(完整)七年级数学二元一次方程组经典练习题及答案

合集下载

七年级下册数学二元一次方程组习题及答案

七年级下册数学二元一次方程组习题及答案

二元一次方程组》8.1二元一次方程组一、填空题1、二元一次方程 4x-3y=12,当 x=0,1,2,3 时, y=2、在 x+3y=3 中,若用 x 表示 y ,则 y= ,用 y 表示 x,则 x=3、已知方程 (k 2-1)x 2+(k+1)x+(k-7)y=k+2 ,当 k= 时,方程为一元一次方程;当k= _____ 时,方程为二元一次方程。

4、对二元一次方程 2(5-x)-3(y-2)=10 ,当 x=0 时,则 y= ______________ ;当 y=0 时,则 x= _______________________________5、方程 2x+y=5 的正整数解是_。

6、若 (4x-3) 2+|2y+1|=0 ,则 x+2= 。

x y a x 27、方程组的一个解为,那么这个方程组的另一个解是。

xy b y 31ax 2y 18、若x 时,关于 x、y的二元一次方程组的解互为倒数,则2x by 2a 2b 。

二、选择题321、方程2x-3y=5,xy= 3,x 3 ,3x-y +2z=0,x2 y 6 中是y二元一次方程的有( )个。

A、1B、2C、3D、42、方程 2x+y=9 在正整数范围内的解有( )A、1个B、2个C、3个 D 、4 个3、与已知二元一次5x-y=2 组成的方程组有无数多个解的方程是( )方程A、2B、-2C、2 或-2D、以上答案都不对.A 、10x+2y=4 B、4x-y=7 C、20x-4y=3 D、 15x-3y=64、若是5x2y m与4x n m1y2n 2同类项,则m 2n的值为()A、1B、-1 C 、- 3 D、以上答案都不对5、在方程(k2-4)x 2+(2-3k)x+(k+1)y+3k=0 中,若此方程为二元一次方程,则k值为(6、若 x 2是二元一次方程组的解,则这个方程组是( ) y17、在方程 2(x y ) 3(y x ) 3中,用含 x 的代数式表示 y ,则 (A 、 y 5x 3B 、 y x 3C 、 y 5x 38、已知x=3-k,y=k+2,则y与x的关系是() A、x+y=5 B、x+y=1 C、x-y=1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成3x 5y 610、若方程组 的解也是方程3x+ky=10 的解,则k的值是( =)A、k=6 = B、k=10 C、k=91D、k=三、解答题1、解关于 x 的方程 (a 1)(a 4)x a 2(x 1)xy72、已知方程组 ,试确定 a 、c 的值,使方程组:ax 2y c (1)有一个解;(2)有无数解;(3)没有解3、关于 x 、y 的方程 3kx 2y 6k 3,对于任何 k 的值都有相同的解,试求它的解。

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

初一数学 第八章 二元一次方程组练习题(含答案)

初一数学 第八章 二元一次方程组练习题(含答案)

二元一次方程组复习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246...22222222x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?找规律专题给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()2、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _______个。

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析1.方程组的解满足方程x+y-a=0,那么a的值是A.5B.-5C.3D.-3【答案】A.【解析】把①代入②得:y=-5,把y=-5代入①得:x=0,把y=-5,x=0代入x+y+a=0得:a=5;故选A.【考点】1.二元一次方程组的解;2.二元一次方程的解.2.解方程组(1)(2)【答案】(1);(2).【解析】分别把所给方程组进行变形,然后再求解即可.试题解析:(1)由①得:x="3y-7" ③把③代入②得:6y-14=5y整理解得:y=14把y=14代入①得:x=35所以方程组的解为:;(2)方程组可变形为:由①得:x="300-y" ③把③代入②得:1500-5y+53y=7500整理解得:x=125.把x=125代入①得:y=175.所以方程组的解为:.【考点】解二元一次方程组.3.为庆祝“六·一”国际儿童节,鸡冠区某小学组织师生共360 人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45 人、30 人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有种。

