初一上册解方程20道及过程

合集下载

解方程练习题100道及答案初一

解方程练习题100道及答案初一

解方程练习题100道及答案初一1. 在下面的方程中,求出未知数x的值。

a) 3x + 4 = 16解: 首先,我们希望将3x与4分离,使等式变为x = ?将4从等式两侧减去得到:3x = 16 - 4 = 12然后,将等式两侧除以3,我们得到 x = 12 ÷ 3 = 4所以,方程的解是x = 4.b) 5(x - 2) = 25解:首先,我们需要将方程中的括号展开,得到5x - 10 = 25然后,将-10从等式两侧加到5x上,即5x = 25 + 10 = 35最后,将等式两侧除以5,我们得到 x = 35 ÷ 5 = 7所以,方程的解是x = 7.2. 下列方程有多少个解?a) 2x + 6 = 14解:同样地,我们希望将2x与6分离,使等式变为x = ?将6从等式两侧减去得到:2x = 14 - 6 = 8然后,将等式两侧除以2,我们得到 x = 8 ÷ 2 = 4所以,方程只有一个解,即x = 4.b) 4x + 8 = 4x + 20解:观察方程,我们发现无法将任何项分离。

这是一个无解的方程。

因为方程两侧的表达式相等,所以无论x取任何值,方程都不成立,因此这个方程没有解。

3. 求解下列方程组。

a) 2x + y = 5x - y = 3解:我们可以使用消元法来解决这个方程组。

首先,通过将第二个方程乘以2,我们可以得到相等的系数。

2x + y = 52x - 2y = 6然后,我们将第二个方程从第一个方程中减去,消除x的变量:(2x + y) - (2x - 2y) = 5 - 63y = -1y = -1/3将求得的y的值代入其中一个方程,我们可以求得x的值:x - (-1/3) = 3x + 1/3 = 3x = 3 - 1/3所以,方程组的解是x = 8/3,y = -1/3.b) 3x + 2y = 102x - y = 4解:同样地,我们使用消元法。

分数解方程练习题及答案初一

分数解方程练习题及答案初一

分数解方程练习题及答案初一精品文档分数解方程练习题及答案初一解方程1、4+2-2=2-62、1-2=33、/3+1=/、4x-3=6x-7、5x-2=-7x+6、11x-3=2x+37、16=y/2+8、/7+/14=-/28+/119、mx-2=3x+n 10、3x-5=7x-11 11、2x+=15- 12、3/4x+2=3-1/4x 13、3/4-x=5/6-2/3x 14、2-3=9 15、2-3=7 16、x-3/2[2/3-2]=-217、x/3-1=x/2-218、x=/2-/319、/3=1-/0、/3-/6=/4-11、3/2-/6=122、1/3-1/2=223、-2-4=124、5-3=425、/2-/6=/6、2x-7+8x=10x-3-4x27、1/3[x-1/2]=2/3 8、1/2[x/3-1/2]=x/129、1/3[2-3]+3/2=1230、x/0.7-/0.03=131、/4-/6=12、/5-/18=/6-/153、1/2[x-1/2]=2/3、1/9{1/7[1/5/3+2)+6]+8}35、/0.02-/0.5=36、-2=8-x/237、/2-/5=18、/0.5-/0.2=1.639、x-=3 0、x-/2=2-/3应用题1.某车间有工人100名,每人平均每天可加工螺栓18个或螺母24个,要是每天加工的螺栓和螺母配套,应该如1 / 12精品文档何分配工人,2.一项工作,甲单独做药8天完成,乙单独做要12天完成,丙单独做要24天完成。

现在甲乙丙合作3天后,甲因故离开,由乙丙合做,问还需多少天完成,3.某商品进价2000元,标价为3000元,商店以利润不低于5%的售价出售,则此商品最低可打几折,4.一辆汽车以40km/h的速度由甲地驶向乙地,车行了3小时后,因下雨被迫减少10km/h,结果比预计到达时间晚了45分钟,求甲乙两地距离,5.甲工程队有28人,乙工程队有35人,先从甲队抽调若干人到乙对,使乙队人数是甲队的两倍,应从甲队抽调多少人,6.一个两位数,个位数字是十位数字的两倍,若把个位数字和十位数字对换,则所得数比原来数大36,求原数。

