2012高三解析几何习题答案解析(2)

2012高三解析几何习题答案解析(2)
2012高三解析几何习题答案解析(2)

2013届高三数学章末综合测试题(16)解析几何

一、选择题:本大题共12小题,每小题5分,共60分.

1.若直线l 与直线y =1、x =7分别交于点P 、Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )

A.13 B .-13 C .-32 D.2

3

解析:设P 点坐标为(a,1),Q 点坐标为(7,b ),则PQ 中点坐标为? ??

??

a +72,1+

b 2,则

???

??

a +7

2=1,1+b 2=-1,

解得?????

a =-5,

b =-3,

即可得P (-5,1),Q (7,-3),故直线l 的斜

率为k PQ =1+3

-5-7

=-13.

答案:B

2.若直线x +(a -2)y -a =0与直线ax +y -1=0互相垂直,则a 的值为( ) A .2 B .1或2 C .1

D .0或1

解析:依题意,得(-a )×? ??

??

-1a -2=-1,解得a =1.

答案:C

3.已知圆(x -1)2+(y -33)2=r 2(r >0)的一条切线y =kx +3与直线x =5的夹角为π

6,

则半径r 的值为( )

A.32

B.33

2 C.32或332

D.3

2

或 3 解析:∵直线y =kx +3与x =5的夹角为π6,∴k =±3.由直线和圆相切的条件得r =

3

2或33

2

.

答案:C

4.顶点在原点、焦点在x 轴上的抛物线被直线y =x +1截得的弦长是10,则抛物线

的方程是( )

A .y 2=-x ,或y 2=5x

B .y 2=-x

C .y 2=x ,或y 2=-5x

D .y 2=5x

解析:由题意,可知抛物线的焦点在x 轴上时应有两种形式,此时应设为y 2=mx (m ≠0),联立两个方程,利用弦长公式,解得m =-1,或m =5,从而选项A 正确.

答案:A

5.已知圆的方程为x 2+y 2-6x -8y =0,若该圆中过点M (3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )

A .10 6

B .20 6

C .30 6

D .40 6

解析:已知圆的圆心为(3,4),半径为5,则最短的弦长为2

52-12=46,最长的弦为

圆的直径为10,则四边形的面积为1

2

×46×10=206,故应选B.

答案:B

6.若双曲线x 2a 2-y 2

b 2=1的一个焦点到其对应准线和一条渐近线的距离之比为2∶3,

则双曲线的离心率是( )

A .3

B .5 C. 3

D. 5

解析:焦点到准线的距离为c -a 2c =b 2

c ,焦点到渐近线的距离为

bc

a 2+

b 2=b ,b

c =23,e

= 3.

答案:C

7.若圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )

A .(x +1)2+(y -1)2=2

B .(x -1)2+(y -1)2=2

C .(x -1)2+(y +1)2=2

D .(x +1)2+(y +1)2=2

解析:如图,据题意知圆的直径为两平行直线x-y=0,x-y-4=0之间的距离2 ,故圆的

半径为 ,又A(2,-2),故圆心C(1,-1),即圆的方程为(x-1)2+(y+1)2=2.

答案:C

8.已知抛物线y 2=2px (p >0),过点E (m,0)(m ≠0)的直线交抛物线于点M 、N ,交y 轴于点P ,若PM →=λME →,PN →=μNE →

,则λ+μ=( )

A .1

B .-12

C .-1

D .-2

解析:设过点E 的直线方程为y =k (x -m ).代入抛物线方程,整理可得k 2x 2+(-2mk 2

-2p )x +m 2k 2=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=2p +2mk

2

k

2

,x 1x 2=m 2. 由?????

PM →=λME →,PN →=μNE →,

可得

?

