太阳能电池论文acidic texturing of multicrystalline silicon wafers

合集下载

目前太阳能电池作文可作为大功率电源使用

目前太阳能电池作文可作为大功率电源使用

目前太阳能电池作文可作为大功率电源使用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!题目:目前太阳能电池作文可作为大功率电源使用太阳能电池,是当今世界上备受瞩目的科技成果之一。

(完整版)关于染料敏化太阳能电池毕业设计论文

(完整版)关于染料敏化太阳能电池毕业设计论文

第一章绪论1.1太阳能电池能源短缺与环境污染是目前人类面临的两大问题。

传统的能源媒,石油和木材按目前的消耗速度只能维持五十至一百年。

另外,由此所带来的环境污染,也正在威胁着人类赖以生存的地球。

而在人类可以预测的未来时间内,太阳能作为人类取之不尽用之不竭的洁净能源,不产生任何的环境污染,且基本上不受地理条件的限制,因此太阳能利用技术研究引起了各国科学家的广泛重视。

太阳内部每时每刻都在发生热核聚变反应,进行质能转换,向宇宙辐射的总功率约为3*1023kW,投射到地球大气层之前的功率密度约为1135kWm2。

太阳光进入大气层后,虽然大气成分和尘埃颗粒的散射以及太阳光中的紫外线被臭氧,氧气和水蒸气吸收,但到达地表的功率密度仍有很大。

如果太阳辐射维持不变,则太阳半衰期寿命还有7*1012年以上,可以说太阳能是取之不尽用之不竭的天赐能源。

我国陆地23以上地区的年日照时数大于200 0h,太阳能相当丰富。

目前,太阳能的利用主要有太阳能电池发电和太阳能热水器制热。

而在一些名胜古迹和公园已经可以见到太阳能路灯了,为家庭住宅提供能源的太阳能发电系统(3kW)已经在发达国家作为示范工程而被推广,用太阳能电池提供动力的汽车和游艇也已经出现在人们的眼前。

1.1.1太阳能电池的工作原理当表面蒸发一层透光金属薄膜的半导体薄片被光照射时,在它的另一侧和金属膜之间将产生一定的电压,这种现象称为光生伏打效应,简称光伏效应。

能将光能转换成电能的光电转换器叫太阳能电池,在半导体P—N结上,这种光伏效应更为明显。

因此,太阳能电池都是由半导体P—N结构成的,最简单的太阳能电池由一个大面积的P—N结构成,例如P型半导体表面形成薄的N型层构成一个P—N结,见图 1.1.1。

图1.1.1 P—N结太阳能电池原理示意图太阳辐射光谱的波长是从0.3µm的近紫外线到几微米的红外线,对应的光子能量从4eV~0.3eV左右。

由半导体能带理论可知,只有能量高于半导体带隙宽度(Eg)的光的照射,才能激发半导体中杂质捕获的电子通过带间跃迁从价带跃迁到导带,生成自由电子和空穴对,电子和空穴向左右极化而产生电势差。

