工程电磁场第一章解读
(完整版)工程电磁场基本知识点

第一章矢量剖析与场论1 源点是指。
2 场点是指。
3 距离矢量是,表示其方向的单位矢量用表示。
4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。
5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。
6 方导游数与梯度的关系为。
7 梯度在直角坐标系中的表示为u 。
8 矢量 A 在曲面 S 上的通量表示为。
9 散度的物理含义是。
10 散度在直角坐标系中的表示为 A 。
11 高斯散度定理。
12 矢量 A 沿一闭合路径l的环量表示为。
13 旋度的物理含义是。
14 旋度在直角坐标系中的表示为 A 。
15 矢量场 A 在一点沿e l方向的环量面密度与该点处的旋度之间的关系为。
16 斯托克斯定理。
17 柱坐标系中沿三坐标方向 e r , e , e z的线元分别为,,。
18 柱坐标系中沿三坐标方向 e r , e , e 的线元分别为,,。
19 1 ' 1 12 e R12 e 'RR R R R20 1 'g 1 0 ( R 0)g '4 ( R) ( R 0)R R第二章静电场1 点电荷 q 在空间产生的电场强度计算公式为。
2 点电荷 q 在空间产生的电位计算公式为。
3 已知空间电位散布,则空间电场强度 E= 。
4 已知空间电场强度散布 E,电位参照点取在无量远处,则空间一点P 处的电位P = 。
5 一球面半径为 R,球心在座标原点处,电量Q 平均散布在球面上,则点R,R,R处的电位等于。
2 2 26 处于静电均衡状态的导体,导体表面电场强度的方向沿。
7 处于静电均衡状态的导体,导体内部电场强度等于。
8 处于静电均衡状态的导体,其内部电位和外面电位关系为。
9 处于静电均衡状态的导体,其内部电荷体密度为。
10 处于静电均衡状态的导体,电荷散布在导体的。
11 无穷长直导线,电荷线密度为,则空间电场 E= 。
12 无穷大导电平面,电荷面密度为,则空间电场 E= 。
工程电磁场原理倪光正第一章

工程电磁场数值分析方法简
05
介
有限差分法
差分原理
将电磁场连续域问题离散 化,用差分方程近似代替 微分方程。
求解方法
采用迭代法或直接法求解 差分方程,得到电磁场数 值解。
差分格式
构造差分格式,将微分方 程转化为差分方程。
有限元法
有限元原理
将连续域划分为有限个单元,每个单元内用 插值函数表示未知量。
有限元方程
根据变分原理或加权余量法建立有限元方程。
求解方法
采用迭代法或直接法求解有限元方程,得到 电磁场数值解。
边界元法
边界元原理
将微分方程边值问题转化为边界积分方程问题。
边界元方程
根据格林公式和边界条件建立边界元方程。
求解方法
采用迭代法或直接法求解边界元方程,得到电磁场数值解。
各种数值分析方法的比较与选用
工程电磁场原理倪光 正第一章
目录
• 绪论 • 静电场的基本概念和性质 • 恒定电场的基本概念和性质 • 时变电磁场的基本概念和性质 • 工程电磁场数值分析方法简介
01
绪论
电磁场理论的重要性
01 电磁场是物质存在的基本形式之一
电磁场与物质相互作用,是物质存在的基本形式 之一,对于理解物质的本质和相互作用机制具有 重要意义。
研究任务
工程电磁场的研究任务包括揭示电磁场的本质和 规律,探索新的电磁现象和应用,以及解决工程 实际中的电磁问题。
电磁场理论的发展历史
01
静电学和静磁学阶段
早期人们主要研究静电和静磁现象,建立了库仑定律和安培定律等基本
定律。
02 03
电磁感应和电磁波阶段
19世纪初,法拉第发现了电磁感应现象,揭示了电与磁之间的联系。随 后,麦克斯韦建立了完整的电磁波理论,预言了电磁波的存在,并阐明 了光是一种电磁波。
工程电磁场第1章 静电场new