????

x 1=λ(m -x 1),x 2=μ(m -x 2),则λ+μ=x 1m -x 1+x 2m -x 2=x 1(m -x 2)+x 2(m -x 1)(m -x 1)(m -x 2)=m (x 1+x 2)-2x 1x 2m 2

+x 1x 2-m (x 1+x 2)=m (x 1+x 2)-2m 2

2m 2-m (x 1+x 2)

=-1. 答案:C

9.直线MN 与双曲线C :x 2a 2-y 2

b 2=1的左、右支分别交于M 、N 点,与双曲线C 的右准

线相交于P 点,F 为右焦点,若|FM |=2|FN |,又NP →=λPM →

(λ∈R ),则实数λ的值为( )

A.12 B .1 C .2

D.13

解析:如图所示,分别过点M 、N 作MB ⊥l 于点B ,NA ⊥l 于点A .

由双曲线的第二定义,可得 = =e , 则 = =2.

∵△MPB ∽△NPA ,∴ = = ,即 = . 答案:A

10.在平面直角坐标系内,点P 到点A (1,0),B (a,4)及到直线x =-1的距离都相等,如果这样的点P 恰好只有一个,那么a =( )

A .1

B .2

C .2或-2

D .1或-1

解析:依题意得,一方面,点P 应位于以点A (1,0)为焦点、直线x =-1为准线的抛物线y 2

=4x 上;另一方面,点P 应位于线段AB 的中垂线y -2=-a -14? ??

??

x -a +12上. 由于要使这样的点P 是唯一的,

因此要求方程组???

y 2=4x ,

y -2=-a -14? ??

?

?

x -a +12有唯一的实数解.

结合选项进行检验即可.当a =1时,抛物线y 2=4x 与线段AB 的中垂线有唯一的公共

点,适合题意;当a =-1时,线段AB 的中垂线方程是y =1

2

x +2,易知方程组?????

y 2=4x ,y =1

2x +2

有唯一实数解.

综上所述,a =1,或a =-1. 答案:D

11.已知椭圆C :x 24+y 2

=1的焦点为F 1、F 2,若点P 在椭圆上,且满足|PO |2=|PF 1|·|PF 2|(其

中O 为坐标原点),则称点P 为“★点”.下列结论正确的是( )

A .椭圆C 上的所有点都是“★点”

B .椭圆

C 上仅有有限个点是“★点” C .椭圆C 上的所有点都不是“★点”

D .椭圆C 上有无穷多个点(但不是所有的点)是“★点”

解析:设椭圆C :x 24+y 2

=1上点P 的坐标为(2cos α,sin α),由|PO |2=|PF 1|·|PF 2|,可得

4cos 2α+sin 2α=

(2cos α+3)2+sin 2α·(2cos α-3)2+sin 2α,整理可得cos 2α=1

2

,即可得

cos α=±22,sin α=±22,由此可得点P 的坐标为????±2,±2

2,即椭圆C 上有4个点是“★

点”.

答案:B

12.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,P 为双曲线上的一个动点(不是顶点),

若从点A 引双曲线的两条渐近线的平行线,与直线OP 分别交于Q 、R 两点,其中O 为坐标原点,则|OP |2与|OQ |·|OR |的大小关系为( )

A .|OP |2<|OQ |·|OR |

B .|OP |2>|OQ |·|OR |

C .|OP |2=|OQ |·|OR |

D .不确定

解析:设P (x 0,y 0),双曲线的渐近线方程是y =±b a x ,直线AQ 的方程是y =b

a

(x -a ),直

线AR 的方程是y =-b a (x -a ),直线OP 的方程是y =y 0

x 0x ,可得Q ? ????abx 0bx 0-ay 0,aby 0bx 0-ay 0,R ? ??

??abx 0bx 0+ay 0,aby 0bx 0+ay 0. 又x 02a 2-y 02

b 2=1,可得|OP |2=|OQ |·|OR |. 答案:C

第Ⅱ卷 (非选择 共90分)

二、填空题:本大题共4个小题,每小题5分,共20分.

13.若两直线2x +y +2=0与ax +4y -2=0互相垂直,则其交点的坐标为__________. 解析:由已知两直线互相垂直可得a =-2,

则由?????

2x +y +2=0,-x +2y -1=0

得两直线的交点坐标为(-1,0).

答案:(-1,0)

14.如果点M 是抛物线y 2=4x 的一点,F 为抛物线的焦点,A 在圆C :(x -4)2+(y -1)2

=1上,那么|MA |+|MF |的最小值为__________.