初一数学解方程练习题

初一数学解方程练习题

初一数学解方程练习题1. 小明有12颗苹果,他想把这些苹果分成两堆,每堆数量不等。

如果第一堆的数量是第二堆的2倍减去3,求第一堆和第二堆的苹果数量分别是多少?解法:设第一堆的苹果数量为x,第二堆的苹果数量为y。

根据题意,得到方程:x = 2y - 3。

由于每堆数量不等,所以x和y不能相等。

将方程代入的结果,得到:2y - 3 = y。

化简得到:y = 3。

将y的值代入求得:x = 2(3) - 3 = 3。

所以,第一堆有3颗苹果,第二堆有3颗苹果。

2. 甲、乙两个数的和为12,两数的乘积为28。

求甲、乙两个数分别是多少?解法:设甲的数为x,乙的数为y。

根据题意,得到方程:x + y = 12。

同时,得到方程:xy = 28。

将方程x + y = 12化简,得到:y = 12 - x。

将y的值代入方程xy = 28,得到:x(12 - x) = 28。

将方程化简,得到:12x - x^2 = 28。

移项后,得到:x^2 - 12x + 28 = 0。

使用求根公式,得到x的两个解为:x = 2 和 x = 10。

将x的值代入方程y = 12 - x,得到:当x = 2时,y = 10;当x = 10时,y = 2。

所以,甲的数是2,乙的数是10;或者甲的数是10,乙的数是2。

3. 一个数除以3,余数是4;除以4,余数是2;除以5,余数是1。

求这个数是多少?解法:设这个数为x。

根据题意,可以得到三个方程:x ≡ 4 (mod 3),x ≡ 2 (mod 4),x ≡ 1 (mod 5)。

解这个一元一次同余方程组可以使用中国剩余定理来求解。

首先,解第一个和第二个方程,得到新的同余方程:x ≡ 10 (mod 12)。

然后,解新的同余方程和第三个方程,得到最后的解:x ≡ 49 (mod 60)。

所以,这个数是49。

4. 某家庭一年的水费为400元。

上半年的用水量是下半年用水量的3倍。

问上半年的用水量是多少?下半年的用水量是多少?解法:设上半年的用水量为x,下半年的用水量为y。

初一解方程练习题及答案

初一解方程练习题及答案

初一解方程练习题及答案初一解方程练习题及答案初中数学是学习数学的基础阶段,而解方程是其中的重要内容之一。

解方程是数学中一项基本的技能,也是培养学生逻辑思维和解决问题能力的重要手段。

下面,我们来看一些初一解方程的练习题及答案,帮助学生更好地掌握解方程的方法和技巧。

1. 问题:小明的年龄是小红的3倍,小红的年龄是小亮的2倍,他们三个人的年龄总和是60岁,求他们的年龄。

解答:设小明的年龄为x岁,则小红的年龄为3x岁,小亮的年龄为6x岁。

根据题意,可以得到方程x + 3x + 6x = 60。

合并同类项,得到10x = 60。

解方程,得到x = 6。

所以,小明的年龄为6岁,小红的年龄为18岁,小亮的年龄为36岁。

2. 问题:一个三位数的个位数是4,十位数是个位数的2倍,百位数是十位数的3倍,求这个三位数。

解答:设这个三位数为abc,其中a、b、c分别代表百位、十位和个位上的数字。

根据题意,可以得到方程a = 3b,b = 2c,且c = 4。

代入方程,得到a = 12,b = 8,c = 4。

所以,这个三位数是128。

3. 问题:一个数的三次方减去这个数的平方再加上这个数本身等于42,求这个数。

解答:设这个数为x。

根据题意,可以得到方程x^3 - x^2 + x = 42。

合并同类项,得到x^3 - x^2 + x - 42 = 0。

根据方程的形式,我们可以猜测x = 3是方程的一个解。

将x = 3代入方程,得到3^3 - 3^2 + 3 - 42 = 0。

计算得到0 = 0,所以x = 3是方程的一个解。

利用因式定理,我们可以将方程进行因式分解,得到(x - 3)(x^2 + 2x + 14) = 0。

由此可得到另外两个解为x = -1 ± √3i。

所以,这个数有三个解,分别是3,-1 + √3i和-1 - √3i。

通过以上的几个例子,我们可以看出解方程的过程需要灵活运用代数知识和数学方法。

初一数学上册一元一次方程100道

初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=3 6:2*=3 *=1 5%*-3=2 *=100 6×+8=68 ×=10 8:6×=1/3 ×=4 .x-3/0.5-x+4/0.2=1.6 x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2 (x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5 (x=4/5)②x-48.32+78.51=80x=49.81③820-16x=45.5×8 x=28.5④(x-6)×7=2xx=8.4⑤3x+x=18x=4.5⑥0.8+3.2=7.2x=5⑦12.5-3x=6.5x=2⑧1.2(x-0.64)=0.54x=1.092x=3+5x=2*33x=x+1x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*1x=3*42x=5*610x=15x=106x=710=3x+111=4x+111=2x+111=3x+111=5x+2311=6x+12311=7x+211=12x+3411=9x+111=9x+221=4x+121=2x+121=3x+121=5x+2321=6x+12321=7x+221=12x+3421=9x+121=9x+231=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=44 20X-50=50 28+6X=88 32-22X=10X+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x 8.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答: 案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=- ∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B —C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B —E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B —E—C—1. 7(2x-1)-3(4x-1)=4(3x+2)-12. (5y+1)+ (1-y)= (9y+1)+ (1-3y)4. 20%+(1-20%)(320-x)=320×40%5. 2(x-2)+2=x+16. 2(x-2)-3(4x-1)=9(1-x)7. 11x+64-2x=100-9x8. 15-(8-5x)=7x+(4-3x)9. 3(x-7)-2[9-4(2-x)]=2210. 3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b 4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2) (x-y)2-(x-y)2-[(x-y)2-(x-y)2] (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b 5b+2c-7b+4z-3z3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。

初一七年级一元一次方程30题(含答案解析)

初一七年级一元一次方程30题(含答案解析)

