2 第2讲 参数方程

合集下载

第二讲:曲线的参数方程

第二讲:曲线的参数方程

1.第二讲:曲线的参数方程参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O的参数其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为φ是参数).。

第二讲 参数方程

第二讲   参数方程

第二讲 参数方程1.参数方程定义【例1】一架救援飞机在离地面500m 高处以100m/s 的速度作水平直线飞行。

为使投放的救援物资准确落于灾区指定的地面(不计空气阻力)飞行员应如何确定投放时机呢?在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

【参数方程运用举例】【例2】已知曲线C 的参数方程是23()21x tt y t =⎧⎨=+⎩为参数(1) 判断点()()12M 01M 54,,,与曲线C 的位置关系。

(2) 已知点()3M 6a ,在曲线C 上,求a 的值。

【练习】已知等腰直角ABC ∆,B 为直角定点,且在x 轴的正方向上运动,A 在y 轴正方向上运动,2AB =,求点C 轨迹的参数方程.如何找合理的参数,1、参数一般要有几何意义或物理意义;2、动点(),M x y 中的变量,x y 与参数间的关系容易找到。

2.圆的参数方程(1)圆心在原点:___________________________;(2)圆心不在原点:_____________________________.【运用举例】【例3】圆O 的半径为2,P 是圆上的动点,Q (6,0),M 是PQ 的中点。

当点P 绕O 运动时,求点M 的轨迹的参数方程.探究1:若将条件改为3=呢3.参数方程与普通方程的互化(消参法、代入法,注意范围的相容性)探究2:例3中对应的普通方程的是____________________________【例4】把下列的参数方程化为普通方程,并说明他们各表示什么曲线(1)参数方程)(.2s 1y ,cos sin x 为参数θθθθ⎩⎨⎧+=+=in (2)参数方程)(.2-1y 1,t x 为参数t t ⎪⎩⎪⎨⎧=+=【练习】(3))t (.t 1t y ,t 1t x 为参数⎪⎪⎩⎪⎪⎨⎧-=+= 【例5】求椭圆的参数方程一个参数方程:14y 9x 22=+。

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。

)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。

例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。

第二讲:曲线的参数方程

第二讲:曲线的参数方程

可以使其准确落在指定位置.
1、参数方程的概念:
一般地, 在平面直角坐标系中,如果曲线上任意一点的
坐标x, y都是某个变数t的函数
x f (t),

y

g (t ).
(2)
那么方程(2) 就叫做这条曲线的参数方程, 联系变数x,y 的变数t叫做参数.
相对于参数方程而言,直接给出点的坐标间关系 的方程叫做普通方程。
x 1 cos

参数方程为

y

3

sin
(θ为参数)
例2 如图,圆O的半径为2,P是圆上的动点, Q(6,0)是x轴上的定点,M是PQ的中点,当 点P绕O作匀速圆周运动时,求点M的轨迹的 参数方程。
y
P M

o
Qx
解:设点M的坐标是(x, y),xOP ,则点
P的坐标是(2 cos ,2sin ),由中点坐标公式得:
x 3
1 t 2 (t为参数)和x 3
1t2
y 2t
y 2t
小结:
(1)圆:(x-x0)2+(y-y0)2= r2
x x0 r cos

y

y0
r sin
(为参数)
(2)椭圆:x
a
2 2

y2 b2
1,(a

b
0)
(3)双曲线:ax22
由参数的任意性,可取y 2sin ,
所以椭圆 x2 y2 1的参数方程是 94
x

y

3 c os (为参数) 2sin
(2)把y 2t代入椭圆方程,得x2 4t 2 1 94

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ

(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.

人教A版数学【选修4-4】ppt课件:2-4第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-4第二讲-参数方程

3π x= , 2 即得对应的点的坐标. y=3,
【答案】 3
3π ,3 2
变式训练1
半径为2的基圆的渐开线的参数方程为
________,当圆心角φ=π时,曲线上点的直角坐标为________.
解析 半径为2的基圆的渐开线的参数方程为 (φ为参数).
x=2cosφ+φsinφ, y=2sinφ-φcosφ
(φ为参数),求对应圆的摆线的参数方程.