关于太阳能电池的英文文献

关于太阳能电池的英文文献

Recyclable organic solar cells on cellulose nanocrystal substratesYinhua Zhou 1,Canek Fuentes-Hernandez 1,Talha M.Khan 1,Jen-Chieh Liu 2,James Hsu 1,Jae Won Shim 1,Amir Dindar 1,Jeffrey P.Youngblood 2,Robert J.Moon 2,3&Bernard Kippelen 11Center for Organic Photonics and Electronics (COPE),School of Electrical and Computer Engineering,Georgia Institute ofTechnology,Atlanta,GA 30332,2School of Materials Engineering,Purdue University,West Lafayette,IN 47907,3U.S.Forest Service,Forest Products Laboratory,Madison,WI 53726.Solar energy is potentially the largest source of renewable energy at our disposal,but significant advances are required to make photovoltaic technologies economically viable and,from a life-cycle perspective,environmentally friendly,and consequently scalable.Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,renewable,and sustainable.Here,we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC)substrates.The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%.In addition,we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature,opening the door for a truly recyclable solar cell technology.Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable,scalable,and environmentally-friendly energy production.Organic solar cells are an attractive technology because of their potential for low-cost fabrication,light weight,and good mechanical flexibility 1–5.Over the last decade,the power conversion efficiency (PCE)of champion small-area organic solar cells has improved from values around 3.5%up to 10.6%6.Despitehaving low PCEs and short lifetimes,recent cost-analysis studies suggest that organic solar cells could become competitive with other solar cell technologies if modules with PCE of 5%and a 5year lifetime could be produced 7,8.Polyethylene terephthalate (PET)9–11,polyethylene naphthalate (PEN)12,or polyethersulfone (PES)1,have been used for the demonstration of flexible organic solar cells.However,from a life-cycle perspective,these petroleum-based substrates are expensive and environmentally less attractive than easily recyclable or biodegradable substrates.Substrate materials which could be synthesized from renewable feedstocks,such as wood,at a low cost,are particularly attractive for the realization of a sustainable solar cell technology.Paper is considered an interesting substrate for organic solar cells,because it is inexpensive,low-weight,flexible and it can be recycled.Solution-processed polymer solar cells have been fabricated recently on paper sub-strates 13–15,but have shown limited performance because of the high surface roughness and porosity of paper substrates 13.Even with the use of thick (several to tens of m m)planarization layers,solar cells on paper showed low performance with maximum PCE values in the range between 0.4–1.4%14,15.Furthermore,the use of thick planarization layers increases the device complexity,cost and may further compromise the recyclability and biodegradability of such devices.Cellulose nanomaterials (CN)are cellulose-based nanoparticles that have good mechanical properties,high aspect ratio,low density,low thermal expansion,surfaces that can be readily chemically functionalized,low toxicity,are inherently renewable/sustainable,and have the potential to be produced in industrial-size quant-ities 16–s have been studied for a wide variety of potential applications,including reinforcement phases in polymer composites,protective coatings,barrier/filter membrane systems,antimicrobial films,network struc-tures for tissue engineering,and substrates for flexible electronics.Two general classes of CNs that can be extracted from plants,are cellulose nanocrystals (CNC,3–10nm wide by 50–500nm in length,Fig.1a)and cellulose nanofibers (CNF,4–20nm wide by .1m m in length).Neat and polymer composite films produced from CNCs and CNFs are attractive as substrates for organic electronic devices,and organic solar cells in particular,because they combine low density (1–1.5g/cm 3)with high tensile strength (30–240MPa),high elastic modulus (6–30GPa)and low coefficient of thermal expansion (CTE,2–25ppm/K)20,24–Cs are also found to be thermally stable up to 210u C,and after processing optimization,up to 350u C;hence,they are compatible withSUBJECT AREAS:SOLAR CELLSELECTRICAL AND ELECTRONICENGINEERINGELECTRONIC DEVICESELECTRONIC PROPERTIES ANDMATERIALSReceived23January 2013Accepted 11March 2013Published 25March 2013Correspondence and requests for materials should be addressed to B.K.(kippelen@ece.)the processing of organic semiconductors 27.Recently,polymer solar cells have been fabricated on CNF substrates.However,these devices exhibited poor performance (with a maximum PCE of 0.4%)and poor rectification,mainly because of the relatively rough surface of the CNF substrates (with a surface height variation of 40nm)22.In this work,we report on polymer solar cells on free-standing transparent CNC substrates with much lower surface roughness compared with the CNF-based films.The solar cells are fabricated with Ag/polymer surface modification as the bottom electrode and MoO 3/Ag as the top electrode without the need of aqueous solution.The solar cells show a large rectification in the dark and an average PCE of 2.7%and an average fill factor of 0.54under illumination.The performance of these polymer solar cells is shown to be limited primarily by the transmittance of the thin Ag layer used as the semi-transparent bottom electrode.Importantly,the polymer solar cells fabricated on CNC substrates are found to be easily recycled at room temperature by simply immersing them in water,where the CNC substrate is redispersed.The dissolution of the substrate in water leads to a separation of the rest of the components of the solar cell in the form of a thin polymer solar cell membrane comprised of the synthetic organic photoactive layer and the metal layers.These mem-branes can be easily filtered out of the water solution,and the organic and metal components can then be separated by immersing the membrane into an organic solvent in which the photoactive layer can be dissolved,leaving behind the metal and oxide electrode that can be filtered out of the solution.ResultsProperties of CNC substrates .Fig.1b illustrates the high optical transparency of the CNC film that is necessary for incident sun-light to pass through the substrate.The optical transparency is great-ly improved in thinner films as shown in Fig.S1in the supplementary information (SI).The limited transmittance of CNC films is believed to be due to scattering,not absorption,caused by the random distri-bution of CNCs (a few hundred nanometers long,Fig.1a)in the film,which causes refractive index inhomogeneities over areas with dimensions that are of the same order of magnitude of the wave-length of visible