初一七年级一元一次方程30题(含答案解析)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2); (2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1; (2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.盘算:(1)盘算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2 15.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x ﹣﹣318.(1)盘算:﹣42×+|﹣2|3×(﹣)3(2)盘算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)盘算:(1﹣2﹣4)×;(2)盘算:÷; (3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1); (4).25.解方程:.26.解方程:(1)10x﹣12=5x+15; (2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:盘算题;压轴题.剖析:此题直接经由过程移项,归并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1归并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通曩昔分母,去括号,移项,归并同类项,未知数的系数化为1等步调,把一个一元一次方程“转化”成x=a的情势.2.考点:解一元一次方程.专题:盘算题.剖析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:阁下同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:盘算题.剖析:(1)先去括号,然后再移项.归并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简.整顿,然后再按(1)的步调求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,归并得:2x=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,归并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母.去括号和移项中消失错误,还可能会在解题前产生畏惧心理.因为看到小数.分数比较多,学生往往不知若何查找公分母,如何归并同类项,如何化简,所以我们要教会学生离开进行,从而达到分化难点的后果.(2)本题的别的一个重点是教会学生对于分数的分子.分母同时扩展或缩小若干倍,值不变.这一性质在往后常会用到.4.解方程:.考点:解一元一次方程.专题:盘算题.剖析:此题双方都含有分数,分母不雷同,假如直接通分,有必定的难度,但将方程阁下同时乘以公分母6,难度就会下降.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项归并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中消失错误,学生往往不知若何查找公分母,如何归并同类项,如何化简,所以我们要教会学生离开进行,从而达到分化难点的后果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:盘算题.剖析:(1)先去括号,再移项.归并同类项.化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)归并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)归并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.去括号时要留意符号的变更.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:盘算题.剖析:(1)是简略的一元一次方程,经由过程移项,系数化为1即可得到;(2)是较为庞杂的去分母,本题方程双方都含有分数系数,假如直接通分,有必定的难度,但对每一个式子先辈行化简.整顿为整数情势,难度就会下降.x=6;(2)方程双方都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母.去括号和移项中消失错误,还可能会在解题前不知若何查找公分母,如何归并同类项,如何化简,所以要学会离开进行,从而达到分化难点的后果.去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:盘算题.剖析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步调是去分母.去括号.移项.归并同类项和系数化为1.此题去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:盘算题.剖析:(1)可采取去括号,移项,归并同类项,系数化1的方法进行;(2)本题方程双方都含有分数系数,假如直接通分,有必定的难度,但对每一个式子先辈行化简.整顿为整数情势,难度就会下降.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项.归并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母.去括号和移项中消失错误,还可能会在解题前产生畏惧心理.因为看到小数.分数比较多,学生往往不知若何查找公分母,如何归并同类项,如何化简,所以我们要教会学生离开进行,从而达到分化难点的后果;(2)本题的别的一个重点是教会学生对于分数的分子.分母同时扩展或缩小若干倍,值不变.这一性质在往后常会用到.9.解方程:.专题:盘算题.剖析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项.归并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:盘算题.剖析:(1)先去括号,再移项,归并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,归并同类项,系解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,归并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项.归并同类项,得7x=21系数化1,得x=3.点评:(1)此题主如果去括号,移项,归并同类项,系数化1.(2)方程双方每一项都要乘各分母的最小公倍数,方程双方每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,别的分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应当将分子用括号括上.11.盘算:(1)盘算:(2)解方程:考点:解一元一次方专题:盘算题.剖析:(1)根据有理数的混杂运算轨则盘算:先算乘方.后算乘除.再算加减;(2)双方同时乘以最简公分母4,即可去失落分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要留意:(1)去分母时最好先去中括号.再去小括号,以削减去括号带来的符号变更头数;(2)去分母就是方程双方同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:盘算题.剖析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最方程的解.(2)解一元一次方程的一般步调:去分母.去括号.移项.归并同类项.化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项.归并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项.归并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考核解一元一次方程,准确控制解一元一次方程的一般步调,留意移项要变号.去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:盘算题.剖析:(1)去分母.去括号.移项.归并同类项.化系数为1.(2)去分母.去括号.移项.归并母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,归并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考核解一元一次方程,准确控制解一元一次方程的一般步调,留意移项要变号.去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:盘算题.剖析:(2)通曩昔括号.移项.归并同类项.系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主如果去括号,也可以把得:10x+5﹣4x+6=6移项.归并得:6x=﹣5,方程双方都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项.归并得:9x=38,方程双方都除以9,得x=;(3)整顿得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项.归并得:x=0.点评:一元一次方程的解法:一般要通曩昔分母.去括号.移项.归并同类项.未知数的系数化为1等步调,把一个一元一次方程“转化”成x=a的情势.解题时,要灵巧应用这些步调.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣; (C类)解方程:.考点:解一元一次方程.