首先根据渐开线的参数方程可知圆的半径为6,所以对 (φ为参数).
x=6φ-6sinφ, 应圆的摆线的参数方程为 y=6-6cosφ
x=cosφ+φsinφ, π 【例3】 当φ= ,π时,求出渐开线 (φ为 2 y=sinφ-φcosφ
课堂互动探究
剖析归纳 触类旁通
典例剖析 【例1】
x=3cosφ+3φsinφ, 给出某渐开线的参数方程 y=3sinφ-3φcosφ

为参数),根据参数方程可以看出该渐开线的基圆半径是 ________,且当参数φ取 ________.
【分析】 根据一般情况下基圆半径为r的渐开线的参数方程 (φ为参数)进行对照可知.
故A,B两点间的距离为 |AB|= 3π π [ 2 +1-2-1]2+1-12
= π+22=π+2.
参数)上的对应点A,B,并求出A,B间的距离.
【解】
x=cosφ+φsinφ, π 将φ=2代入 y=sinφ-φcosφ,
π π π π 得x=cos2+2sin2=2, π π π y=sin - cos =1. 2 2 2
π ∴A(2,1).
x=cosφ+φsinφ, 将φ=π代入 y=sinφ-φcosφ,

教学设计2:第2讲 参数方程

教学设计2:第2讲 参数方程

选修4-4 坐标系与参数方程 第2课时 参 数 方 程1. (选修44P 56习题第2题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),求直线的斜率.【解】k =y -2x -1=-3t 2t=-32.∴ 直线的斜率为-32.2. (选修44P 56习题第2题改编)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程.【解】转化为普通方程:y =x -2,x ∈[2,3],y ∈[0,1].3. 求直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t (t 为参数)过的定点.【解】y +1x -3=4a ,-(y +1)a +4x -12=0对于任何a 都成立,则x =3,且y =-1.∴ 定点为(3,-1).4. 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4t 2,y =t (t 为参数),若点P(m ,2)在曲线C 上,求m 的值.【解】点P(m ,2)在曲线C 上,则⎩⎪⎨⎪⎧m =4t22=t ,所以m =16.5. (选修44P57习题第6题改编)已知直线l 1:⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A(1,2),求|AB|.【解】将⎩⎪⎨⎪⎧x =1+3t ,y =2-4t 代入2x -4y =5得t =12,则B ⎝⎛⎭⎫52,0,而A(1,2),得|AB|=52.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcosα,y =y 0+lsinα(l 为参数). l 是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ(θ为参数).(3) 椭圆方程x 2a 2+y 2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acosθ,y =bsinθ(θ为参数).(4) 双曲线方程x 2a 2-y 2b 2=1(a>0,b>0)的参数方程是⎩⎨⎧x =a 2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围. [备课札记]题型1 参数方程与普通方程的互化例1 将参数方程⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t (t 为参数)化为普通方程.【解】(解法1)因为⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4,所以⎝⎛⎭⎫x 22-⎝⎛⎭⎫y 42=4.化简得普通方程为x 216-y 264=1.(解法2)因为⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t ,所以t =2x +y 8,1t =2x -y 8,相乘得(2x +y )(2x -y )64=1.化简得普通方程为x 216-y 264=1.备选变式(教师专享)将参数方程⎩⎪⎨⎪⎧y =cos2θ,x =sinθ 化为普通方程,并说明它表示的图形.【解】由⎩⎪⎨⎪⎧y =cos2θ,x =sinθ,可得⎩⎪⎨⎪⎧y +12=cos 2θ,x 2=sin 2θ,即y +12+x 2=1,化简得y =1-2x 2.又-1≤x 2=sin 2θ≤1,则-1≤x≤1,则普通方程为y =1-2x 2,在[]-1,1时此函数图象为抛物线的一部分.题型2 求参数方程例2 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 【解】(1) 直线的参数方程为⎩⎨⎧x =1+tcos π6,y =1+tsin π6,即⎩⎨⎧x =1+32t ,y =1+12t(t 为参数). (2) 把直线⎩⎨⎧x =1+32t ,y =1+12t代入x 2+y 2=4,得⎝⎛⎭⎫1+32t 2+⎝⎛⎭⎫1+12t 2=4,t 2+(3+1)t -2=0,t 1t 2=-2,则点P 到A 、B 两点的距离之积为2. 变式训练 过点P ⎝⎛⎭⎫102,0作倾斜角为α的直线与曲线x 2+2y 2=1交于点M 、N ,求|PM|·|PN|的最小值及相应的α的值.【解】设直线为⎩⎪⎨⎪⎧x =102+tcosα,y =tsinα(t 为参数),代入曲线并整理得(1+sin 2α)t 2+(10cosα)t +32=0, 则|PM|·|PN|=|t 1t 2|=321+sin 2α.