆的外心,且2,4==AB AC ,如此=•BC AO ____________. 15.圆C 的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C 相交于A,B 两点,且|AB|=6,如此圆C 的方程为___________.16.直三棱柱ABC -A 1B 1C 1的六个顶点都在球O 的球面上.假设AB =BC =2,∠ABC =90°,AA 1=22,如此球O 的外表积为____________.三、解答题:〔本大题共6小题,总分为70分.解答应写出文字说明,证明过程或演算步骤.〕 17.(此题总分为12分)函数()R x x x x f ∈-+-=,cos 21)322cos()(2π. 〔1〕求函数()f x 的最小正周期与单调递增区间;〔2〕ABC ∆的内角A B C 、、的对边长分别为a b c 、、,假设3(),1,22B f b =-=3,c = 且,a b >试判断ABC ∆的形状,并说明理由. 18.〔本小题总分为12分〕为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进展百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[)14,13,第二组[)15,14……第五组[]18,17,如右图是按上述分组方法得到的频率分布直方图.(Ⅰ) 设,x y 表示样本中两个学生的百米测试成绩,[)[],13,1417,18x y ∈求事件“2x y ->〞的概率;〔Ⅱ〕 根据有关规定,成绩小于16秒为达标.如果男女生使用一样的达标标准,如此男女生达标情况如附表 :附表:根据附表数据,请通过计算说明能否有99%的把握认为“体育达标与性别有关〞?附:22()()()()()n ad bc K a b c d a c b d -=++++19.〔本小题共12分〕如图,BCD △是等边三角形, AB AD =,90BAD ∠=︒,将BCD △沿的位置,使得AD C B '⊥. ⑴求证:AD AC '⊥;⑵假设,N 分别是BD ,C B '的中点,求二面角N AM B --的余弦值.20.〔本小题总分为12分〕圆心为F 1的圆的方程为22(2)32x y ++=,F 2〔2,0〕,C 是圆F 1上的动点,F 2C 的垂直平分线交F 1C 于M . 〔1〕求动点M 的轨迹方程;〔2〕设N 〔0,2〕,过点P 〔-1,-2〕作直线l ,交M 的轨迹于不同于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.21. 〔本小题总分为12分〕函数()1ln f x a x x=+〔a 为参数〕 〔1〕假设1a =,求函数()f x 单调区间; 〔2〕当(]0,x e ∈时,求函数()f x 的最小值;请考生在第22—24三题中任选一题作答,如果多做,如此按所做的第一题记分性别是否达标男女合计达标 24a = b =___ _____ 不达标 c =___ 12d = _____合计____________50n =DCBA NMCA C ′22.〔本小题总分为10分〕如图,AB 是⊙O 的直径,弦BD 、CA 的延长线相交于点E,EF 垂直BA 的延长线于点F. 求证:(1)DFA DEA ∠=∠;(2)AB 2=BE •BD-AE •AC.23.直线l 的参数方程为〔t 为参数〕,曲线C 的极坐标方程是2sin 1sin θρθ=-,以极点为原点,极轴为x 轴正方向建立直角坐标系,点(1,0)M -,直线l 与曲线C 交于A 、B 两点. (1)写出直线l 的极坐标方程与曲线C 的普通方程;(2) 线段MA ,MB 长度分别记为|MA|,|MB|,求||||MA MB ⋅的值.24.〔本小题总分为10分〕设关于x 的不等式2log (|||4|)x x a +-> (1)当3a =时,解这个不等式;(2)假设不等式解集为R ,求a 的取值范围;某某区2014届高三年级第一次诊断考试数 学 试 卷〔理〕答案一、选择题 ABDAD BCCBD BC 二、填空题 13.1+n n 14.6 15.()18122=++y x 16. 16π………………6分∵0πC <<,∴π3C =或2π3。