专题:盘算题.化为1等办法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题重要考核一元一次方程的解法,比较简略,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:盘算题.(2)(3)起首去失落分母,再去括号今后,移项,归并同类项,系数化为1今后即可求解;(4)起首根据分数的基赋性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18归并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,归并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,归并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,归并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的进程中要留意每步的根据,这几个标题都是基本的标题,须要闇练控制.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:盘算题.剖析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项归并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项归并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考核解一元一次方程,解一元一次方程的一般步调是:去分母.去括号.移项.归并同类项.化系数为1.留意移项要变号.18.(1)盘算:﹣42×+|﹣2|3×(﹣)3(2)盘算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混杂运算.剖析:(1)应用平方和立方的界说进行盘算.(2)按四则混杂运算的次序进行盘算.(3)主如果去括号,移项归并.(4)双方同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15归并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6归并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考核的混杂运算,后两道考核了学生解一元一次方程的才能.19.(1)盘算:(1﹣2﹣4)×;(2)盘算:÷; (3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混杂运算.专题:盘算题.剖析:(1)和(2)要闇练控制有理数的混杂运算;(3)和(4)起首熟习解一元一次方程的步调:去分母,去括号,移项,归并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3归并同类项,得x=4;(4)解方程:去分母,得610(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90归并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要留意符号的处理;(4)要特殊留意去分母的时刻不要产生数字漏乘的现象,闇练控制去括号轨则以及归并同类项轨则.20.解方程(1)﹣0.2(x﹣5)=1; (2).考点:解一元一次方程.剖析:(1)通曩昔括号.移项.系数化为1等进程,求得x的值;(2)通曩昔分母以及去括号.移项.系数化为1等进程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9﹣2x),∴﹣21x=48,∴x=﹣.点评:此题重要考核了一元一次方程解法,解一元一次方程罕有的进程有去括号.移项.系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:盘算题.剖析:先去括号得x+3﹣2x+2=9﹣3x,然后移项.归并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,归并得2x=4,系数化为1得x=2.点评:本题考核懂得一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后归并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)..考点:解一元一次方程.专题:方程思惟.剖析:本题是解4个不合的一元一次方程,第一个经由过程移项.归并同类项及系数化1求解.第二个先去括号再经由过程移项.归并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考核的常识点是解一元一次方程,症结是留意解方程时的每一步都要卖力细心,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1); (2)=﹣2.考点:解一元一次方程.剖析:(1)起首去括号,然后移项.归并同类项,系数化成1,即可求解;(2)起首去分母,然后去括号,移项.归并同类项,系数化成1,即可求解解答:归并同类项,得:1.8x=7.2,则x=4; 7(1﹣2x)=3(3x+1)﹣42, 去括号,得:7﹣14x=9x+3﹣42, 移项,得:﹣14x归并同类项,得:﹣23x=﹣46,则x=2.点评:本题考核解一元一次方程,解一元一次方程的一般步调是:去分母.去括号.移项.归并同类项.化系数为1.留意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1); (4).考点:解一元一次方程.剖析:(1)移项,归并同类项,然后系数化成1即可求解;(2)移项,归并同类项,然后系数化成1即可求解;(3)去括号.移项,归并同类项,然后系数化成1即可求解;(4)起首去分母,然后去括号.移项,归并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考核解一元一次方程,解一元一次方程的一般步调是:去分母.去括号.移项.归并同类项.化系数为1.留意移项要变号.25.解方程:.考点:解一元一次方程.专题:盘算题.剖析:方程双方乘以10去分母后,去括号,移项归并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项归并得:5x=﹣5,解得:x=﹣1.点评:此题考核懂得一元一次方程,其步调为:去分母,去括号,移项归并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:盘算题.归并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项.归并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,归并同类项,得5x=27,方程的双方同时除以5,得x=;(2)去括号,得=,方程的双方同时乘以6,得x+1=4x﹣2,移项.归并同类项,得3x=3,方程的双方同时除以3,得x=1.点评:本题考核解一元一次方程,解一元一次方程的一般步调:去分母.去括号.移项.归并同类项.化系数为1.留意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7 (2).考点:解一元一次方程.专题:盘算题.剖析:(1)根据一元一次方程的解法,去括号,移项,归并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,归并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项.归并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,归并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题重要考核懂得一元一次方程,留意在去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:盘算题.剖析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,归并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,归并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题重要考核懂得一元一次方程,留意在去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).考点:解一元一次方程.专题:盘算题.剖析:(Ⅰ)根据一元一次方程的解法,移项,归并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,归并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,归并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,归并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题重要考核懂得一元一次方程,留意在去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:盘算题.剖析:因为方程的分子.分母均有小数,应用分数的基赋性质,分子.分母同时扩展雷同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)归并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考核一元一次方程的解法.解一元一次方程的一般步调:去分母,去括号,移项,归并同类项,系数化为1.本题的难点在于方程的分子.分母均有小数,将小数化成整数不合于去分母,不是方程双方同乘一个数,而是将分子.分母同乘一个数.。