所以当sin 2α=1时,|PM|·|PN|的最小值为34,此时α=π2.题型3 参数方程的应用例3 已知点P(x ,y)是圆x 2+y 2=2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a≥0恒成立,求实数a 的取值范围.【解】(1) 设圆的参数方程为⎩⎪⎨⎪⎧x =cosθ,y =1+sinθ,2x +y =2cosθ+sinθ+1=5sin(θ+φ)+1, ∴ -5+1≤2x +y≤5+1. (2) x +y +a =cosθ+sinθ+1+a≥0,∴ a≥-(cosθ+sinθ)-1=-2sin ⎝⎛⎭⎫θ+π4-1, ∴ a≥2-1.备选变式(教师专享)在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.【解】设椭圆的参数方程为⎩⎨⎧x =4cosθy =23sinθ,d =|4cosθ-43sinθ-12|5=455||cosθ-3sinθ-3=455⎪⎪⎪⎪2cos ⎝⎛⎭⎫θ+π3-3, 当cos ⎝⎛⎭⎫θ+π3=1时,d min =455,此时所求点为(2,-3).1. 在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cosθ,y =5sinθ⎝⎛⎭⎫θ为参数,0≤θ≤π2和⎩⎨⎧x =1-22t ,y =-22t(t 为参数),求曲线C 1和C 2的交点坐标. 【解】曲线C 1的方程为x 2+y 2=5(0≤x≤5), 曲线C 2的方程为y =x -1,由⎩⎪⎨⎪⎧x 2+y 2=5,y =x -1x =2或x =-1(舍去),则曲线C 1和C 2的交点坐标为(2,1).2. (2013·湖南)在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cosφ,y =2sinφ(φ为参数)的右顶点,求常数a 的值.【解】直线的普通方程为y =x -a.椭圆的标准方程为x 29+y 24=1,右顶点为(3,0),所以点(3,0)在直线y =x -a 上,代入解得a =3.3. (2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A 、B 两点,求|AB|.【解】极坐标方程为ρcosθ=4的直线的普通方程为x =4.曲线的参数方程化为普通方程为y 2=x 3,当x =4时,解得y =±8,即A(4,8),B(4,-8), 所以|AB|=8-(-8)=16.4. (2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tanθ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.【解】∵ 直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t ,∴ 消去参数t 后得直线的普通方程为2x -y-2=0,①同理得曲线C 的普通方程为y 2=2x ,②①②联立方程组解得它们公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.1. 在极坐标系中,圆C 的方程为ρ=22sin ⎝⎛⎭⎫θ+π4,以极点为坐标原点、极轴为x 轴正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),判断直线l 和圆C 的位置关系.【解】ρ=22sin ⎝⎛⎭⎫θ+π4,即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2.消去参数t ,得直线l 的直角坐标方程为y =2x +1.圆心C 到直线l 的距离d =|2-1+1|22+12=255.因为d =255<2,所以直线l 和圆C 相交.2. 已知极坐标方程为ρcosθ+ρsinθ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cosθ,y =sinθ(θ为参数)交于点A 、B ,求PA·PB 的值.【解】直线过点P(1,0),参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数).代入椭圆方程x 24+y 2=1,整理得52t 2+2t -3=0,则PA·PB =|t 1t 2|=65.3. 已知曲线C 的极坐标方程为ρ=6sinθ,以极点为原点、极轴为x 轴非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段的长度.【解】将曲线C 的极坐标方程化为直角坐标方程x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心、以3为半径的圆,直线l 的普通方程为y =3x +1,圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.4. 已知直线C 1:⎩⎪⎨⎪⎧x =1+tcosα,y =tsinα(t 为参数),C 2:⎩⎪⎨⎪⎧x =cosθ,y =sinθ(θ为参数).(1) 当α=π3时,求C 1与C 2的交点坐标;(2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【解】 (1) 当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝⎛⎭⎫12,-32.(2) C 1的普通方程为xsinα-ycosα-sinα=0.A 点坐标为(sin 2α,-cosαsinα),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sinαcosα(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎫x -142+y 2=116. 