甘肃省武威市铁路中学2014届高三数学(理)专题训练:选择填空限时练(六)Word版含答案

甘肃省武威市铁路中学2014届高三数学(理)专题训练:选择填空限时练(六)Word版含答案

(推荐时间:45分钟)一、选择题1.已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是() A.-1 B.0 C.1 D.2答案 D解析因为A∪B=R,所以m>1,故选D.2.已知z1-i=2+i,则复数z的共轭复数为() A.3+i B.3-iC.-3-i D.-3+i答案 A解析z=(1-i)(2+i)=3-i,复数z的共轭复数为3+i,故选A.3.采用系统抽样方法从480人中抽取16人做问卷调查,为此将他们随机编号为1,2,…,480,分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的16人中,编号落入区间[1,160]的人做问卷A,编号落入区间[161,320]的人做问卷B,其余的人做问卷C,则被抽到的人中,做问卷B的人数为() A.4 B.5 C.6 D.7答案 B解析本题考查系统抽样知识.采用系统抽样方法从480人中抽取16人做问卷调查,抽取的号码成等差数列8,38,68,…,458,编号落入区间[161,320]的人做问卷B人数5人.4.若数列{a n}满足1a n+1-1a n=d(n∈N*,d为常数),则称数列{an}为“调和数列”.已知正项数列{1b n}为“调和数列”,且b1+b2+…+b9=90,则b4·b6的最大值是() A.10 B.100 C.200 D.400答案 B解析∵{1b n}为“调和数列”,∴{b n}为等差数列,b1+b2+…+b9=90,b4+b6=20,b4·b6≤100.5.下图为一个算法的程序框图,则其输出的结果是()A .0B .2 012C .2 011D .1答案 D解析 本题考查程序框图.根据算法的程序框图可知,p 的值周期出现,周期为4,所以p =1.6. 已知双曲线C 的中心在原点,焦点在坐标轴上,P (1,-2)是C 上的点,且y =2x 是C的一条渐近线,则C 的方程为 ( )A.y 22-x 2=1 B .2x 2-y 22=1C.y 22-x 2=1或2x 2-y 22=1 D.y 22-x 2=1或x 2-y 22=1 答案 A解析 画出图形分析知,双曲线焦点在y 轴上, 设方程为y 2a 2-x 2b 2=1(a >0,b >0).∴ab=2,① 4a 2-1b 2=1;②解得a 2=2,b 2=1.选A.7. 函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是( )答案 C解析 因为函数f (x ),g (x )都为偶函数, 所以f (x )·g (x )也为偶函数,所以图象关于y 轴对称,排除A ,D ; f (x )·g (x )=(-x 2+2)log 2|x |,当0<x <1时,f (x )·g (x )<0,排除B ,故选C.8. (2012·浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种答案 D解析 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C 45=5(种); 二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C 25·C 24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种, 所以满足条件的取法共有5+60+1=66(种).9. (2012·天津)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞) 答案 D解析 圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n +1=mn ≤14(m +n )2,所以m +n ≥2+22或m +n ≤2-2 2.10.设不等式组⎩⎪⎨⎪⎧π4≤x ≤5π4|y |≤1所表示的平面区域为D ,现向区域D 内随机投掷一点,且该点又落在曲线y =sin x 与y =cos x 围成的区域内的概率是 ( )A.2B.2C .2 2D .1-2 答案 B解析 不等式组⎩⎪⎨⎪⎧π4≤x ≤5π4|y |≤1,所表示的平面区域D 的面积为2π,区域D 内曲线y =sin x 与y =cos x 围成的区域的面积为 S =ʃ5π4π4(sin x -cos x )d x =22,概率P =2π. 11.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,0≤y ≤12,若目标函数z =ax +y (其中a 为常数)仅在点⎝⎛⎭⎫12,12处取得最大值,则实数a 的取值范围是 ( )A .(-2,2)B .(0,1)C .(-1,1)D .(-1,0)答案 C解析 由x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,0≤y ≤12,画出此不等式组表示的平面区域如图中阴影部分所示.由目标函数z =ax +y ,得y =-ax +z , 因为z 仅在点⎝⎛⎭⎫12,12处取得最大值,所以得-1<-a <1,得实数a 的取值范围是(-1,1).12.已知函数f (x )=⎩⎪⎨⎪⎧|sin x |,x ∈[-π,π],lg x ,x >π,x 1,x 2,x 3,x 4,x 5是方程f (x )=m 的五个不等的实数根,则x 1+x 2+x 3+x 4+x 5的取值范围是 ( )A .(0,π)B .(-π,π)C .(lg π, 1)D .(π,10)答案 D解析 函数f (x )的图象如图所示,结合图象可得x 1+x 2=-π,x 3+x 4=π, 若f (x )=m 有5个不等的实数根, 需lg π<lg x 5<1,得π<x 5<10, 又由函数f (x )在[-π,π]上对称, 所以x 1+x 2+x 3+x 4=0,故x 1+x 2+x 3+x 4+x 5的取值范围为(π,10). 二、填空题13.已知0<α<π,sin 2α=sin α,则tan ⎝⎛⎭⎫α+π4=________. 答案 -2- 3解析 由sin 2α=sin α,可得2sin αcos α=sin α, 又0<α<π,所以cos α=12.故sin α=32,tan α= 3. 所以tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=3+11-3=-2- 3. 14.已知函数f (x )=-3x 2+ax +b ,若a ,b 都是区间[0,4]内任取的一个数,那么f (1)>0的概率是________. 答案2332解析 由f (1)>0得-3+a +b >0,即a +b >3. 在0≤a ≤4,0≤b ≤4的约束条件下, 作出a +b >3满足的可行域,如图, 则根据几何概型概率公式可得, f (1)>0的概率P =42-12×3242=2332. 15.一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的表面积为________.答案 16π解析 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为34×(4π×22)+2×π×222=16π.16.某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成六段[40,50),[50,60),…,[90,100]后,画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________;平均分为________.答案 75% 71解析 及格的各组的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%;样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.。