light.Scattering spreads the incident light into a large solid angle,reducing the intensity (energy per solid angle)reaching a detector and thus resulting in a reduced transmittance.However,when a solar cell is fabricated on a CNC substrate,after light passes through the substrate,even those components that arescattered far away from the sample normal can reach the active layer,where they can be absorbed and contribute to the current generated by the solar cell.Fig.1c shows the surface morphology of a CNC substrate.Averaged over three locations,the root-mean-square (RMS)value of the surface roughness is 1.860.6nm.The very smooth surface eliminates the need for any surface planariza-tion.To fabricate polymer solar cells on the CNC substrates,a transparent or semitransparent electrode is needed for light to reach the photoactive layer.For the bottom electrode (i.e.in contact with the CNC substrate),a semitransparent 20-nm thick Ag layer was deposited by vacuum thermal evaporation on a CNC substrate and was found to be conductive (i.e.above percolation).Ag films deposited simultaneously on bare glass were found to be below the percolation threshold due to wetting limitations,and con-sequently nonconductive.Based on our recent discovery 1,we modi-fied the Ag film using a thin layer of ethoxylated polyethylenimine (PEIE)to turn silver into an efficient electron-collecting electrode.For the top electrode,MoO 3/Ag was evaporated onto the photo-active layer of [poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b:4,5-b 9]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl]:phenyl-C 61-butyric acid methyl ester](PBD-TTT-C:PCBM,Fig.2b)to collect holes.The device geometry is shown in Fig.2a.It should be noted that the spin-coating of PEIE from a 2-methoxyethanol solution did not damage the CNC substrates.The latter were also found to allow the spin-coating of the PBDTTT-C:PCBM photoactive layer from a chlorobenzene:1,8-diiodooctane (9753,v/v)solution.A fabricated solar cell is shown in Fig.2c.The high and specular reflectivity of the Ag top electrode further demonstrates the surface smoothness of the CNC substrates and the uniformity of the active layer on the CNC substrates.Performance of solar cells on CNC substrates .Fig.2d shows the current density-voltage (J –V )characteristic of a solar cell fabricated on a CNC substrate in the dark and under illumination.In the dark,the device shows low reverse saturation current and large rectification ratio of 103at 61V (Fig.2e).This indicates few pin holes and a large work function contrast between Ag/PEIE and MoO 3/Ag.Under 95mW/cm 2of AM 1.5G illumination,the devices show V OC 50.6560.01V,J SC 57.560.1mA/cm 2,and FF 50.5460.01,yielding PCE 52.760.1%,averaged over 3devices.Although this is still modest performance compared to state-of-the-art devices,it represents a significantimprovementFigure 1|(a)A transmission electron microscopy (TEM)image of isolated CNCs which comprise the film used as the substrate for solar cells;(b)a picture of the CNC film on top of paper to demonstrate its transparency;(c)an atomic force microscopy image of the surface of a CNC film.over previously demonstrated organic solar cells on paper-like or CNF substrates 14,22.Furthermore,we recently reported that devices with a structure:Glass/ITO/PEIE/PBDTTT-C:PCBM/MoO 3/Ag yield values of V OC 50.6860.01V,J SC 516.160.4mA/cm 2,FF 50.6160.01,and PCE 56.660.2%,averaged over 5devices 1.Remarkably,the V OC and FF of the solar cells on a CNC substrate are not that different to the ones obtained on a glass/ITO substrate.This is in contrast to previous realizations of polymer solar cells on paper-like substrates,wherein the electrical performance of the solar cells,namely the V OC and FF values,were found to be significantly lower than those on devices fabricated on glass or plastic substrates 13,14,22.Hence,the lower PCE value obtained,is mainly attributed to the smaller J SC value on solar cells processed on CNC/Ag substrates as compared to the J SC value obtained on glass/ITO substrates.This is caused by the lower transmittance of both the CNC substrates compared to glass,and of the 20-nm-thick Ag electrode compared to ITO 28.The ability to tune CNC substrates (composition,orien-tation,interfaces,etc.)should allow further optimization of its optical and mechanical properties.Likewise,if the Ag film (bottom elec-trode)can be replaced with a higher transmittance material (e.g.metal-oxide or conducting polymer)further improvements in the performance level of these polymer solar cells fabricated on CNC substrates can be achieved,and possibly comparable to devices fabricated on glass or petroleum-based flexible substrates.Recyclability of solar cells on CNC substrates .Recyclability of the CNC substrates and solar cells was tested by immersing them into distilled water.Fig.S2displays time-lapse images that illustrate the dissolution of the CNC substrates in water.The CNC film quicklyswells after being immersed into water and completely disintegrates within 30min.The redispersed CNC turns into a solid residue on the petri dish after the water has evaporated.This residue can potentially be recovered and recycled.As for the solar cell,the CNC substrate also swells rapidly producing clear warping of the photoactive layer and electrodes (insets of Fig.S2)until they turn into a free-standing film or membrane.This allows for the full separation of the solar cell components (substrate,organic and inorganic materials)at room temperature by using a filter paper.A video illustrating the process whereby the materials of a solar cell can be easily recovered is available in the SI.Fig.3a displays vials containing the solutions and the final residue on the filter paper to illustrate the final products of this recycling process.The process is described as follows:a solar cell was immersed into the vial containing distilled water until the CNC substrate disintegrated (shaking accelerates the disintegration to less than 10min)and the solid residues were filtered from the liquid using a filter paper.The resulting distilled water waste appears as a milky dispersion of CNCs in water,shown in vial #1in Fig.3a.Distilled water is shown as a clear liquid in vial #0in Fig.3a as a visual reference.The photoactive layer was then separated from the electrodes by rinsing the solid residues on the filter paper with chlorobenzene.This process resulted in a green-colored solution of a mixture of chlorobenzene and PBDTTT-C:PCBM,as shown in vial #2in Fig.3a.A second rinse with chlorobenzene revealed that most of the active layer could be dissolved during the first rinse,as illustrated by the clear color of the vial #3in Fig.3a.The solid waste left in the filter paper shown in #4in Fig.3a,therefore,corresponds primarily to the Ag and MoO 3used as