故P 点轨迹是圆心为⎝⎛⎭⎫14,0,半径为14的圆.直线的参数方程:经过点M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的普通方程是y -y 0=tanα(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+tcosα,y =y 0+tsinα(t 为参数).特别说明:直线参数方程中参数的几何意义:过定点M 0(x 0,y 0),倾斜角为α的直线l的参数方程为⎩⎪⎨⎪⎧x =x 0+tcosα,y =y 0+tsinα(t 为参数),其中t 表示直线l 上以定点M 0为起点,任一点M(x ,y)为终点的有向线段M 0M →的数量,当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0.我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上的点M 的坐标,其单位长度与原直角坐标系中的单位长度相同.请使用课时训练(B )第2课时(见活页).选修4-5 不等式选讲第1课时 绝对值不等式(对应学生用书(理)198~199页)1. 解不等式:|x +1|>3.【解】由|x +1|>3得x +1<-3或x +1>3,解得x <-4或x >2.所以解集为(-∞,-4)∪(2,+∞).2. 解不等式:3≤|5-2x|<9.【解】⎩⎪⎨⎪⎧|2x -5|<9|2x -5|≥3⎩⎪⎨⎪⎧-9<2x -5<92x -5≥3或2x -5≤-3⎩⎪⎨⎪⎧-2<x<7,x≥4或x≤1,得解集为(-2,1]∪[4,7).3. 已知|x -a|<b(a 、b ∈R )的解集为{x|2<x<4}, 求a -b 的值.【解】由|x -a|<b ,得a -b<x<a +b.又|x -a|<b(a 、b ∈R )的解集为{x|2<x<4},所以a -b =2.4. 解不等式:|2x -1|-|x -2|<0. 【解】原不等式等价于不等式组①⎩⎪⎨⎪⎧x≥2,2x -1-(x -2)<0,无解; ②⎩⎪⎨⎪⎧12<x <2,2x -1+(x -2)<0,解得12<x<1;③⎩⎪⎨⎪⎧x≤12,-(2x -1)+(x -2)<0,解得-1<x≤12.综上得-1<x <1,所以原不等式的解集为{x|-1<x <1}. 5. 求函数y =|x -4|+|x -6|的最小值.【解】y =|x -4|+|x -6|≥|x -4+6-x|=2.所以函数的最小值为2.1. 不等式的基本性质 ①a>b b<a ;②a>b ,b>c a>c ;③a>ba +c>b +c ;④a>b ,c>0ac>bc ;a>b ,c<0ac<bc ; ⑤a>b>0a n >b n (n ∈N ,且n>1); ⑥a>b>0na>nb(n ∈N ,且n>1).2. 含有绝对值的不等式的解法 ①|f(x)|>a(a>0) f(x)>a 或f(x)<-a ;②|f(x)|<a(a>0)-a<f(x)<a.3. 含有绝对值的不等式的性质 ①|a|+|b|≥|a +b|;②|a|-|b|≤|a +b|; ③|a|-|b|≤|a±b|≤|a|+|b|. [备课札记]题型1 含绝对值不等式的解法 例1 解不等式:|x +3|-|2x -1|<x2+1.【解】 ① 当x<-3时,原不等式化为-(x +3)-(1-2x)<x2+1,解得x<10,∴ x<-3.② 当-3≤x<12时,原不等式化为(x +3)-(1-2x)<x 2+1,解得x<-25,∴ -3≤x<-25.③ 当x≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x>2,∴ x>2.综上可知,原不等式的解集为{x|x<-25或x>2}.备选变式(教师专享)(2011·南京一模)解不等式|2x -4|<4-|x|.【解】原不等式等价于①⎩⎪⎨⎪⎧x<0,4-2x<4+x或②⎩⎪⎨⎪⎧0≤x≤2,4-2x<4-x 或③⎩⎪⎨⎪⎧x>2,2x -4<4-x , 不等式组①无解.由②0<x≤2,③2<x<83, 得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x<83. 题型2 含绝对值不等式性质的运用例2 已知函数f(x)=|x -1|+|x -2|. 若不等式|a +b|+|a -b|≥|a|f(x)(a≠0,a 、b ∈R )恒成立,求实数x 的取值范围.【解】由题知,|x -1|+|x -2|≤|a -b|+|a +b||a|恒成立,故|x -1|+|x -2|不大于|a -b|+|a +b||a|的最小值.∵ |a +b|+|a -b|≥|a +b +a -b|=2|a|,当且仅当(a +b)·(a -b)≥0时取等号,∴ |a -b|+|a +b||a|的最小值等于2. ∴ x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得12≤x≤52. 变式训练已知函数f(x)=|x -a|.(1) 若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a 的值;(2) 在(1)的条件下,若f(x)+f(x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【解】(1) 由f(x)≤3得|x -a|≤3,解得a -3≤x≤a +3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2. (2) 当a =2时,f(x)=|x -2|,设g(x)=f(x)+f(x +5),于是g(x)=|x -2|+|x +3|≥|(2-x)+(x +3)|=5,当且仅当(2-x)(x +3)≥0即当-3≤x≤2时等号成立.