解析:如图所示,过点M 作MB ⊥l 于点B .由抛物线定义,可得|MF |=|MB |,则|MA |+|MF |=|MA |+|MB |≥|CB |-1=4+1-1=4.

答案:4

15.若过原点O 且方向向量为(m,1)的直线l 与圆C :(x -1)2+y 2=4相交于P 、Q 两点,则OP →·OQ →=__________.

解析:可由条件设出直线方程,联立方程运用韦达定理可求解,其中OP →·OQ →

=x 1x 2+y 1y 2

是引发思路的关键.

答案:-3

16.如果F 1为椭圆C :x 22+y 2

=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,

那么|F 1A |+|F 1B |的值为__________.

解析:将l :y =x -1代入椭圆C :x 22+y 2

=1,可得x 2+2(x -1)2-2=0,即3x 2-4x =0,

解之得x =0,或x =4

3

.

可得A (0,-1),B ????

43,13.又F 1(-1,0),则|F 1A |+|F 1B |=(-1)2+12+

????43+12+???

?132=823

.

答案:823

三、解答题:本大题共6小题,共70分.

17.(10分)已知椭圆C :x 2a 2+y 2

b

2=1(a >b >0)的长轴长为4.

(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y =x +2相切,求椭圆焦点坐标; (2)若点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M 、N 两点,记直线PM 、PN 的斜率分别为k PM 、k PN ,当k PM ·k PN =-1

4

时,求椭圆的方程.

解析:(1)由b =

21+1

,得b =2,

又2a =4,a =2,a 2=4,b 2=2,c 2=a 2-b 2=2, 故两个焦点坐标为(2,0),(-2,0).

(2)由于过原点的直线L 与椭圆相交的两点M 、N 关于坐标原点对称, 不妨设M (x 0,y 0),N (-x 0,-y 0),P (x ,y ). 点M 、N 、P 在椭圆上,则它们满足椭圆方程, 即有x 02a 2+y 02b 2=1,x 2a 2+y 2

b 2=1,

两式相减,得y 2-y 02x 2-x 02=-b 2

a 2.

由题意它们的斜率存在,则k PM =

y -y 0x -x 0,k PN =y +y 0

x +x 0

, k PM ·k PN =y -y 0x -x 0·y +y 0x +x 0=y 2-y 02x 2-x 02=-b 2

a 2,

则-b 2a 2=-1

4.

由a =2,得b =1.

故所求椭圆的方程为x 24

+y 2

=1.

18.(12分)已知两点M (-1,0),N (1,0),点P 为坐标平面内的动点,满足|MN →|·|NP →|=MN →·MP →

. (1)求动点P 的轨迹方程;

(2)若点A (t,4)是动点P 的轨迹上的一点,K (m,0)是x 轴上的一动点,试讨论直线AK 与圆x 2+(y -2)2=4的位置关系.

解析:(1)设P (x ,y ),则MN →=(2,0),NP →

=(x -1,y ), MP →

=(x +1,y ). 由|MN →|·|NP →|=MN →·MP →, 得2

(x -1)2+y 2=2(x +1),

化简,得y 2=4x .

故动点P 的轨迹方程为y 2=4x . (2)由点A (t,4)在轨迹y 2=4x 上, 则42=4t ,解得t =4,即A (4,4). 当m =4时,直线AK 的方程为x =4,

此时直线AK 与圆x 2+(y -2)2=4相离. 当m ≠4时,直线AK 的方程为y =4

4-m (x -m ),

即4x +m (m -4)y -4m =0,

圆x 2

+(y -2)2

=4的圆心(0,2)到直线AK 的距离d =

|2m +8|16+(m -4)

2

令d =

|2m +8|16+(m -4)2

<2,解得m <1;

令d =

|2m +8|16+(m -4)2

=2,解得m =1;

令d =

|2m +8|16+(m -4)

2

>2,解得m >1.