【答案】5【解析】分析:可设租用A型号客车x辆,B型号客车Y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可.解答:解:设租用A型号客车x辆,B型号客车Y辆,则45x+30y=360,即3x+2y=24,当x=0时,y=12,符合题意;当x=2时,y=9,符合题意;当x=4时,y=6,符合题意;当x=6时,y=3,符合题意;当x=8时,y=0,符合题意.故师生一次性全部到达公园的租车方案有5种.故选C.【考点】二元一次方程的应用.4.已知3x-2y+6=0,用含x的代数式表示y得:y= .【答案】.【解析】要把方程3x-2y+6=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含x的式子表示y的形式.试题解析:∵3x-2y+6=0∴2y=3x+6即:.【考点】解二元一次方程.5.若是二元一次方程组的解,求的值.【答案】3【解析】根据方程组解的定义,将代入得到关于的二元一次方程组,二式相减即可求得的值.把代入方程组得:,(1)(2),得.【考点】1.方程组的解;2.求代数式的值;3.整体思想的应用.6.方程mx-2y=x+5是二元一次方程时,m的取值范围为()A.m≠0B.m≠1C.m≠-1D.m≠2【答案】B【解析】原方程移项,得mx-x-2y=5,合并同类项,得(m-1)x-2y=5,根据二元一次方程的定义,得m-1≠0,即m≠1.故选B.【考点】二元一次方程的定义7.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x。

湘潭市七年级数学下册第八章【二元一次方程组】经典练习(含答案解析)

湘潭市七年级数学下册第八章【二元一次方程组】经典练习(含答案解析)

1.如果方程组54356x y k x y -=⎧⎨+=⎩的解中的x 与y 互为相反数,则k 的值为( ) A .1 B .1或1- C .27- D .5-2.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( ) A .6 B .9C .12D .16 3.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5 4.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种5.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩ 6.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .1967.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②8.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )23 32 23 329.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( ) A .52x y =⎧⎨=⎩ B .25x y =⎧⎨=⎩ C .61x y =⎧⎨=⎩ D .16x y =⎧⎨=⎩10.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩11.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12 C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩D .若3m n x +与22112m x y --是同类项,则2m =,1n = 二、填空题12.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.13.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为______.14.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,155()8,5B -,则点A 的坐标为__________.16.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.17.一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63,则原来的两位数是________________.18.已知方程组5257x y m x y -=⎧⎨+=⎩中,x ,y 的值相等,则m=________. 19.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.20.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.21.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元111222325325 三、解答题22.一个n 位数(2n ≥,n 为正整数),我们把最高位上的数移到它的右侧,得到一个新数,再将新数的最高位上的数移到它的右侧,又得到一个新数,…,依次类推,我们把这样操作得到的新数都叫做原数的“谦虚数”.比如56有一个“谦虚数”是65;156有两个“谦虚数”分别是561、615;2834有三个“谦虚数”分别是8342、3428、4283.(1)请写出四位数5832的三个“谦虚数”.(2)一个两位数,个位上的数与十位上的数和为9,如果这个两位数比它的“谦虚数”少9,求这个两位数.(3)一个三位数,百位上的数为a ,十位上的数为1,个位上的数为b ,如果这个三位数与它的两个“谦虚数”的和能被5整除,求+a b 的值.23.(1)22839x y x y +=⎧⎨+=⎩ (2)4143314312x y x y +=⎧⎪--⎨-=⎪⎩ 24.若方程组 4x y a x y a+=⎧⎨-=⎩的解是二元一次方程35900x y --=的一个解,求a 的值. 25.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求()20203a b +的值.1.已知2x 2y 3a 与﹣4x 2a y 1+b 是同类项,则a b 的值为( )A .1B .﹣1C .2D .﹣22.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( ) A .14和6 B .24和16 C .28和12 D .30和13.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ 4.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = 6.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( )A . 4.512x y y xB . 4.512x y y xC . 4.512x y x yD . 4.512x y y x 7.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( )42 32 52 518.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩ 9.解关于,x y 的方程组()()()1328511m x n y n x my ①②⎧+-+=⎪⎨-+=⎪⎩可以用①2+⨯②,消去未知数x ,也可以用①+②5⨯消去未知数y ,则mn 、的值分别为( ) A .23,39-- B .23,40-- C .25,39-- D .25,40-- 10.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩11.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( )A .6B .7C .8D .9二、填空题12.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费13.已知方程组278cx y ⎨-=⎩,甲解对了,得32y ⎨=-⎩.乙看错了c ,得22y ⎨=⎩.则abc 的值为_______.14.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % . 15.如图,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF 的度数.16.由于2020年新冠疫情影响,全国经济严重滑坡,为了促进经济发展,全国多地放宽摆摊政策,小华的爸爸积极响应国家的政策,在步行街摆摊经营学生学习用品,主要销售甲,乙,丙,丁四种用品,其中甲,乙两种用品的定价一样,丁的定价是丙定价的6倍.四种用品的定价均为整数.10月1日四种用品均按各自的定价销售,甲,丙用品的销售件数相同,乙的销售件数是丁的6倍,甲,乙的总销售额比丙,丁的总销售额多816元.10月2日,由于用品丁库存较多,按定价的八折销售,其余用品售价不变,乙的销量较10月1日下降了20%,其余用品销量不变,小华的爸爸为了考考小华,没有告诉小华确切的售价和数量,只是说:甲,丙的单价之差低于17元,不少于10元,乙,丁的单价之和不超过32元,10月1日、2日两天甲的销量不少于20件,不多于40件.请你帮小华算算10月2日甲,乙,丙,丁,四种用品的销售额最多_____元.17.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.18.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝. 19.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________2026 2921.已知方程组5257x y mx y-=⎧⎨+=⎩中,x,y的值相等,则m=________.三、解答题22.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.23.列方程解应用题《乌鸦喝水》的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,喝到了水.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高________cm,放入一个大球水面升高________cm;(2)如果放入10个球且使水面恰好上升到52厘米,应放入大球、小球各多少个?(3)若放入一个钢珠可以使液面上升k厘米,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41厘米,则k的整数值为____________.(球和钢珠完全在水面以下)24.对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个11215351253q十位上的1放置于p中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F(23,15)=308.(1)计算:F(13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F(a,18)+F(b,26)=32761时,求m+n的值.25.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?1.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A .958220x y x y +=⎧⎨-=⎩B .954220x y x y +=⎧⎨-=⎩C .9516220x y x y +=⎧⎨-=⎩D .9516110x y x y +=⎧⎨-=⎩ 2.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )A .23倍 B .32倍 C .2倍 D .3倍 3.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .04.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm5.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C22A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,6.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩ 7.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .1968.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩9.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .449x y y x y x -=+⎧⎨-=+⎩ B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩10.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( ) A .21x y += B .328x y +=- C .348x y -=-D .543x y +=-11A .32x y -=B .1xy =C .2+3=x xD .153y-= 二、填空题12.写出方程35x y -=的一组解_________.13.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .14.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % . 15.若2(321)4330x y x y -++--=,则x y -=_____. 16.已知2(2)40x y x y ++--=,则y x的值是_______. 17.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中车厘子、波罗蜜、山竹三种水果成本之和,盒子成本忽略不计,蒸蒸日上每盒分别装有车厘子、波罗蜜、山竹三种水果8千克,4千克,3千克;独占鳌头每盒装有车厘子、波罗蜜、山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的14倍,每盒蒸蒸日上的销售利润是60%,每盒独占鳌头的售价是成本的43倍,每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______.18.已知关于x 、y 的方程组22332x y k x y k -=⎧⎨-=-⎩的解满足24x y -=,则k 的值为_______. 19.如果方程组25x bx ay =⎧⎨+=⎩的解与方程组41y by ax =⎧⎨+=⎩的解相同,则+a b 的值为______. 20.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,51321.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.三、解答题22.解方程组:(1)524365yxx y-⎧=⎪⎨⎪+=⎩①②(2)3519 8367 x yx y①②+=⎧⎨-=⎩23.对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p,q).例如:当p=23,q=15时,将p 十位上的2放置于q中1与5之间,将p个位上的3位置于q中5的右边,得到1253.将q十位上的1放置于p中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F(23,15)=308.(1)计算:F(13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F(a,18)+F(b,26)=32761时,求m+n的值.24.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.25.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如下表所示:1032000 1(2)营业厅将手机销售完成后共获得利润多少元?。