甘肃省武威市铁路中学高考数学专题训练 选择填空限时练(五)理(1)

甘肃省武威市铁路中学高考数学专题训练 选择填空限时练(五)理(1)

甘肃省武威市铁路中学高考数学专题训练 选择填空限时练(五)理、(推荐时刻:45分钟)一、选择题1. 假设集合A ={x |0≤x +3≤8},B ={x |x 2-3x -4>0},那么A ∩B 等于( )A .{x |-3≤x <-1或4<x ≤5}B .{x |-3≤x <4}C .{x |-1<x ≤5}D .{x |-1<x <4} 答案 A解析 A ={x |-3≤x ≤5},B ={x |x <-1或x >4},由数轴可知A ∩B ={x |-3≤x <-1或4<x ≤5}. 2. 复数z =4-3i1-2i的虚部是( )A .2B .-2C .1D .-1答案 C解析 z =4-3i1-2i=4-3i 1+2i1-2i1+2i =4+8i -3i +65=2+i.3. 甲、乙两组数据的茎叶图如下图,那么甲、乙两组数据的中位数依次是( )A .83,83B .85,84C .84,84D .84,83.5 答案 D解析 甲组数据的中位数是84,乙组数据的中位数是83.5. 4. 函数y =2|log 2x |的图象大致是( )答案 C解析 当log 2x ≥0,即x ≥1时,f (x )=2log 2x =x ; 当log 2x <0,即0<x <1时,f (x )=2-log 2x =1x.因此函数图象在0<x <1时为反比例函数y =1x的图象,在x ≥1时为一次函数y =x 的图象. 5. 已知a >b >1,c <0,给出以下四个结论:①c a >cb;②a c <b c ;③log b (a -c )>log a (b -c );④b a -c >a b -c .其中所有正确结论的序号是 ( )A .①②③B .①②④C .①③④D .②③④答案 A解析 a >b >1⇒1a <1b,又c <0,故c a >cb,故①正确;由c <0知,y =x c 在(0,+∞)上是减函数,故a c <b c .故②正确. 由已知得a -c >b -c >1. 故log b (a -c )>log b (b -c ).由a >b >1得0<log a (b -c )<log b (b -c ), 故log b (a -c )>log a (b -c ).故③正确.6. 已知双曲线x 225-y 29=1的左支上一点M 到右核心F 2的距离为18,N 是线段MF 2的中点,O 是坐标原点,那么|ON |等于( )A .4B .2C .1D.23答案 A解析 设双曲线左核心为F 1,由双曲线的概念知, |MF 2|-|MF 1|=2a ,即18-|MF 1|=10, 因此|MF 1|=8.又ON 为△MF 1F 2的中位线, 因此|ON |=12|MF 1|=4,因此选A.7. 如下图的程序框图,输出的S 的值为( )A.12B .2C .-1D .-12答案 A解析 k =1时,S =2, k =2时,S =12,k =3时,S =-1, k =4,S =2,……因此S 是以3为周期的循环. 故当k =2 012时,S =12.8. 假设由不等式组⎩⎪⎨⎪⎧x ≤my +n x -3y ≥0n >0y ≥0确信的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,那么实数m 的值为( )A.3B .-33C.52 D .-73答案 B解析 依照题意,三角形的外接圆的圆心在x 轴上, 那么直线x =my +n 与直线x -3y =0垂直,∴1m×13=-1, 即m =-33.9. 假设(4x +1x)n 的展开式中各项系数之和为125,那么展开式的常数项为( )A .-27B .-48C .27D .48答案 D解析 令x =1,可得(4x +1x)n 的展开式中各项系数之和为5n =125,因此n =3,那么二项展开式的通项为T r +1=C r 3·(4x )3-r ·x -r =C r 343-r x 3-3r2, 令3-3r 2=0,得r =1,故二项展开式的常数项为C 13×42=48.10.某研究性学习小组有4名同窗要在同一天的上、下午到实验室做A 、B 、C 、D 、E 五个实验,每位同窗上、下午各做一个实验,且不重复.假设上午不能做D 实验,下午不能做E 实验,其余实验都各做一个,那么不同的安排方式共有 ( )A .144种B .192种C .216种D .264种答案 D解析 依题意,上午要做的实验是A 、B 、C 、E ,下午要做的实验是A 、B 、C 、D ,且上午做了A 、B 、C 实验的同窗下午再也不做相同的实验.先安排上午,从4位同窗中任选一人做E 实验,其余三人别离做A 、B 、C 实验,有C 14·A 33=24种安排方式.再安排下午,分两类:①上午选E 实验的同窗下午选D 实验,另三位同窗对A 、B 、C 实验错位排列,有2种方式;②上午选E 实验的同窗下午选A 、B 、C 三个实验之一,另外三位从剩下的两个实验和D 实验当选,但必需与上午的实验项目错开,有C 13×3=9种方式.于是,不同的安排方式共有24×(2+9)=264种.应选D.11.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部份图象如下图,则ω的值为( )A .2B .3C .4D .5答案 B解析 由图可知函数的最大值为2, 故A =2,由f (0)=2可得sin φ=22, 而|φ|<π2,故φ=π4;再由f ⎝ ⎛⎭⎪⎫π12=2可得sin ⎝⎛⎭⎪⎫ωπ12+π4=1, 故ωπ12+π4=π2+2k π(k ∈Z ), 即ω=24k +3(k ∈Z ). 又T 4>π12,即T >π3, 故0<ω<6,故ω=3.12.已知函数f (x )的概念域为[-1,5],部份对应值如下表:x -1 0 4 5 f (x )1221f (x )的导函数y =f ′(x )的图象如下图.以下关于函数f (x )的命题: ①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③若是当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的个数是( )A .4B .3C .2D .1答案 D解析 ①显然错误;③容易造成错觉,t max =5; ④错误,f (2)的不确信阻碍了正确性;②正确, 可有f ′(x )<0取得. 二、填空题13.假设圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,那么该圆的标准方程是________.答案 (x -2)2+(y -1)2=1解析 设圆心坐标为(a ,b ),那么|b |=1且|4a -3b |5=1.又b >0,故b =1,由|4a -3|=5得a =-12(圆心在第一象限,舍去)或a =2,故所求圆的标准方程是(x -2)2+(y -1)2=1. 14.不等式|x +1|-|x -3|≥0的解集是________.答案 {x |x ≥1}解析 由|x +1|-|x -3|≥0得|x +1|≥|x -3|, 两边平方得x 2+2x +1≥x 2-6x +9,即8x ≥8. 解得x ≥1,因此原不等式的解集为{x |x ≥1}. 15.在边长为2的正方形ABCD 内部任取一点M .(1)知足∠AMB >90°的概率为________; (2)知足∠AMB >135°的概率为________. 答案 (1)π8 (2)π-28解析 (1)以AB 为直径作圆,当M 在圆与正方形重合形成的半圆内时,∠AMB >90°,因此概率为P =π24=π8.(2)在边AB 的垂直平分线上,正方形ABCD 外部取点O ,使OA =2,以O 为圆心,OA 为半径作圆,当点M 位于正方形与圆重合形成的弓形内时,∠AMB >135°,故所求概率P =π4×22-12×2×14=π-28.16.在△ABC 中,角A ,B ,C 所对的边别离为a ,b ,c ,已知a =23,c = 22,1+tan A tan B =2cb,那么C =________. 答案 45°解析 由1+tan A tan B =2cb 和正弦定理得,cos A =12,∴A =60°.由正弦定理得,23sin A =22sin C ,∴sin C =22.又c <a ,∴C <60°,∴C =45°.。