electrodes on the solar cell.In this way,organic solar cells fabricated onCNCFigure 2|(a)Device structure of solar cells on CNC substrates:CNC/Ag/PEIE/PBDTTT-C:PCBM/MoO 3/Ag;(b)Chemical structure ofPBDTTT-C and PCBM;(c)a picture of a fabricated solar cell;(d)J–V characteristics of the solar cell on CNC substrate in the dark (thin black line)and under 95mW/cm 2of AM1.5illumination (thick red line);(e)the J–V characteristics on a semi-logarithmic scale in the dark (thin black line)and under illumination (thick red line).substrates can be easily separated into their major components using a minimal amount of solvents and energy.Furthermore,solar cells on CNC substrates that were exposed to low temperature flame (to burn off the polymer components),produced ashes from which the metal components could be recovered.Fig.3b displays images of solar cells burning and rapidly reducing into ashes.While burning may not be an ideal way to dispose of the devices,the ability to burn them,leaving a residue of ashes,is dramatically different than what could be obtained using glass or plastic substrates.DiscussionEfficient and recyclable polymer solar cells fabricated on free-stand-ing cellulose nanocrystal substrates have been demonstrated here.The cellulose nanocrystal substrates are optically transparent enab-ling light to go through,and have a low surface roughness (RMS value of 1.8nm)which is critical for the thin polymer solar cells to work nicely with very low reverse leakage current and large rectifica-tion ratio in the dark.Furthermore,the cellulose nanocrystal sub-strates allow the deposition of polymers using coating techniques from non-aqueous solutions.The polymer solar cells on cellulose nanocrystal substrates reached a power conversion efficiency of 2.7%,an unprecedented level of performance for polymer solar cell fabricated on recyclable substrates derived from renewable feed-stocks.The power conversion efficiency of these solar cells was found to be primarily limited by the low transmittance of the Ag bottom electrode.Optimization of the optical properties of the bottom elec-trode should lead to significant future improvements on the power conversion efficiency,for instance,by reducing the thickness of the Ag layer and by introducing a layer with a high reflective index material between the substrate and the Ag layer 29or by depositing a transparent metal-oxide electrode.If this is realized,polymer solarcells with a power conversion efficiency that is similar to that of solar cells fabricated on glass or petroleum-based plastic substrates should be achievable.We have shown that these solar cells can be easily separated into their major components using low-energy processes at room temperature,opening the door for a truly fully recyclable solar cell technology.Efficient and easily recyclable polymer solar cells on cellulose nanocrystal substrates could be an ideal technology for sustainable,scalable and environmentally-friendly energy pro-duction and could have an overreaching impact for the sustainability of printed electronics.MethodsPreparation and characterization of CNC samples .CNCs were produced at USDA Forest Service-Forest Products Laboratory (Madison,WI)following procedures described by Beck-Candanedo et al.30CNC suspensions were produced by sulfuric acid hydrolysis of softwood pulp (64%sulfuric acid,8to 1acid to pulp weight ratio,45u C,60minutes)followed by quenching with deionized water,centrifuge rinsing,washing,and then dialysis for about a week to remove remaining acid.Thesuspension was then ultrasonicated to disperse the CNCs via mechanical agitation and centrifuged a final time for macroparticle removal.Films were prepared by blending 1.65wt.%CNC suspension (30g)with 1wt.%glycerol solution (4.95g)for 24hours.Glycerol (Aldrich)was added to make the films more flexible for handling.The homogeneous glycerol/CNC water suspension was then poured into plastic 80mm diameter plastic petri dishes and allowed to dry at 23u C and 30%–40%relative humidity.The dried CNC/glycerol films were detached from petri dishes and cut into 2.5cm 32.5cm glycerol/CNC substrates.Note that the addition glycerol isconsistent with renewable and biodegrade theme of the CNC film and it is non-toxic and is a byproduct of biodiesel production.The optical transmittance of CNC substrates was measured using a spectroscopic ellipsometer apparatus (M-2000UI,J.A.Woollam Co.).The surface roughness of the CNC samples was measured under atmospheric conditions using atomic force microscopy (Dimension 3100,Veeco)equipped with a NanoScope III controller.Fabrication and characterization of solar cells on CNC substrates .First,the CNC films were attached to rigid glass substrates with a piece of curedpolydimethylsiloxane (PDMS).Then,a 20-nm thick Ag film was deposited on halfofFigure 3|(a)Vials (#0-3)and filter paper (#4)illustrating the separation of solar cells into their major components by immersion in water and chlorobenzene.Vial #0:distilled water;Vial #1:CNC redispersed in distilled water after solar cells were immersed into water;Vial #2:solution of photoactive layer in chlorobenzene obtained by rinsing the solid waste left after the immersion into water;Vial #3:solution generated by the second rinsing the solid waste with chlorobenzene;#4:solid residues left on the filter paper after the second rinsing with chlorobenzene.The inset is a close-up of the solid waste left on the filter paper showing residues of Ag and MoO 3.(b)Time lapse sequence of three frames illustrating the ignition of solar cells on CNC substrates:#1:an image of a solar cell before burning;#2:while burning;#3:after burning.Burning lasted less than 2s.the CNC substrates through a shadow mask,using a vacuum thermal evaporation system(SPECTROS,Kurt J.Lesker).Then,the polymer modification layer,PEIE (423475,Mw570,000g/mol,from Sigma-Aldrich)was deposited on Ag by spin-coating at a speed of4000rpm for1minute from a0.4wt.