人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

人教版七年级数学下册 第八章  二元一次方程组  8.2.2  用加减法解二元一次方程组  同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。

七年级初一数学下册 二元一次方程组试题及答案百度文库

七年级初一数学下册 二元一次方程组试题及答案百度文库

21
A. D 3
2 7 B. Dx 14
C. Dy 27
D.方程10.已知方程组{
的解是方程 x﹣y=1 的一个解,则 m 的值是( )
mx y 5
A.1
B.2
C.3
D.4
a b c 0 11.下列四组数值中,方程组 2a b c 5 的解是( )
3a b c 4
a 0 A. b 1
c 1
a 1 B. b 2
c 1
a 1 C. b 1
c 2
a 1 D. b 2
c 3
12.已知关于
x,y
的方程组
x x
2y 3 y 2a
a
,其中﹣2≤a≤0.下列结论:①当
a=0
时,
x,y
的值互为相反数;②
x
y
2 0
是方程组的解;③当
分,如果原来二等奖比三等奖平均分数多 7 分,则调整后一等奖比二等奖平均分数多
______分.
18.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有
5 只雀、6 只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,
则重量相等;将 5 只雀、6 只燕放在一起称量,则总重量为 1 斤.问雀、燕每 1 只各重多
的解,则
3m+n=_____.
17.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前 60 名获奖,
原定一等奖 5 人,二等奖 15 人,三等奖 40 人,现调整为一等奖 10 人,二等奖 20 人,三
等奖 30 人,调整后一等奖平均分降低 3 分,二等奖平均分降低 2 分,三等奖平均分降低 1