甘肃省武威市第六中学2014届高三上学期第五次月考数学(理)试题(含答案)

甘肃省武威市第六中学2014届高三上学期第五次月考数学(理)试题(含答案)

甘肃省武威市第六中学2014届高三上学期第五次月考数学理一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i ii z (1)1(2+-=为虚数单位)的虚部为( )A .1 B. -1 C. 1± D. 02.已知全集U=R ,设函数y=lg(x-1)的定义域为集合A ,函数y=22+x 的值域为集合B ,则A∩(C U B)= ( )A .[1,2]B .[1, 2)C .(1,2]D .(1,2)3. 设βα、为两个不同的平面,m 、n 为两条不同的直线,且,m n αβ⊂⊂,有两个命题:p :若//m n ,则//αβ;q :若m β⊥,则αβ⊥;那么( )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ” 是假命题D .“非p 且q ”是真命题4.在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于( ) A. 1 B.2 C .3 D .05.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,若点A 在直线10mx ny ++= 上,其中0mn >,则12m n+的最小值为( ) A .8 B .4 C .1 D .146.5OA 1,OB 3,AOB 6π==∠=,点C 在∠AOB 外且OB OC 0.∙=设实数,m n 满足OC mOA nOB =+,则mn等于( )A .2BC .-2D .7.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.23π B.8π3 C.4 3 D.16π38.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y = tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( )A.16B. 12C.13D. 14D.1ln 2+10.能够把圆:的周长和面积同时分为相等的两部分的函数称为圆O 的 “和谐函数”,下列函数不是..圆O 的“和谐函数”的是( ) A .()x x f x e e -=+ B . 5()15x f x nx -=+ C .()tan 2xf x = D .3()4f x x x =+ 11.设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+014y 2x 0,8y x 0,192y x 所表示的平面区域为M ,使函数y=a x (a>0, a≠1)的图象过区域M 的a 的取值范围是( ) A .[1, 3]B .[2, 10]C .[2, 9]D .[10, 9]12.给出下列四个结论:①“22ab>”是 “22log log a b >”的充要条件;②命题“若m >0,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则0≤m ”; ③函数(4)ln(2)()3x x f x x --=-只有1个零点。

甘肃省武威市铁路中学高考数学专题训练 中档大题保分练(六)理(1)

甘肃省武威市铁路中学高考数学专题训练 中档大题保分练(六)理(1)