%2-methoxyethanol (284467,99.8%anhydrous,from Sigma-Aldrich Co.)solution and annealed on a hot plate at80u C for5minutes.The average thickness of the PEIE is estimated to be 10nm,from measurements by spectroscopic ellipsometry on independent films deposited on Si substrates1.After the substrates cooled down for10minutes,a layer of PBDTTT-C(Solarmer Materials Inc):PCBM(151.5by weight,Nano-C Inc.)was spin-coated on the substrates as the photoactive layer from a mixture of chlorobenzene:1,8-diiodooctane(9753,v/v)solution with a total concentration of 25mg/ml at a speed of1000rpm and10000rpm/s acceleration for1minute.The thickness of the photoactive layer was90nm.All the processing was done in aN2-filled glove box.Samples were transferred into the vacuum thermal evaporation system(SPECTROS,Kurt J.Lesker)and the top electrode of MoO3/Ag(15nm/150nm)was deposited to finish the device fabrication.Currentdensity-voltage(J–V)characteristics of the solar cells were measured inside theN2-filled glove box by using a source meter(2400,Keithley Instruments,Cleveland, OH)controlled by a LabVIEW program.To test the solar cell properties under illumination,a calibrated300W Oriel solar simulator(91160,Newport)with an intensity of95mW/cm2was used as the light source.Recycling and combustion of solar cells.A piece of CNC sample and a piece of solar cell on CNC substrate were immersed into distilled water in a glass petri dish until the CNC were redispersed at room temperature.Another piece of solar cell on a CNC substrate was immersed in distilled water in a vial.The solution was filtered using a P5 Filter paper(Fisher Scientific).The solid waste in the filter was rinsed with chlorobenzene and the waste collected in a vial.Chlorobenzene rinsing was repeated for the second time.For the combustion test,a piece of CNC sample and a piece of solar cell on CNC were ignited using a commercial lighter and burned inside a fume hood.1.Zhou,Y.H.et al.A Universal Method to Produce Low-Work Function Electrodesfor Organic Electronics.Science336,327–332(2012).2.Kippelen,B.&Bredas,anic photovoltaics.Energy Environ.Sci.2,251–261(2009).3.He,Z.et al.Enhanced power-conversion efficiency in polymer solar cells using aninverted device structure.Nat.Photon.6,593–597(2012).4.Brabec,C.J.et al.Polymer-fullerene bulk-heterojunction solar cells.Adv.Mater.22,3839–3856(2010).5.Sondergaard,R.,Hosel,M.,Angmo,D.,Larsen-Olsen,T.T.&Krebs,F.C.Roll-to-roll fabrication of polymer solar cells.Mater.Today15,36–49(2012).6.You,J.et al.A polymer tandem solar cell with10.6%power conversion efficiency.mun.4,1446(2013).7.Azzopardi,B.et al.Economic assessment of solar electricity production fromorganic-based photovoltaic modules in a domestic environment.Energy Environ.Sci.4,3741–3753(2011).8.Espinosa,N.,Garcia-Valverde,R.&Krebs,F.C.Life-cycle analysis of productintegrated polymer solar cells.Energy Environ.Sci.4,1547–1557(2011).9.Zhou,Y.et al.Investigation on polymer anode design for flexible polymer solarcells.Appl.Phys.Lett.92,233308(2008).10.Formica,N.et al.Highly stable Ag–Ni based transparent electrodes on PETsubstrates for flexible organic solar cells.Sol.Energy Mater.Sol.Cells107,63–68 (2012).11.Krebs,F.C.Polymer solar cell modules prepared using roll-to-roll methods:Knife-over-edge coating,slot-die coating and screen printing.Sol.Energy Mater.Sol.Cells93,465–475(2009).12.Wang,J.-C.et al.Highly efficient flexible inverted organic solar cells using atomiclayer deposited ZnO as electron selective layer.J.Mater.Chem.20,862–866 (2010).13.Wang,F.,Chen,Z.,Xiao,L.,Qu,B.&Gong,Q.Papery solar cells based ondielectric/metal hybrid transparent cathode.Sol.Energy Mater.Sol.Cells94, 1270–1274(2010).14.Kim,T.-S.et al.Solution-processible polymer solar cells fabricated on a paperysubstrate.Phys.Status Solidi RRL6,13–15(2012).15.Hu¨bler,A.et al.Printed Paper Photovoltaic Cells.Adv.Energy Mater.1,1018–1022(2011).16.Vartiainen,J.et al.Health and environmental safety aspects of friction grindingand spray drying of microfibrillated cellulose.Cellulose18,775–786(2011).17.Lin,N.,Huang,J.&Dufresne,A.Preparation,properties and applications ofpolysaccharide nanocrystals in advanced functional nanomaterials:a review.Nanoscale4,3274–3294(2012).voine,N.,Desloges,I.,Dufresne,A.&Bras,J.Microfibrillated cellulose–Itsbarrier properties and applications in cellulosic materials:A review.Carbohydr.Polym.90,735–764(2012).19.Habibi,Y.,Lucia,L.A.&Rojas,O.J.Cellulose Nanocrystals:Chemistry,Self-Assembly,and Applications.Chem.Rev.110,3479–3500(2010).20.Moon,R.J.,Martini,A.,Nairn,J.,Simonsen,J.&Youngblood,J.Cellulosenanomaterials review:structure,properties and nanocomposites.Chem.Soc.Rev.40,3941–3994(2011).21.Klemm,D.et al.Nanocelluloses:A New Family of Nature-Based Materials.Angew.Chem.Int.Ed.50,5438–5466(2011).22.Hu,L.et al.Transparent and conductive paper from nanocellulose fibers.EnergyEnviron.Sci.6,513–518(2013).23.Siro´,I.&Plackett,D.Microfibrillated cellulose and new nanocomposite materials:a review.Cellulose17,459–494(2010).24.Nogi,M.,Iwamoto,S.,Nakagaito,A.N.&Yano,H.Optically TransparentNanofiber Paper.Adv.Mater.21,1595–1598(2009).25.Fukuzumi,H.,Saito,T.,Iwata,T.,Kumamoto,Y.&Isogai,A.Transparent andHigh Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation.Biomacromolecules10,162–165(2008).26.Kim,J.,Yun,S.&Ounaies,Z.Discovery of cellulose as a smart material.Macromolecules39,4202–4206(2006).27.Yu,H.et al.Facile extraction of thermally stable cellulose nanocrystals with a highyield of93%through hydrochloric acid hydrolysis under hydrothermalconditions.J.Mater.Chem.A1,3938–3944(2013).28.Hsu,J.et al.Linear and nonlinear optical properties of Ag/Au bilayer thin films.Opt.Express20,8629–8640(2012).29.Salinas,J.-F.et al.Optical Design of Transparent Thin Metal Electrodes toEnhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells.Adv.Mater.24,6362–6367(2012).30.Beck-Candanedo,S.,Roman,M.&Gray,D.G.Effect of Reaction Conditions onthe Properties and Behavior of Wood Cellulose Nanocrystal Suspensions.Biomacromolecules6,1048–1054(2005).AcknowledgementsThis research was funded in part through the Center for Interface Science:Solar Electric Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy, Office of Science,Office of Basic Energy Sciences under Award Number DE-SC0001084 (Y.Z.,J.S.,C.F.,A.D.),by the Air Force Office of Scientific Research(Grant No.FA9550-09-1-0418)(J.H.),by the Office of Naval Research(Grant No.N00014-04-1-0313) (T.K.,B.K.),and the US Department of Agriculture–Forest Service(Grant No.12-JV-11111122-098).Funding for CNC substrate processing was provided byUSDA-Forest Service(Grant No.11-JV-11111129-118)(R.J.M.,J.P.Y.,J.L.).The authors thank Rick Reiner and Alan Rudie from the U.S.Forest Service-Forest Products Laboratory (FPL)for providing CNC materials.Author contributionsB.K.,C.F.,R.J.M.and J.P.Y.conceived this project.Y.Z.,T.K.and J.S.designed and fabricated the solar cells.J.L.fabricated the CNC films.J.H.and A.D.collected the data of transmittance and surface morphology of the films.Y.Z.and C.F.performed the recycling experiments of solar cells.Y.Z.and C.F.wrote the draft of the manuscript,and all authors contributed to the edits of the manuscript.Additional informationSupplementary information accompanies this paper at / scientificreportsCompeting financial interests:The authors declare no competing financial interests. License:This work is licensed under a Creative CommonsAttribution-NonCommercial-NoDerivs3.0Unported License.To view a copy of this license,visit /licenses/by-nc-nd/3.0/How to cite this article:Zhou,Y.H.et al.Recyclable organic solar cells on cellulose nanocrystal substrates.Sci.Rep.3,1536;DOI:10.1038/srep01536(2013).。