七年级数学解方程应用题及答案

七年级数学解方程应用题及答案

七年级数学解方程应用题及答案做七年级数学方程应用题要有三心:一信心,二决心,三恒心。

下面小编给大家分享一些七年级数学解方程应用题及标准答案,大家快来跟小编一起看看吧。

七年级数学解方程应用题及答案:1-5题1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离.设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×(a+16)-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率.设四月份的利润为x则x*(1+10%)=13.2所以x=12设3月份的增长率为y则10*(1+y)=xy=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排.如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍.求有多少人?设有a间,总人数7a+6人7a+6=8(a-5-1)+47a+6=8a-44a=50有人=7×50+6=356人七年级数学解方程应用题及答案:6-10题6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决设可以炸a千克花生油1:0.56=280:aa=280×0.56=156.8千克完整算式:280÷1×0.56=156.8千克7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?设总的书有a本一班人数=a/10二班人数=a/15那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.这个小队有多少人?一共有多少棵树苗?设有a人5a+14=7a-62a=20a=10一共有10人有树苗5×10+14=64棵9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?设油重a千克那么桶重50-a千克第一次倒出1/2a-4千克,还剩下1/2a+4千克第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油根据题意1/8a-5/3+50-a=1/348=7/8aa=384/7千克原来有油384/7千克七年级数学解方程应用题及答案:10-15题10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)设96米为a个人做根据题意96:a=33:1533a=96×15a≈43.6所以为2班做合适,有富余,但是富余不多,为3班做就不够了11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数.设原分数分子加上123,分母减去163后为3a/4a根据题意(3a-123+73)/(4a+163+37)=1/26a-100=4a+2002a=300a=150那么原分数=(3×150-123)/(4×150+163)=327/76312、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)设水果原来有a千克60+60/(2/3)=1/4a60+90=1/4a1/4a=150a=600千克水果原来有600千克13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解) 设原来有a吨a×(1-3/5)+20=1/2a0.4a+20=0.5a0.1a=20a=200原来有200吨14、王大叔用48米长的篱笆靠墙围一块长方形菜地.这个长方形的长和宽的比是5:2.这块菜地的面积是多少?设长可宽分别为5a米,2a米根据题意5a+2a×2=48(此时用墙作为宽)9a=48a=16/3长=80/3米宽=32/3米面积=80/3×16/3=1280/9平方米或5a×2+2a=4812a=48a=4长=20米宽=8米面积=20×8=160平方米15、某市移动电话有以下两种计费方法:第一种:每月付22元月租费,然后美分钟收取通话费0.2元.第二种:不收月租费每分钟收取通话费0.4元.如果每月通话80分钟哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢?设每月通话a分钟当两种收费相同时22+0.2a=0.4a0.2a=22a=110所以就是说当通话110分钟时二者收费一样通话80分钟时,用第二种22+0.2×80=38>0.4×80=32通过300分钟时,用第一种22+0.2×300=82。