完整版七年级数学二元一次方程组经典练习题及答案

完整版七年级数学二元一次方程组经典练习题及答案

完整版七年级数学二元一次方程组经典练习题及答案
一、 填空题
1、 二元一次方程4x-3y=12, 当x=0, 1, 2, 3时, y=
2、 在x+3y=3中, 若用x 表示y, 则y= ,用y 表示x, 则x=
3、已知方程(k ²-1)x ²+(k+1)x+(k-7)y=k+2, 当 k= 时, 方程为一元一次方程; 当 k= 时, 方程为二元一次方程。

5、 方程2x+y=5的正整数解是 .
6、 若(4x-3)²+|2y+1|=0, 则x+2= 。

二、选择题
1、方程 2x −3y =5,xy =3,x +3y =3,3x −y +2z =0,x 2+y =6中是二元一次方程的有( )个。

A 、 1 B 、 2 C 、 3 D 、 4
2、方程2x+y=9在正整数范围内的解有( )
A 、 1个
B 、2个
C 、3个
D 、4个
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )
A 、 10x+2y=4
B 、 4x-y=7
C 、 20x-4y=3
D 、 15x-3y=6
4、若是 5x²yᵐ与 4xⁿ⁺ᵐ⁺¹y²ⁿ⁻²同类项,则m ²-n| 的值为 ( )
A 、 1
B 、 -1
C 、 -3
D 、以上答案都不对 7、方程组 {x +y =a xy =b 的一个解为 {x =2y =3
,那么这个方程组的另一个解是 。

8、 若 x =12
时, 关于x 、y 的二元一次方程组 {ax −2y =1
x −by =2的解互为倒数, 则 a-2b= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +951、当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;52、a 、b 、c 取什么数值时,x 3-ax 2+bx +c 程(x -1)(x -2)(x -3)恒等? 53、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。

54、试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解。

六、列方程(组)解应用题55、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?56、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?57、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量。

59、甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离。

60、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的201是11的倍数,且也是一个两位数,求原来的这两个两位数。

【参考答案】一、1、√; 2、√; 3、×; 4、×; 5、×; 6、×; 7、√; 8、√; 9、×;10、×; 11、×; 12、×; 二、13、D ; 14、B ; 15、C ; 16、A ; 17、C ; 18、A ;19、C ; 20、A ;21、A ; 22、B ; 23、B ; 24、A ; 三、25、47,8,⎩⎨⎧==14y x ; 26、2; 27、4125+=y x ; 28、a =3,b =1;29、⎩⎨⎧==20b a ⎩⎨⎧==11b a ⎩⎨⎧==02b a 30、21; 31、3,-4 32、1; 33、20;34、a 为大于或等于3的奇数; 35、4:3,7:9 36、0;四、37、⎩⎨⎧==204162n m ; 38、⎪⎩⎪⎨⎧==22a y ax ; 39、⎩⎨⎧-==13y x ; 40、⎩⎨⎧==11y x ; 41、⎩⎨⎧==11y x ; 42、⎪⎩⎪⎨⎧==225y x ; 43、⎪⎩⎪⎨⎧===168z y x ; 44、⎪⎩⎪⎨⎧===397z y x ;45、⎪⎩⎪⎨⎧-=-==212z y x ; 46、⎪⎩⎪⎨⎧===202112z y x ;五、47、⎩⎨⎧-=-=+2941358y x y x ,⎪⎪⎩⎪⎪⎨⎧==231792107y x ;48、a =-1 49、11x 2-30x +19;50、31=a ; 51、23=a ,b =±3 52、a =6, b =11,c =-6;53、(1)m 是大于-4的整数,(2)m =-3,-2,0,⎩⎨⎧==48y x ,⎩⎨⎧==24y x ,⎩⎨⎧==12y x ; 54、⎩⎨⎧=-=91y x 或⎩⎨⎧==95y x ; 六、55、A 、B 距离为450千米,原计划行驶9.5小时;56、设女生x 人,男生y 人,⎪⎪⎩⎪⎪⎨⎧=⨯-++=-++682)4(2340423y x y x ⎩⎨⎧==)(32)(21人人y x57、设甲速x 米/秒,乙速y 米/秒 ⎩⎨⎧==-y x y x 641055 ⎩⎨⎧==)/(4)/(6秒米秒米y x58、甲的容量为63升,乙水桶的容量为84升;59、A 、B 两地之间的距离为52875米; 60、所求的两位数为52和62。

相关文档
最新文档