所以实数m 的取值范围是{m|m≤5}.题型3 含绝对值不等式综合运用例3 设函数f(x)=|x -a|+3x ,其中a >0.(1) 当a =1时,求不等式f(x)≥3x +2的解集;(2) 若不等式f(x)≤0的解集为{x|x≤-1},求a 的值.【解】(1) 当a =1时,f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1,故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2) 由f(x)≤0得|x -a|+3x≤0,此不等式化为不等式组⎩⎪⎨⎪⎧x≥a ,x -a +3x≤0或⎩⎪⎨⎪⎧x≤a a -x +3x≤0,即⎩⎪⎨⎪⎧x≥a ,x≤a 4或⎩⎪⎨⎪⎧x≤a ,x≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x|x≤-a 2. 由题设可得-a 2=-1,故a =2. 变式训练已知关于x 的不等式|ax -1|+|ax -a|≥2(a>0).(1) 当a =1时,求此不等式的解集;(2) 若此不等式的解集为R ,求实数a 的取值范围.【解】(1) 当a =1时,不等式为|x -1|≥1,∴ x≥2或x≤0,∴ 不等式解集为{x|x≤0或x≥2}.(2) 不等式的解集为R ,即|ax -1|+|ax -a|≥2(a>0)恒成立.∵ |ax -1|+|ax -a|=a ⎝⎛⎭⎫⎪⎪⎪⎪x -1a +|x -1|≥a ⎪⎪⎪⎪1-1a , ∴ a ⎪⎪⎪⎪1-1a =|a -1|≥2.∵ a>0,∴ a≥3, ∴ 实数a 的取值范围为[3,+∞).1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,求实数a 的取值范围.【解】因为不等式|x -5|+|x +3|的最小值为8,所以要使不等式|x -5|+|x +3|<a 无解,则a≤8,即实数a 的取值范围是(-∞,8].2. (2013·江西)在实数范围内,求不等式||x -2|-1|≤1的解集.【解】由||x -2|-1|≤1得-1≤|x -2|-1≤1,即0≤|x -2|≤2,即-2≤x -2≤2,解得0≤x≤4,所以原不等式的解集为[0,4].3. 已知实数x 、y 满足:|x +y|<13,|2x -y|<16.求证:|y|<518. 证明:∵ 3|y|=|3y|=|2(x +y)-(2x -y)|≤2|x +y|+|2x -y|,由题设|x +y|<13,|2x -y|<16,∴ 3|y|<23+16=56.∴ |y|<518. 4. (2013·福建理)设不等式|x -2|<a(a ∈N *)的解集为A ,且32∈A ,12A. (1) 求a 的值;(2) 求函数f(x)=|x +a|+|x -2|的最小值.【解】(1) 因为32∈A ,且12A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a , 解得12<a≤32.因为a ∈N *,所以a =1. (2) 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x≤2时取等号,所以f(x)的最小值为3.1. 解不等式:|x -1|>2x. 【解】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x -1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.2. 若不等式|3x -b|<4的解集中整数有且只有1,2,3,求实数b 的取值范围.【解】由|3x -b|<4,得-4<3x -b <4,即b -43<x <b +43. 因为解集中整数有且只有1,2,3,所以⎩⎨⎧0≤b -43<1,3<b +43≤4,解得⎩⎪⎨⎪⎧4≤b <7,5<b≤8,所以5<b <7. 3. 已知函数f(x)=|x +a|+|x -2|.(1) 当a =-3时,求不等式f(x)≥3的解集;(2) 若f(x)≤|x -4|的解集包含[1,2],求a 的取值范围.【解】(1) 当a =-3时,f(x)≥3|x -3|+|x -2|≥3⎩⎪⎨⎪⎧x≤23-x +2-x≥3或⎩⎪⎨⎪⎧2<x<33-x +x -2≥3或⎩⎪⎨⎪⎧x≥3x -3+x -2≥3 x≤1或x≥4.(2) 原命题f(x)≤|x -4|在[1,2]上恒成立|x +a|+2-x≤4-x 在[1,2]上恒成立-2-x≤a≤2-x 在[1,2]上恒成立-3≤a≤0.4. 已知f(x)=|ax +1|(a ∈R ),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1) 求a 的值,(2) 若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 【解】(1) 由|ax +1|≤3得-4≤ax≤2,又f(x)≤3的解集为{x|-2≤x≤1},所以,当a≤0时,不合题意当a>0时,-4a ≤x≤2a,得a =2. (2) 记h(x)=f(x)-2f ⎝⎛⎭⎫x 2,则h(x)=⎩⎪⎨⎪⎧1,x≤-1-4x -3,-1<x<-12-1,x≥-12, 所以|h(x)|≤1,因此k≥1.1. |ax +b|≤c(c >0)和|ax +b|≥c(c >0)型不等式的解法(1) |ax +b|≤c -c≤ax +b≤c ;(2) |ax +b|≥c ax +b≥c 或ax +b≤-c.2. |x -a|+|x -b|≥c(c >0)和|x -a|+|x -b|≤c(c >0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