解方程练习题及答案初一

解方程练习题及答案初一

解方程练习题及答案初一解方程1、4+2-2=2-62、1-2=33、/3+1=/、4x-3=6x-7、5x-2=-7x+6、11x-3=2x+37、16=y/2+8、/7+/14=-/28+/119、mx-2=3x+n 10、3x-5=7x-11 11、2x+=15- 12、3/4x+2=3-1/4x 13、3/4-x=5/6-2/3x 14、2-3=9 15、2-3=716、x-3/2[2/3-2]=-217、x/3-1=x/2-218、x=/2-/319、/3=1-/0、/3-/6=/4-11、3/2-/6=122、1/3-1/2=2 23、-2-4=124、5-3=425、/2-/6=/6、2x-7+8x=10x-3-4x27、1/3[x-1/2]=2/3 8、1/2[x/3-1/2]=x/129、1/3[2-3]+3/2=1230、x/0.7-/0.03=131、/4-/6=12、/5-/18=/6-/153、1/2[x-1/2]=2/3、1/9{1/7[1/5/3+2)+6]+8}35、/0.02-/0.5=36、-2=8-x/237、/2-/5=18、/0.5-/0.2=1.639、x-=3 0、x-/2=2-/3应用题1.某车间有工人100名,每人平均每天可加工螺栓18个或螺母24个,要是每天加工的螺栓和螺母配套,应该如何分配工人?2.一项工作,甲单独做药8天完成,乙单独做要12天完成,丙单独做要24天完成。

现在甲乙丙合作3天后,甲因故离开,由乙丙合做,问还需多少天完成?3.某商品进价2000元,标价为3000元,商店以利润不低于5%的售价出售,则此商品最低可打几折?4.一辆汽车以40km/h的速度由甲地驶向乙地,车行了3小时后,因下雨被迫减少10km/h,结果比预计到达时间晚了45分钟,求甲乙两地距离?5.甲工程队有28人,乙工程队有35人,先从甲队抽调若干人到乙对,使乙队人数是甲队的两倍,应从甲队抽调多少人?6.一个两位数,个位数字是十位数字的两倍,若把个位数字和十位数字对换,则所得数比原来数大36,求原数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上册解方程20道及过程
1.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?
设初二学生还要工作x小时。

(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时
2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*[(36*2)/2]=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程结果
X=108
答:AB两地相距108千米
3.一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。

4.小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米
解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米
(1)x/3 - x-4/3=1 2x-3x+12=6 -x=-6 x=6
(2)x/3=1+ 5-3x/2 2x=6+3(5-3x) 11x=21 x=21/11
(3)x-3/3- 1/2=4 2x-9=24 2x=33 x=33/2
(4)3y-1/4 - 1=5y-7/6 9y-3-12=10y-14 -y=1 y=-1
(5)2x/3+ x/2=28 4x+3x=28 7x=28 x=4
(6)5-x/4 - 6-2x/4=10 5-x-6+2x=10 x=11
(7)y-2/6 =y/3 +1 y-2=2y+6 -y=8 y=-8
(8)y/3- y-2/6=1 2y-y+2=6 y=4
(9)x/2=x/3 +1 3x=2x+6 x=6
(10)x+1/3=x-2/2 2x-3x=3x-6 -x=-8 x=8
数学解方程去分母
2分之1(x-1)=2-5分之1(x+2)
两边乘10
5(x-1)=20-2(x+2)
5x-5=20-2x-4
5x+2x=20-4+5
7x=21
x=21/7
x=3。

相关文档
最新文档