甘肃省武威市铁路中学高考数学专题训练 中档大题保分练(六)理(推荐时刻:50分钟)1. 如图,在平面直角坐标系xOy 中,点A 在x 轴正半轴上,直线AB 的倾斜角为3π4,|OB |=2,设∠AOB =θ,θ∈⎝ ⎛⎭⎪⎫π2,3π4.(1)用θ表示点B 的坐标及|OA |; (2)假设tan θ=-43,求OA →·OB →的值.解 (1)由题意,可得点B 的坐标为(2cos θ,2sin θ). 在△ABO 中,|OB |=2,∠BAO =π4,∠B =π-π4-θ=3π4-θ.由正弦定理,得|OB |sinπ4=|OA |sin B ,即|OA |=22sin ⎝ ⎛⎭⎪⎫3π4-θ.(2)由(1),得OA →·OB →=|OA →|·|OB →|·cos θ=42sin ⎝ ⎛⎭⎪⎫3π4-θcos θ.因为tan θ=-43,θ∈⎝ ⎛⎭⎪⎫π2,3π4,因此sin θ=45,cos θ=-35.又sin ⎝ ⎛⎭⎪⎫3π4-θ=sin 3π4cos θ-cos 3π4sin θ=22×⎝ ⎛⎭⎪⎫-35-⎝ ⎛⎭⎪⎪⎫-22×45=210, 故OA →·OB →=42×210×⎝ ⎛⎭⎪⎫-35=-1225.2. 如图,已知斜三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面ABB 1A 1是菱形,且∠A 1AB =60°,M 是A 1B 1的中点,MB ⊥AC . (1)求证:MB ⊥平面ABC ;(2)求二面角A 1-BB 1-C 的余弦值.(1)证明 ∵侧面ABB 1A 1是菱形,且∠A 1AB =60°, ∴△A 1BB 1为正三角形,又∵点M 为A 1B 1的中点,∴BM ⊥A 1B 1, ∵AB ∥A 1B 1,∴BM ⊥AB ,由已知MB ⊥AC , 又AC ∩AB =A ,∴MB ⊥平面ABC . (2)解 如图成立空间直角坐标系, 设菱形ABB 1A 1边长为2, 得B 1(0,-1,3),A (0,2,0),C (3,1,0),A 1(0,1,3).则BA 1→=(0,1,3),BA →=(0,2,0),BB 1→=(0,-1,3),BC →=(3,1,0).设面ABB 1A 1的法向量n 1=(x 1,y 1,z 1), 由n 1⊥BA →,n 1⊥BA →1得,⎩⎪⎨⎪⎧2y 1=0,y 1+3z 1=0,令x 1=1,得n 1=(1,0,0).设面BB 1C 1C 的法向量n 2=(x 2,y 2,z 2),由n 2⊥BB 1→,n 2⊥BC →得⎩⎪⎨⎪⎧-y 2+3z 2=0,3x 2+y 2=0.令y 2=3,得n 2=(-1,3,1), 得cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-11·5=-55.又二面角A 1-BB 1-C 为锐角, 因此所求二面角的余弦值为55.3. 某班体育课进行篮球投篮竞赛,竞赛规那么如下:每位同窗有4次投篮机遇,其中一次在三分线外投篮,投中得3分,不中不得分,其余3次在罚球线外投篮,每投中一次得1分,不中不得分,已知某位同窗在三分线外投篮命中的概率为12,且在竞赛中得6分的概率为427.(1)求该同窗在罚球线外投篮命中的概率;(2)求该同窗参加竞赛所得分数X 的散布列及数学期望.解 (1)设该同窗在罚球线外投篮命中的概率为p ,在竞赛中得6分需4次投篮全中,那么12·p 3=427, 解得p =23.(2)X 的可能取值有0,1,2,3,4,5,6, 则P (X =0)=12·⎝ ⎛⎭⎪⎫133=154; P (X =1)=12·C 13·23·⎝ ⎛⎭⎪⎫132=19; P (X =2)=12·C 23·⎝ ⎛⎭⎪⎫232·13=29; P (X =3)=12·⎝ ⎛⎭⎪⎫133+12·⎝ ⎛⎭⎪⎫233=16; P (X =4)=12·C 13·23·⎝ ⎛⎭⎪⎫132=19; P (X =5)=12·C 23·⎝ ⎛⎭⎪⎫232·13=29; P (X =6)=12×⎝ ⎛⎭⎪⎫233=427. 