第2讲参数方程与极坐标

第2讲参数方程与极坐标

第2讲参数方程与极坐标参数方程与极坐标是数学中用来描述曲线的两种不同的方式。

它们在平面几何、计算机图形学和物理学等领域中都有广泛的应用。

本文将详细介绍参数方程和极坐标,并比较它们的优缺点。

参数方程是一种使用参数来表示曲线上的每个点的方法。

通常情况下,参数方程用(t,f(t))的形式表示。

其中t是参数,f(t)是x坐标和y坐标的函数。

通过改变参数t的取值范围,可以得到曲线上的点的不同位置。

参数方程的优点之一是它能够描述复杂的曲线。

相比于直角坐标系中的方程形式,参数方程可以更方便地描述曲线的形状和特征。

例如,对于一个圆,它的参数方程可以写成x=r*cos(t),y=r*sin(t),其中r是半径,t的取值范围是[0, 2π]。

通过改变参数t的取值,可以得到圆上的所有点。

参数方程的另一个优点是它能够描述曲线上的每个点的运动轨迹。

例如,对于一个抛物线,它的参数方程可以写成x=t,y=t^2,其中t的取值范围是实数集。

通过改变参数t的取值,可以得到抛物线上的所有点的位置。

然而,参数方程也有一些局限性。

首先,它只适用于平面曲线,无法描述空间曲线。

其次,尽管参数方程可以用来描述复杂曲线,但对于一些简单的曲线,参数方程可能会比直角坐标系下的方程形式更加复杂。

极坐标是一种使用极径和极角来表示平面上的每个点的方法。

极径是点到原点的距离,极角是点的极坐标与x轴正方向之间的夹角。

通常情况下,极坐标用(r,θ)的形式表示。

极坐标的优点之一是它能够更方便地描述对称性。

对于一个圆,它的极坐标方程可以写成r=a,其中a是常数,θ的取值范围是[0,2π]。

通过改变极角θ的取值,可以得到圆上的所有点。

极坐标的另一个优点是它能够更方便地描述旋转。

对于一个正多边形,它的极坐标方程可以写成r=a,其中a是常数,θ的取值范围是[0,2π/n],n是多边形的边数。

通过改变极角θ的取值,可以得到多边形绕原点旋转的轨迹。

然而,极坐标也有一些局限性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.直线、圆和圆锥曲线的参数方程经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.(2)利用曲线的参数方程来求解两曲线间的最值问题,常转化三角函数最值问题.(3)将参数方程化为普通方程,在消参数的过程中,要注意x ,y 的取值范围,保持等价转化. (4)确定曲线的参数方程时,一定要根据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. 解:直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0), 则3-a =0, 所以a =3.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),求它们的交点坐标.解:根据题意,两曲线分别是椭圆x 25+y 2=1的上半部分和开口向右的抛物线y 2=45x ,联立易得它们的交点坐标为⎝⎛⎭⎫1,255.如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:圆的半径为12,记圆心为C ⎝⎛⎭⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ, y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,求直线l 被圆C 截得的弦长.解:化为直角坐标方程,利用圆的几何性质求解.直线l 的普通方程是x -y -4=0,圆C 的直角坐标方程是x 2+y 2-4x =0,标准方程为(x -2)2+y 2=4.圆心(2,0)到直线的距离为|2-4|2=2, 所以直线l 被圆C 截得的弦长为2r 2-d 2=24-2=2 2.参数方程与普通方程的互化[典例引领]已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线. 【解】 曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k 1+k 2,y =6k 21+k 2;(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ.解:(1)两式相除,得k =y2x ,将其代入得x =3·y 2x1+⎝⎛⎭⎫y 2x 2,化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6).(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ),x =1-sin 2θ∈[0,2],得y 2=2-x . 即所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程的应用[典例引领](2017·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 【解】 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0,或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117, 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等. (2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|.(2018·广东惠州模拟)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t(t 为参数),l 与C 分别交于点M ,N .(1)写出C 的直角坐标方程和l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 解:(1)曲线C 的直角坐标方程为y 2=2ax (a >0); 直线l 的普通方程为x -y -2=0.(2)将直线l 的参数方程代入C 的直角坐标方程,可得t 2-22(4+a )t +8(4+a )=0.(*) 由题意知Δ=8a (4+a )>0, 又a >0,所以4+a >0.设点M ,N 对应的参数分别为t 1,t 2,则t 1,t 2恰为方程(*)的根. 易知|PM |=|t 1|,|PN |=|t 2|,|MN |=|t 1-t 2|, 由题设得(t 1-t 2)2=|t 1t 2|, 即(t 1+t 2)2-4t 1t 2=|t 1t 2|.