太阳能电池材料范文

太阳能电池材料范文

太阳能电池材料范文太阳能电池是一种直接将太阳光转化为电能的装置。

太阳能电池的重要组成部分是材料。

各种材料的组合和结构决定了太阳能电池的工作原理和性能。

目前常见的太阳能电池材料有硅、铜铟镓硒(CIGS)、卤化物钙钛矿和有机物太阳能电池等。

硅是最常用的太阳能电池材料之一、它具有丰富的资源、较高的太阳能转化效率和较长的使用寿命。

硅太阳能电池一般分为单晶硅和多晶硅两种类型。

单晶硅具有较高的转化效率,但成本较高;多晶硅的转化效率相对较低,但成本相对较低。

硅太阳能电池使用PN结构,太阳光照射在PN结上产生电子-空穴对,从而产生电流。

另外,在硅太阳能电池的表面添加反射层和抗反射层,可以提高光吸收和光电转换效率。

铜铟镓硒(CIGS)太阳能电池是一种新兴的太阳能电池技术。

它由铜、铟、镓和硒四种元素组成。

CIGS太阳能电池具有较高的光吸收能力、较高的转化效率和较低的生产成本。

此外,CIGS太阳能电池可以在柔性基底上制作,可以应用于一些特殊的领域,如可穿戴设备和便携式电子产品。

卤化物钙钛矿太阳能电池是目前太阳能电池领域的热门研究方向。

它由钙钛矿结构的卤化物材料组成,如氯化铯铅(CsPbCl3)和溴化铯铅(CsPbBr3)。

卤化物钙钛矿太阳能电池具有较高的光吸收能力、较高的转化效率和较低的生产成本。

此外,卤化物钙钛矿太阳能电池还可以实现颜色可调性,可以制备出不同颜色的太阳能电池。

有机物太阳能电池是一种利用有机分子材料转化太阳能的装置。

有机物太阳能电池具有较低的成本、较好的柔性和颜色可调性等特点。

有机物太阳能电池的工作原理是将太阳光照射在有机分子材料上,激发其内部的电子,形成电荷离子对。

有机物太阳能电池的转化效率相对较低,但在柔性电子产品、建筑一体化和室内装饰等领域有较大的应用潜力。

总的来说,太阳能电池材料的不断研究和发展对于提高太阳能电池的转化效率、降低成本和拓宽应用领域都具有重要意义。

未来随着材料科学和纳米技术的不断进步,太阳能电池材料的性能和晶体结构将得到进一步的改善和优化,推动太阳能电池技术的发展和应用。

太阳能电池论文

太阳能电池论文

太阳能电池材料研究进展能源是人类社会生存和发展的重要物质基础,是现代文明的三大支柱之一。

特别是在当今世界,人类社会发展日益加速,无论是在工业,农业,还是第三产业服务业,高新技术产业,都是处于人类历史上空前发展最快的一个阶段。

社会的发展提高了人类的生活水平,大大加强了社会生产力,同时对能源(如煤,石油)的需求和使用也大幅提高,从汽车内燃机到家用用电器,无不需要能源去运作。

目前人类开发的主要能源是石油,煤炭和天然气等化石能源,然而这些能源的一方面储量有限,按照现在的开采速度,再有50年将濒临枯竭,另一方面,化石资源造成的全球生态环境破坏日益严重,间接上对人类的发展也造成了不良的影响。

因此,发展新能源是一件迫在眉睫的事。

新能源又称非常规能源。

是指传统能源之外的各种能源形式。

指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

新能源的各种形式都是直接或者间接地来自于太阳或地球内部深处所产生的热能,相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。

太阳能作为一种干净的可再生新能源,一直受到人们青睐,虽然太阳的辐射能量中只有约二十亿分之一到达地球大气层,但却是地球光和热的来源,因此,关于太阳能的应用研究一直受到科研人员和国家关注。

太阳能电池的发展历程太阳能的应用很主要的一项是利用太阳能发电,即太阳能电池。

太阳能电池的研究在很早以前就已经开始。

光照射到材料上所引起的“光起电力”行为,早在19世纪的时候就已经发现了。

1839年,光生伏特效应第一次由法国物理学家A.E.Becquerel发现。

1849年术语“光-伏”才出现在英语中。

1883年第一块太阳电池由Charles Fritts制备成功。

Charles用锗半导体上覆上一层极薄的金层形成半导体金属结,器件只有1%的效率。

到了1930年代,照相机的曝光计广泛地使用光起电力行为原理。

太阳能电池论文

太阳能电池论文

太阳能电池论文太阳能电池是一种利用太阳光转化为电能的装置,它具有清洁、可再生、无污染等优点,因此在能源领域具有广阔的应用前景。

这篇论文将介绍太阳能电池的原理、类型、制备方法以及其在能源领域的应用等内容。

论文的第一部分将介绍太阳能电池的原理。

太阳能电池利用光生电效应和光伏效应将太阳能转化为电能。

光生电效应是指光子与材料中的电子相互作用,产生电子和空穴的过程。

光伏效应是指太阳能照射在太阳能电池上,激发光生载流子,从而产生电流。

论文的第二部分将介绍太阳能电池的类型。

太阳能电池根据材料的不同可以分为硅太阳能电池、有机太阳能电池和钙钛矿太阳能电池等。

硅太阳能电池是目前应用最广泛的太阳能电池,它可以分为单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池等。