因此所求散布列为X 0 1 2 3 4 5 6 P154 1929161929427 数学期望E (X )=0×154+1×19+2×29+3×16+4×19+5×29+6×427=72.4. 已知等比数列{a n }知足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)假设b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的正整数n 的最小值.解 (1)设等比数列{a n }的公比为q .由⎩⎪⎨⎪⎧ 2a 1+a 3=3a 2,a 2+a 4=2a 3+2,得⎩⎪⎨⎪⎧a 12+q 2=3a 1q , ①a 1q +q 3=2a 1q 2+4, ②由①,得q 2-3q +2=0,解得q =1或q =2. 当q =1时,不合题意舍去;当q =2时,代入②,得a 1=2.那么a n =2·2n -1=2n . (2)因为b n =a n +log 21a n=2n +log212n=2n -n ,因此S n =b 1+b 2+b 3+…+b n =2-1+22-2+23-3+…+2n -n =(2+22+23+…+2n )-(1+2+3+…+n ) =21-2n1-2-n 1+n2=2n +1-2-12n -12n 2. 因为S n -2n +1+47<0, 因此2n +1-2-12n -12n 2-2n +1+47<0, 即n 2+n -90>0,解得n >9或n <-10. 又n ∈N *,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(推荐时间:45分钟)
一、选择题
1.已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是() A.-1 B.0 C.1 D.2
答案 D
解析因为A∪B=R,所以m>1,故选D.
2.已知z
1-i
=2+i,则复数z的共轭复数为() A.3+i B.3-i
C.-3-i D.-3+i
答案 A
解析z=(1-i)(2+i)=3-i,复数z的共轭复数为3+i,故选A.
3.采用系统抽样方法从480人中抽取16人做问卷调查,为此将他们随机编号为1,2,…,480,分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的16人中,编号落入区间[1,160]的人做问卷A,编号落入区间[161,320]的人做问卷B,其余的人做问卷C,则被抽到的人中,做问卷B的人数为() A.4 B.5 C.6 D.7
答案 B
解析本题考查系统抽样知识.采用系统抽样方法从480人中抽取16人做问卷调查,抽取的号码成等差数列8,38,68,…,458,编号落入区间[161,320]的人做问卷B人数5人.
4.若数列{a n}满足1
a n+1-
1
a n=d(n∈N
*,d为常数),则称数列{a
n
}为“调和数列”.已知正
项数列{1
b n}为“调和数列”,且b1+b2+…+b9=90,则b4·b6的最大值是() A.10 B.100 C.200 D.400
答案 B
解析∵{1
b n}为“调和数列”,
∴{b n}为等差数列,b1+b2+…+b9=90,
b4+b6=20,b4·b6≤100.
5.下图为一个算法的程序框图,则其输出的结果是()
A .0
B .2 012
C .2 011
D .1
答案 D
解析 本题考查程序框图.根据算法的程序框图可知,p 的值周期出现,周期为4,所以p =1.
6. 已知双曲线C 的中心在原点,焦点在坐标轴上,P (1,-2)是C 上的点,且y =2x 是C
的一条渐近线,则C 的方程为 ( )
A.y 22-x 2
=1 B .2x 2
-y 2
2
=1
C.y 22-x 2=1或2x 2-y 2
2=1 D.y 22-x 2=1或x 2-y 22
=1 答案 A
解析 画出图形分析知,双曲线焦点在y 轴上, 设方程为y 2a 2-x 2
b 2=1(a >0,b >0).
∴a
b
=2,
① 4a 2-1
b 2
=1;