F qt
q
4π 0 R 2
eR
V/m
一般表达式为
Ep (r)
4π 0
q r
r
'2
r r
r r
' '
q
4π0 r r ' 3 (r r ') 5/169
点电荷的物理模型和数学模型
点电荷是电荷体分布的极限 情况,可以把它看成是一个体积 很小,电荷密度很大,总电量不 变的带电小球体。
体电荷分布 面电荷分布 线电荷分布
dq dV
1 dV
E
4π 0
V
R2 eR
dq dS
1 dS
E
4π 0
S
R2 eR
dq dl
E 1
4π 0
l
dl
R2
e
R
例1.1.1 真空中有一长为L的均匀带电直导线,电
荷线密度为 ,试求P 点的电场。
2
)3 2
dz
E
L2 L1
4π
o
(
z2
2
)3 2
dz
1
1
(
)
4πo L22 2 L12 2
( L2 L1 ) 4πo L22 2 L12 2
例题讨论
当L L1 L2
E(,, z)
时,
0
E e Ezez
单位点电荷的密度分布
当 a→0时,电荷密度趋近于无穷大,通常用冲击函数d表 示点电荷的密度分布。
工程电磁场知识点总结

工程电磁场知识点总结第一章矢量分析与场论1 源点是指。
2 场点是指。
3 距离矢量是,表示其方向的单位矢量用表示。
4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。
5 梯度是研究标量场的工具,梯度的模表示梯度的方向表示。
6 方向导数与梯度的关系为7 梯度在直角坐标系中的表示为?u?。
8 矢量A在曲面S上的通量表示为?? 9 散度的物理含义是 10 散度在直角坐标系中的表示为??A?。
11 高斯散度定理。
12 矢量A沿一闭合路径l的环量表示为。
13 旋度的物理含义是 14 旋度在直角坐标系中的表示为??A?。
15 矢量场A在一点沿el方向的环量面密度与该点处的旋度之间的关系为。
16 斯托克斯定理17 柱坐标系中沿三坐标方向er,e?,ez的线元分别为,18 柱坐标系中沿三坐标方向er,e?,e?的线元分别为,19 ?1111???'??2eR?2e'R RRRR???20 ??????'??'???????4??(R)?R??R??11?0(R?0)( R?0)第二章静电场1 点电荷q在空间产生的电场强度计算公式为。
2 点电荷q 在空间产生的电位计算公式为。
3 已知空间电位分布?,则空间电场强度E。
4 已知空间电场强度分布E,电位参考点取在无穷远处,则空间一点P处的电位?P。
5 一球面半径为R,球心在坐标原点处,电量Q均匀分布在球面上,?则点?,,??处的电位等于。
222??RRR6 处于静电平衡状态的导体,导体表面电场强度的方向沿7 处于静电平衡状态的导体,导体内部电场强度等于 8处于静电平衡状态的导体,其内部电位和外部电位关系为 9 处于静电平衡状态的导体,其内部电荷体密度为 10处于静电平衡状态的导体,电荷分布在导体的。
11 无限长直导线,电荷线密度为?,则空间电场E。
12 无限大导电平面,电荷面密度为?,则空间电场E。
13 静电场中电场强度线与等位面14 两等量异号电荷q,相距一小距离d,形成一电偶极子,电偶极子的电偶极矩p= 。
工程电磁场-基本概念

1
1 2 0
C1
100 ,
得 C1
100
1 2 0
代入 C1 和 C2
x2
1
100 x
(V)
20
20
d
x
1
E
dx
ex
0
100
2
0
e
x
(V m)
第三章 恒定电场的基本原理
1、体电流密度的定义式 2、电流密度与电场强度的关系 3、电源中电场强度的表达式 4、电荷守恒原理的表达式 5、导电媒质分界面衔接条件的标量表达式 6、恒定电场边界条件的分类
量为
场点坐标 (r,, z)是不变量,源点坐标 (0,, z) 中 z 是变量,统一用θ表
示
总的电场强度 若为无限长直导线
习题 2-1
(3)静电场环路定理
由电位计算电场强度,是求梯度的运算,也就是求微分 的运算
在静电场中,任意一点的电场强度E 的方向总是沿着
电位减少最快方向,其大小等于电位的最大变化率。
有些金属或化合物当温度降到某一临界数值
后, ,变为超导体, J E 不再适用。
3、电源中电场强度的表达式
作用于单位电荷上的局外电场力定义为局外电
场强度,记为 Ee 。 电源中总的电场强度 ET EC Ee 。
在电源以外的区域,只存在库仑电场。
总的电场强度 ET EC 。
4、电荷守恒原理的表达式
1、体电流密度的定义式
将单位时间内流过某个面积 S 的电荷量
定义为穿过该面积的电流,用 I 表示 I lim q dq t0 t dt
电流的单位是安(培)(A)。1 安=1 库秒。 电荷在空间体积中运动,形成体电流。
工程电磁场第一章