有机太阳能电池具有制备成本低、透明灵活等特点,但效率相对较低。

钙钛矿太阳能电池是一种新兴的太阳能电池,具有高效率和低成本的优势。

论文的第三部分将介绍太阳能电池的制备方法。

太阳能电池的制备方法主要包括涂覆法、溶液法、气相沉积法等。

涂覆法是一种简单易行的制备方法,适用于制备有机太阳能电池。

溶液法可以制备硅太阳能电池和钙钛矿太阳能电池等。

气相沉积法适用于制备硅太阳能电池和非晶硅太阳能电池。

论文的第四部分将介绍太阳能电池在能源领域的应用。

太阳能电池可以用于发电系统、光伏发电站、家庭用电和移动电源等。

太阳能电池发电系统可以将太阳能转化为电能,供电给家庭和工业用电等。

光伏发电站是一种大规模利用太阳能发电的装置,可以提供更多的电能。

家庭用电可以利用太阳能电池发电,减少对传统电力的依赖。

移动电源可以利用太阳能电池充电,提供给移动设备使用。

最后,论文将总结太阳能电池的优缺点以及未来的发展趋势。

太阳能电池具有清洁、可再生、无污染等优点,但目前仍面临效率低、制造成本高等问题。

未来的发展趋势是提高太阳能电池的效率和稳定性,降低制造成本,开发新型材料和制备方法,推动太阳能电池在能源领域的广泛应用。

太阳能电池特性研究实验论文资料

本科生实验论文太阳能电池特性研究论文作者:郭海生专业:物理学年级:大二学号:1408405070指导老师:吴茂成完成日期:2015年12月15日摘要:本文对硅太阳能电池中的单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池的暗伏安特性、开路电压与短路电流随光强变化、输出特性作了初步的分析和研究.关键词:太阳能电池特性、单晶、多晶、非晶、暗伏安特性、开路电压与短路电流随光强变化、输出特性、填充因子、转换效率引言:太阳能是人类最早认识并加以利用的能源之一。

20世纪以来,随着社会经济的发展和人民生活水平的提高,对能源的需求量不断增长。

太阳能资源具有数量巨大、时间长久、普照大地、清洁安全的优点,具有很大的开发潜能。

同时太阳能有分散性、间断性和不稳定性、效率低和成本高的缺点,制约着太阳能的普及使用,这需要科研设计来克服。

通过研究三种太阳能电池的光电特性,了解各自的优缺点,为太阳能电池发展搞清方向。

正文1.太阳能电池的分类太阳能电池是一种能进行能量转化的光电元件,也称光伏电池或光电池。

美国的Bell实验室于1954年研制成功第一块太阳能电池,但是效率太低,造价又过于昂贵,因此没有多少商业价值。

后来由于航天科技的逐步发展,太阳能电池所起的作用变得越来越重要,在太空飞行器中太阳能电池成为必不可少的重要元件,这也促进了太阳能电池的开发研究。

由于许多新技术的采用,太阳能电池的效率有了很大提高,新南威尔士大学的科研人员MartinA.Green领导的研究小组,已经使单晶硅太阳电池转换效率高达24.7%。

太阳能电池依据不同的标准,可以有不同的分类方法,根据太阳能电池技术的成熟程度来划分,可以分成以下几个阶段:第1代太阳能电池,主要是晶体硅太阳能电池;第2代太阳能电池,主要是各种薄膜太阳能电池;第3代太阳能电池,主要是各种新概念太阳能电池。

根据太阳能电池使用的基本材料来划分,可以分为硅太阳能电池、化合物太阳能电池、有机薄膜太阳能电池和燃料敏化太阳能电池等几种。

太阳能电池论文6篇

多晶硅是制备单晶硅和太阳能电池的原材料是全球电子工业及光伏产业的基石。

按照硅含量纯度可分为太阳能级硅和电子级硅。

过去太阳能电池的硅材料主要来自电子级硅的等外品以及单晶硅头尾料、锅底料等年供应量很小。

随着光伏产业的迅猛发展太阳能电池对多晶硅的需求量迅速增长预计到年太阳能级多晶硅的需求量将超过电子级多晶硅。

因此世界各国都竞相开发低成本、低能耗的太阳能级多晶硅新制备技术与工艺并趋向于把制备低纯度的太阳能级多晶硅工艺与制备高纯度的电子级多晶硅工艺区别开来以进一步降低成本。

本文将对太阳能级多晶硅的制备技术以及近年来涌现出的新技术与新工艺进行综述以便为我国的太阳能级多晶硅产业提供一些参考。

改良西门子法年西门子公司成功开发了利用还原 在硅芯发热体上沉积硅的工艺技术并于年开始了工业规模的生产这就是通常所说的西门子法。

在西门子法工艺的基础上通过增加还原尾气干法回收系统、 氢化工艺实现了闭路循环于是形成了改良西门子法——闭环式 氢还原法。

改良西门子法的生产流程是利用氯气和氢气合成 或外购 和工业硅粉在一定的温度下合成 然后对 进行分离精馏提纯提纯后的 在氢还原炉内进行化学气相沉积反应得到高纯多晶硅。

改良西门子法包括五个主要环节即 合成、 精馏提纯、 的氢还原、尾气的回收和 的氢化分离。

该方法通过采用大型还原炉降低了单位产品的能耗。

通过采用 氢化和尾气干法回收工艺明显降低了原辅材料的消耗。

改良西门子法是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺国内外现有的多晶硅厂大多太阳能级多晶硅制备技术与工艺◇冯瑞华马廷灿姜山黄可中国科学院国家科学图书馆武汉分馆 前沿新材料产业前沿采用此法生产太阳能级与电子级多晶硅。

所生产的多晶硅占当今世界生产总量的。

改良西门子法生产多晶硅属高能耗的产业其中电力成本约占总成本的左右。

硅烷热分解法年英国标准电讯实验所成功研发出了硅烷热分解制备多晶硅的方法即通常所说的硅烷法。

年日本的石冢研究所也同样成功地开发出了该方法。

太阳能电池实验论文

太阳能电池特性实验仪实验报告丁淑伟(苏州大学物理科学与技术学院0908406027)摘要:太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。

目前,太阳能的利用主要集中在热能和发电两方面。

太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。

关键词:太阳能电池单晶硅多晶硅非晶硅引言:能源短缺和地球生态环境污染已经成为人类面临的最大问题。

本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。

另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。

根据计算,现在全球每年排放的CO2已经超过500亿吨。

我国能源消费以煤为主,CO2的排放量占世界的15%,仅次于美国,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。