解得a 2=2,b 2=1.选A.
7. 函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是
( )
答案 C
解析 因为函数f (x ),g (x )都为偶函数, 所以f (x )·g (x )也为偶函数,
所以图象关于y 轴对称,排除A ,D ; f (x )·g (x )=(-x 2+2)log 2|x |,
当0<x <1时,f (x )·g (x )<0,排除B ,故选C.
8. (2012·浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同
的取法共有
( )
A .60种
B .63种
C .65种
D .66种
答案 D
解析 满足题设的取法可分为三类:
一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C 45=5(种); 二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C 25·C 24=60(种);
三是四个偶数相加,其和为偶数,4个偶数的取法有1种, 所以满足条件的取法共有5+60+1=66(种).
9. (2012·天津)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,
则m +n 的取值范围是
( )
A .[1-3,1+3]
B .(-∞,1-3]∪[1+3,+∞)
C .[2-22,2+22]
D .(-∞,2-22]∪[2+22,+∞) 答案 D
解析 圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2
=1,
所以m +n +1=mn ≤1
4(m +n )2,
所以m +n ≥2+22或m +n ≤2-2 2.
10.设不等式组⎩⎪⎨⎪⎧
π4≤x ≤5π4
|y |≤1
所表示的平面区域为D ,现向区域D 内随机投掷一点,且该点
又落在曲线y =sin x 与y =cos x 围成的区域内的概率是 ( )
A.2
B.2
C .2 2
D .1-
2 答案 B
解析 不等式组⎩⎪⎨⎪⎧
π4≤x ≤5π4
|y |≤1,
所表示的平面区域D 的面积为2π,
区域D 内曲线y =sin x 与y =cos x 围成的区域的面积为 S =ʃ
5π4π4(sin x -cos x )d x =22,概率P =2
π
. 11.已知x ,y 满足约束条件⎩⎪⎨
⎪⎧
x -y ≥0,
x +y ≤1,
0≤y ≤12
,若目标函数z =ax +y (其中a 为常数)仅在点⎝⎛⎭