又由(*)得t 1+t 2=22(4+a ),t 1t 2=8(4+a )>0, 则有(4+a )2-5(4+a )=0, 解得a =1或a =-4. 因为a >0,所以a =1.极坐标方程与参数方程的综合问题[典例引领](2018·贵州省适应性考试)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+2cos αy =2sin α(α为参数),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)过原点且倾斜角为α(π6<α≤π4)的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.【解】 (1)曲线C 1的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,故曲线C 1的极坐标方程为ρ2=4ρcos θ,即ρ=4cos θ.由曲线C 2的极坐标方程为ρcos 2θ=sin θ,两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y .(2)法一:射线l 的极坐标方程为θ=α,π6<α≤π4,把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α, 把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α,所以|OA |·|OB |=4cos α·sin αcos 2α=4tan α,因为π6<α≤π4,所以|OA |·|OB |的取值范围是⎝⎛⎦⎤433,4.法二:射线l 的参数方程为⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,π6<α≤π4).把射线l 的参数方程代入曲线C 1的普通方程得t 2-4t cos α=0. 解得t 1=0,t 2=4cos α.故|OA |=|t 2|=4cos α. 同理可得|OB |=sin αcos 2α,所以|OA |·|OB |=4cos α·sin αcos 2α=4tan α,因为π6<α≤π4,所以|OA |·|OB |的取值范围是⎝⎛⎦⎤433,4.涉及参数方程和极坐标方程的综合问题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2018·成都市第一次诊断性检测)在平面直角坐标系xOy 中,倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcos 2θ-4sin θ=0. (1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点P (1,0).若点M 的极坐标为⎝⎛⎭⎫1,π2,直线l 经过点M 且与曲线C 相交于A ,B两点,设线段AB 的中点为Q ,求|PQ |的值.解:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数),所以直线l 的普通方程为y =tan α·(x -1).由ρcos 2θ-4sin θ=0得ρ2cos 2θ-4ρsin θ=0,即x 2-4y =0. 所以曲线C 的直角坐标方程为x 2=4y .(2)因为点M 的极坐标为⎝ ⎛⎭⎪⎫1,π2,所以点M 的直角坐标为(0,1).所以tan α=-1,直线l 的倾斜角α=3π4.所以直线l 的参数方程为⎩⎨⎧x =1-22ty =22t(t 为参数).代入x 2=4y ,得t 2-62t +2=0. 设A ,B 两点对应的参数分别为t 1,t 2. 因为Q 为线段AB 的中点,所以点Q 对应的参数值为t 1+t 22=622=3 2.又点P (1,0),则|PQ |=|t 1+t 22|=3 2.直线参数方程的应用已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(1)若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2.(2)若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22.(3)若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.[注意] 在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.圆的参数方程的应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题.[注意] 把曲线的参数方程化为普通方程或极坐标方程时易忽视参数的范围而导致出错.圆与椭圆参数方程的异同1.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数,α为直线的倾斜角). (1)写出直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 有唯一的公共点,求角α的大小. 解:(1)当α=π2时,直线l 的普通方程为x =-1;当α≠π2时,直线l 的普通方程为y =(x +1)tan α.由ρ=2cos θ,得ρ2=2ρcos θ,所以x 2+y 2=2x ,即为曲线C 的直角坐标方程.(2)把x =-1+t cos α,y =t sin α代入x 2+y 2=2x ,整理得t 2-4t cos α+3=0. 由Δ=16cos 2α-12=0,得cos 2α=34,所以cos α=32或cos α=-32, 故直线l 的倾斜角α为π6或5π6.2.以极点为原点,以极轴为x 轴正半轴建立平面直角坐标系,已知曲线C 的极坐标方程为ρ=10,曲线C ′的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α,(α为参数).(1)判断两曲线C 和C ′的位置关系;(2)若直线l 与曲线C 和C ′均相切,求直线l 的极坐标方程. 解:(1)由ρ=10得曲线C 的直角坐标方程为x 2+y 2=100,由⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α得曲线C ′的普通方程为(x -3)2+(y +4)2=25. 曲线C 表示以(0,0)为圆心,10为半径的圆; 曲线C ′表示以(3,-4)为圆心,5为半径的圆.因为两圆心间的距离5等于两圆半径的差,所以圆C 和圆C ′的位置关系是内切.