推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。

广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。

太阳的光辐射可以说是取之不尽、用之不竭的能源。

太阳与地球的平均距离为1亿5千万公里。

在地球大气圈外,太阳辐射的功率密度为1.353kW /m2,称为太阳常数。

到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。

在地球海平面上,正午垂直入射时,太阳辐射的功率密度约为1kW /m2,通常被作为测试太阳电池性能的标准光辐射强度。

太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。

太阳能电池论文

染料敏化纳米晶体太阳能电池染料敏化太阳能电池是近年发转起来的一种非常有发展前途的第三代太阳能电池,由瑞士的Gratzel教授领导的研究小组首次提出,基于自然界中的光合作用原理。

目前电池效率较低。

目前DSSCs的光电转化效率已能稳定在10%以上,寿命能达15~20年,且其制造成本仅为硅太阳能电池的10%~20%。

它的出现为利用太阳能提供了一条新的途径。

敏化电池结构:染料敏化纳米晶体太阳能电池(DSSCs)主要包括镀有透明导电膜的玻璃基体,染料敏化的半导体材料,对电极以及电解质等几部分。

电池工作原理:当太阳光照射到电池上,基态染料分子吸收太阳光能量,其中的电子受到激发跃迁到激发态,染料分子因失去电子变成氧化态,激发电子快速注入到TiO2导带中,注入到导带中的电子在TiO2中的传输非常迅速,可以瞬间到达膜与导电玻璃的接触面,并在导电基片上富集,通过外电路流向对电极,与此同时,处于氧化态的染料分子由于电解质中的电子供体提供电子而回到基态,染料分子得以再生,电解质中的电子供体在提供电子以后扩撒到对电极,得到电子而还原,从而,完成一个光化学反应的循环,也使电池各组分都回到初始状态。

在电池中起到接受电子和传输电子作用的纳米半导体材料,必须要有足够大的比表面积,从而能吸附大量的敏化剂,电子在薄膜中要有较快的传输速度,从而要减少膜中电子和电解质受主的复合。

多孔薄膜吸附敏化剂的方式必须保证电子有效的注入薄膜的导带。

金属硫化物,金属锡化物,钙钛矿以及钛,锌,锡,锶,铁等的氧化物均可用作DSSCs中的半导体,在这些半导体材料中TiO2,ZnO 性能较好。

纳米TiO2薄膜材料可以用溶胶凝胶法,水热反应法,醇盐水解法,丝网印刷等方法制备。

自1991年DSSCs诞生以来,经过20年的发展,光敏染料的研究获得了令人鼓舞的成绩,敏化剂要能够吸收尽可能多的太阳光,紧密吸附在纳米晶格网络的电极表面,与其相应的纳米晶体的能带相匹配,激发态寿命足够长,具有长期的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABSTRACT
In this paper, results from investigations of acidic texturing are presented. As-cut, multicrystalline and polished, single crystal Si wafers have been etched in a range of acidic mixtures. The mixtures contained hydrofluoric and nitric acid, with de-ionized water, phosphoric acid or sulphuric acid added as diluents. In the initial phases of the etching process, surface cracks originating from the wafer sawing were transformed into deep and elongated pits. The reflectance of such textures was low. However, as the etching proceeded beyond the damaged surface region, more reflective; hubble-like textures were obtained. INTRODUCTION The efficiency of a solar cell is determined by its ability to gather light. The reflectance of a polished silicon (Si) wafer is relativefy high. Therefore, processes resulting in the formation of textured, less reflective surfaces are commonly applied to Si solar cells. Hitherto, the most common texturing technique has been wet etching in hot, alkaline solutions, which results in the formation of pyramids protrudingfrom the surface of a Si wafer [I], Although this technique is very efficient in reducing the reflectance of (100t.oriented single crystal Si (sc-Si) wafers, it i s not suitable for texturing multi-crystalline Si (mc-Si) wafers, because the shapes of the pyramids depend on the local crystal orientation. Hence, the reduction in reflectance obtained for a m c S i wafer will vary from grain to grain.
ACIDIC TEXTURING OF MULTICRYSTALLINE SILICON WAFERS
Erik Stensrud Marstein, Hans Jsrgen Solheim, Daniel Nilsen Wright and Awe Holt Section for Renewable Energy, Institute for Energy Technology, P.O.Box 40 NO-2027Kjeller, NORWAY
grooves [2], laser texturing [3], texturing using reactive ion etching [4] and acidic texturing [5-12].Of these techniques, the latter has been devoted the most interest. Acidic texturing has been successfully applied to as-cut and polished sc-Si and mc-Si wafers, as well as to tri-crystalline Si wafers [7J. Successful integration with industrial solar cell processing has also been demonstrated 1121. Among the advantages of acidic texturing are the possibilities of a) avoiding step formation between grains, b) performing damage removal and twturing in one single processing step, c) the relatively small required etch depth and d) fabricating solar ce!ls with an aesthetically pleasing uniform appearance [ 6 ] . When performing acidic texturing, Si wafers are immersed in mixtures typicatly containind (HN03). as well as one or more additives. Although the overall chemical reactions occurring during dissolution of Si in such mixtures are well known [I 3 1 . the mechanisms determining the various textures that can be obtained have yet to be described thoroughly. In this paper, we present the results of investigations of acidic texturing of both as-cut mc-Si and polished sc-Si wafers. A range of different acidic mixtures containing HF and HN03, as well as different diluents, namely de-ionized water (H2O (DI)). phosphoric acid (H3P04)and sulphuric acid (HzS04) have been used. The textured surfaces have been investigated using scanning electron microscopy (SEM), optical microscopy, white light interferometry (Wtl) and profilometry. The reflectance of the different textures has been measured. Here. we discuss the correlation between the surface structure of a wafer and its reflectance, and report significantly lower reflectances than what is obtainable with conventional alkaline texturing of mc-Si wafers.
相关文档
最新文档