12,12处取得最大值,则实数a 的取值范围是 ( )
A .(-2,2)
B .(0,1)
C .(-1,1)
D .(-1,0)
答案 C
解析 由x ,y 满足约束条件⎩⎪⎨
⎪⎧
x -y ≥0,
x +y ≤1,
0≤y ≤12

画出此不等式组表示的平面区域如图中阴影部分所示.
由目标函数z =ax +y ,得y =-ax +z , 因为z 仅在点⎝⎛⎭⎫
12,12处取得最大值,
所以得-1<-a <1,得实数a 的取值范围是(-1,1).
12.已知函数f (x )=⎩
⎪⎨⎪⎧
|sin x |,x ∈[-π,π],lg x ,x >π,x 1,x 2,x 3,x 4,x 5是方程f (x )=m 的五个不等的
实数根,则x 1+x 2+x 3+x 4+x 5的取值范围是 ( )
A .(0,π)
B .(-π,π)
C .(lg π, 1)
D .(π,10)
答案 D
解析 函数f (x )的图象如图所示,
结合图象可得x 1+x 2=-π,x 3+x 4=π, 若f (x )=m 有5个不等的实数根, 需lg π<lg x 5<1,得π<x 5<10, 又由函数f (x )在[-π,π]上对称, 所以x 1+x 2+x 3+x 4=0,
故x 1+x 2+x 3+x 4+x 5的取值范围为(π,10). 二、填空题
13.已知0<α<π,sin 2α=sin α,则tan ⎝⎛⎭
⎫α+π
4=________. 答案 -2- 3
解析 由sin 2α=sin α,可得2sin αcos α=sin α, 又0<α<π,所以cos α=1
2.
故sin α=
3
2
,tan α= 3. 所以tan ⎝⎛⎭⎫α+π4=tan α+tan
π41-tan αtan
π4
=3+1
1-3
=-2- 3. 14.已知函数f (x )=-3x 2+ax +b ,若a ,b 都是区间[0,4]内任取的一个数,那么f (1)>0的概
率是________. 答案
2332
解析 由f (1)>0得-3+a +b >0,即a +b >3. 在0≤a ≤4,0≤b ≤4的约束条件下, 作出a +b >3满足的可行域,如图, 则根据几何概型概率公式可得, f (1)>0的概率P =42-12×32
42
=23
32
. 15.一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的表
面积为________.
答案 16π
解析 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为
3
4×(4π×22
)+2×π×22
2
=16π.
16.某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成
六段[40,50),[50,60),…,[90,100]后,画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________;平均分为________.
答案 75% 71
解析 及格的各组的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%;样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.。

相关文档
最新文档