工程电磁场第一章
63
2.源点与场点 场是由场源产生的。场源所在的空间位置称为源点。空间位置上除了定义场量外,也
可以定义场源。这样,可以把空间的点表示为场点和源点。 源点 P′用坐标(x′,y′,z′)表示,也可以用位置矢量r′表示;场点 P 用坐标
(x,y,z)表示,也 可 以 用 位 置 矢 量r 表 示。 由 源 点 到 场 点 的 距 离 矢 量 用 R 表 示。 根据矢量代数关 系 可 知,R=r-r′。 矢 量 R 的 模 R =|r- r′|,矢 量 R 对 应 的 单 位 矢 量
A(x,y,z() 矢量场);
时变场:物理系统的状态不仅按空间分布,还随时间变化,即场的
分布是动态的;
记为 (x,y,z,t() 标量场)和 A(x,y,z,t() 矢量场);
工程电磁场第一章
61
场中的每一点都对应着一 个 物 理 量----场 量 的 值。 场 量 为 标 量 的 场 称 为 标 量 场,如温度场、能量场、电位场等。 场量为矢量的场 称为 矢 量 场,如 速 度 场、力 场、电 场 和 磁场等。
44
刘鹏程主编《工程电磁场简明手册》
工程电磁场第一章
45
王泽忠、全玉生、卢斌先编著《工程电磁场》
工程电磁场第一章
46
Ansoft Maxwell
Ansoft公司的Maxwell 是一个功能强大、结果精确、易于使用的二 维/三维电磁场有限元分析软件。包括静电场、静磁场、时变电 场,时变磁场,涡流场、瞬态场和温度场计算等,可以用来分 析电机、传感器、变压器、永磁设备、激励器等电磁装置的静 态、稳态、瞬态、正常工况和故障工况的特性。
工程电磁场第一章
绝缘子电位分布图
工程电磁场第一章

描述电磁场基本规律的方程组,包括安培环路定 律、法拉第电磁感应定律等。
电磁感应
当磁场发生变化时,会在导体中产生电动势,这 种现象被称为电磁感应。
光速
电磁波在真空中的传播速度为光速,用c表示。
电磁波
电磁波的定义
电磁波的传播速度
电磁波是由振荡的电场和磁场相互激发而 传播的波。
电磁波在真空中的传播速度与光速相同,约 为3×10^8米/秒。
电磁波的分类
电磁波的应用
根据频率的不同,电磁波可以分为无线电 波、微波、红外线、可见光、紫外线、X射 线和伽马射线等。
电磁波在通信、雷达、导航、医疗等领域 有着广泛的应用。
03
电磁场的数学模型
麦克斯韦方程组
02
01
03
描述了电场和磁场之间的动态关系。
由四个基本方程构成:安培环路定律、法拉第电磁感 应定律、高斯电通定律和高斯磁通定律。
电磁场的分类
02
01
03
按产生方式分类
自然电磁场、人工电磁场。
按频率分类
低频电磁场、高频电磁场。
按空间形态分类
均匀电磁场、非均匀电磁场。
电磁场的应用
01
电力工业
02
电子技术
03 交通运输
04
军事领域
环境监测
05
发电、输电、配电等。 无线通信、雷达、导航、广播等。 铁路、航空、航海等。 雷达侦察、通信、电子对抗等。 电磁辐射检测、电磁污染控制等。
在此添加您的文本16字
柱面波的传播特性适用于微波传输和天线等领域。
THANK YOU
感谢聆听
包括电场和磁场的初始分布、初 始值等参数。
在解决电磁场问题时,初始条件 是重要的约束条件之一,它决定 了电磁场的初始状态和发展趋势。
电磁场第一章解读