(2)由(1)建立方程组⎩⎪⎨⎪⎧x 2+y 2=100,(x -3)2+(y +4)2=25,解得⎩⎪⎨⎪⎧x =6,y =-8;可知两圆的切点坐标为(6,-8),且公切线的斜率为34,所以直线l 的直角坐标方程为y +8=34(x -6),即3x -4y -50=0,所以极坐标方程为3ρcos θ-4ρsin θ-50=0.3.(2018·惠州市第三次调研考试)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线l 的倾斜角α的值. 解:(1)由ρ=4cos θ得ρ2=4ρcos θ. 因为x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ, 所以曲线C 的直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.(2)将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α代入曲线C 的方程得(t cos α-1)2+(t sin α)2=4,化简得t 2-2t cos α-3=0.设A ,B 两点对应的参数分别为t 1,t 2,则⎩⎪⎨⎪⎧t 1+t 2=2cos αt 1t 2=-3. 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=14,所以4cos 2α=2,cos α=±22,α=π4或3π4.4.(2018·陕西省高三教学质量检测试题(一))已知在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎨⎧x =22ty =22t +42(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.(1)判断直线l 与曲线C 的位置关系;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围. 解:(1)直线l 的普通方程为x -y +42=0. 曲线C 的直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y +222=1.圆心⎝⎛⎭⎫22,-22到直线x -y +42=0的距离d =|52|2=5>1, 所以直线l 与曲线C 的位置关系是相离.(2)设M ⎝⎛⎭⎫22+cos θ,-22+sin θ,(θ为MC 与x 轴正半轴所成的角) 则x +y =2sin ⎝ ⎛⎭⎪⎫θ+π4. 因为0≤θ<2π, 所以x +y ∈[-2,2].5.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ). (1)写出C 的极坐标方程,并求l 与C 的交点M ,N 的极坐标;(2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值. 解:(1)因为x =ρcos θ,y =ρsin θ,所以C 的极坐标方程为ρ=2cos θ.直线l 的直角坐标方程为y =x .联立方程组⎩⎪⎨⎪⎧y =x ,x 2-2x +y 2=0, 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.所以点M ,N 的极坐标分别为(0,0),⎝⎛⎭⎪⎫2,π4. (2)由(1)易得|MN |= 2.因为P 是椭圆x 23+y 2=1上的动点, 设P 点坐标为(3cos θ1,sin θ1).则P 到直线y =x 的距离d =|3cos θ1-sin θ1|2,所以S △PMN =12|MN |d =12×2×|3cos θ1-sin θ1|2=⎪⎪⎪⎪⎪⎪2cos ⎝⎛⎭⎪⎫θ1+π62≤1,当θ1=k π-π6,k ∈Z 时,S △PMN 取得最大值1.1.(2017·高考全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ-sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110, 代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5.2.(2018·安徽省两校阶段性测试)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos ty =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2, 所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝ ⎛⎭⎪⎫2,π2, 设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos (t +π4)|2. 所以d min =42=22, 又|AB |=2 2.所以△P AB 面积的最小值是S =12×22×22=4. 3.(2018·南昌市第一次模拟)在平面直角坐标系xOy 中,曲线C 1过点P (a ,1),其参数方程为⎩⎨⎧x =a +2t y =1+2t(t 为参数,a ∈R ).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.解:(1)因为曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a +2ty =1+2t , 所以其普通方程为x -y -a +1=0. 因为曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, 所以ρ2cos 2θ+4ρcos θ-ρ2=0, 所以x 2+4x -x 2-y 2=0, 即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2, 由⎩⎪⎨⎪⎧y 2=4x ,x =a +2t y =1+2t, 得2t 2-22t +1-4a =0. Δ=(22)2-4×2(1-4a )>0,即a >0,由根与系数的关系得⎩⎨⎧t 1+t 2=2t 1·t 2=1-4a 2.根据参数方程的几何意义可知|P A |=2|t 1|,|PB |=2|t 2|, 又|P A |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.所以当t 1=2t 2时,有⎩⎨⎧t 1+t 2=3t 2=2t 1·t 2=2t 22=1-4a 2,解得a =136>0,符合题意. 当t 1=-2t 2时,有⎩⎨⎧t 1+t 2=-t 2=2t 1·t 2=-2t 22=1-4a 2,解得a =94>0,符合题意.1 36或9 4.综上所述,实数a的值为。

相关文档
最新文档