第0章矢量分析Vector Analysis标量场和矢量场标量场的梯度矢量场的通量与散度矢量场的环量与旋度亥姆霍兹定理电磁场的特殊形式直角(x , y , z )zyz = z 0 x = x 0 y = y 0 P ze xe y e O球坐标系场是一个标量或一个矢量的位置函数,即场中任一个点都有一个确定的标量或矢量。
例如,在直角坐标下:0.1 标量场和矢量场 ])2()1[( π45),,(222z y x z y x +++-= ϕ标量场zy x xyz z x xy z y x e e e ++=222),,(A 矢量场 如温度场、电位场、高度场等;如流速场、电场、涡流场等。
Scalar Field and Vector Fieldconst),,( z y x h 其方程为:图0.1.1 等高线(1) 标量场--等值线(面)形象描绘场分布的工具——场线思考 在某一高度上沿什么方向高度变化最快?z A y A x A z y x d d d ==三维场 二维场y A x A y x d d =图0.1.2 矢量线 矢量场--矢量线d =⨯l A 其方程为:在直角坐标下:矢量管0.2 标量场的梯度Gradient of Scalar Field设一个标量函数ϕ (x ,y ,z ),若函数 ϕ 在点 P 可微,则 ϕ 在点P 沿任意方向 的方向导数为 l)cos ,cos ,(cos ),,(γβαϕϕϕϕ⋅∂∂∂∂∂∂=∂∂zy x l ),z,y ,x (∂∂∂∂∂∂=ϕϕϕg )cos ,cos ,(cos γβα=l e 设 式中 , , 分别是任一方向 与 x , y , z 轴的夹角αβγl ),cos(||l l le g g e g =⋅=∂∂ϕ则有: 当 , 最大 ∂ϕϕϕϕϕϕgrad =∇=∂∂+∂∂+∂∂z y x zy x e e e ——梯度(gradient )——哈密顿算子 )z,y ,x (∂∂∂∂∂∂=∇式中 图0.1.3 等温线分布 梯度的方向为该点最大方向导数的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B B A
1.2 Vector Algebra
3. Vector---two or three components
4. Vector subtraction A B A (B)
1. Three coordinate systems
Cartesian system or rectangular system Circular cylindrical system Spherical coordinate system
2. The Cartesian coordinate system has three axes
3. In other coordinate systems, points are also located at the common intersection of three surfaces, not necessarily planes, but still normal at the point of intersection. 4. Shown in Fig.1.2c, the coordinate of P is x,y,z respectively and that of Q is x+dx, y+dy, z+dz.
2. A vector:
What’s a vector?
3. Scalar and Vector fields
A field is defined as some function of that vector which connects an arbitrary origin to a general point in space.
The rules of vector algebra: addition, subtraction, multiplication by a scalar
Follows the parallelogram law
2. Vectorial addition
Follows the commutative law Follows the associative law
Mutually normal to each other A right-handed system The intersection of three surfaces x=constant;y=constant;z=constant
1.3 The Cartesian Coordinate System
4. Boldface type---Vector and Italic type---Scalar 5. When writing, please draw a line or an arrow over a vector
1.2 Vector Algebra
1. The main contents of this subsection
Chapter 1 Vector Analysis
1. Vector analysis is the branch of mathematics that was developed to describe quantities that are both directional in nature and distributed over regions of space. 2. The reason for starting our study of electromagnetics with vector analysis 3. The main contents in the chapter
7. (r s)( A B) r ( A B) s( A B) rA rB sA sB
Obeys associative and distributive laws 8. A B 0 A B
1.3 The Cartesian Coordinate System
1.1 Scalars and Vectors
1. A scalar: a quantity that can be specified by a single number
What’s a scalar? In mathematics---any real quantity In physics---given a physical unit, with physical significance.
Vector addition---adding the corresponding components
ห้องสมุดไป่ตู้5. Scalar times Vector
If the scalar>0, the vector is changed only with magnitude
If the scalar<0, both magnitude and direction are changed A 1 6. Division of a Vector by a Scalar A s s
Engineering Electromagnetics
工程电磁场
主讲 彭润玲 讲师
The aim of having this lesson
1. Electromagnetics is both the oldest and most basic branch of electrical engineering 2. It deals with the following questions: What’s electricity? How does it behave? What can it do? How can we control it? 3. So it is essential to understand electromagnetics for us to fully understand the operation of many electrical devices and effects. Transformer Computer wireless communication