综上所述,当m <1时,直线AK 与圆x 2+(y -2)2=4相交; 当m =1时,直线AK 与圆x 2+(y -2)2=4相切; 当m >1时,直线AK 与圆x 2+(y -2)2=4相离.

19.(12分)如图,已知直线L :x =my +1过椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的右焦点F ,

且交椭圆C 于A 、B 两点,若抛物线x 2=43y 的焦点为椭圆C 的上顶点.

(1)求椭圆C 的方程;

(2)若直线L 交y 轴于点M ,且MA →=λ1AF →,MB →=λ2BF →

,当m 变化时,求λ1+λ2的值. 解析:(1)易知b =3,得b 2=3. 又∵F (1,0),

∴c =1,a 2=b 2+c 2=4, ∴椭圆C 的方程为x 24+y 2

3

=1.

(2)设A (x 1,y 1),B (x 2,y 2),由?

????

x =my +1,

3x 2+4y 2

-12=0,

得(3m 2+4)y 2+6my -9=0,Δ=144(m 2+1)>0, 于是1y 1+1y 2=2m

3

.(*)

∵L 与y 轴交于点M ????0,-1m ,又由MA →=λ1AF →, ∴?

???x 1,y 1+1

m =λ1(1-x 1,-y 1), ∴λ1=1-1my 1.同理λ2=-1-1my 2

.

从而λ1+λ2=-2-1m ????1y 1+1y 2=-2-23=-8

3. 即λ1+λ2=-8

3

.

20.(12分)设G 、M 分别为△ABC 的重心与外心,A (0,-1),B (0,1),且GM →=λAB →

(λ∈R ). (1)求点C 的轨迹方程;

(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足|AP →|=|AQ →

|,试求k 的取值范围.

解析:(1)设C (x ,y ),则G ????

x 3,y 3. ∵GM →=λAB →

,(λ∈R ),∴GM ∥AB .

∵点M 是三角形的外心,∴M 点在x 轴上,即M ????x 3,0. 又∵|MA →|=|MC →

|, ∴

????x 32+(0+1)2= ???

?x 3-x 2+y 2, 整理,得x 23

+y 2

=1,(x ≠0),即为曲线C 的方程.

(2)①当k =0时,l 和椭圆C 有不同两交点P 、Q ,根据椭圆对称性有|AP →|=|AQ →

|. ②当k ≠0时,可设l 的方程为y =kx +m ,

联立方程组?????

y =kx +m ,

x 23+y 2

=1,

消去y ,

整理,得(1+3k 2)x 2+6kmx +3(m 2-1)=0.(*) ∵直线l 和椭圆C 交于不同两点, ∴Δ=(6km )2-4(1+3k 2)×(m 2-1)>0, 即1+3k 2-m 2>0.(**)

设P (x 1,y 1),Q (x 2,y 2),则x 1,x 2是方程(*)的两相异实根, 于是有x 1+x 2=-6km

1+3k 2

.

则PQ 的中点N (x 0,y 0)的坐标是

x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0

+m =m 1+3k 2

, 即N ? ??

??-3km 1+3k 2,m 1+3k 2,

又∵|AP →|=|AQ →|,∴AN →⊥PQ →,

∴k ·k AN =k ·m

1+3k 2+1-

3km 1+3k 2

=-1,∴m =1+3k 2

2.

将m =1+3k 2

2代入(**)式,得1+3k 2-? ??

??1+3k 222

>0(k ≠0), 即k 2<1,得k ∈(-1,0)∪(0,1). 综合①②得,k 的取值范围是(-1,1).

21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2

2,它的一条准线方程为x =

2.

(1)求椭圆C 的方程;

(2)若点A 、B 为椭圆上的两个动点,椭圆的中心到直线AB 的距离为6

3

,求∠AOB 的大小.

解析:(1)由题意,知c a =22,a 2

c =2,

得a =2,c =1,故a 2=2,b 2=1,

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ → -AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.332212--=+=-x y x ; 10.曲线 1422 =+z y 绕z 轴

空间解析几何考题

《 空 间 解 析 几 何 》 试卷A 班级: 姓名: 学号: 分数: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。 试卷共 5 页,请先查看试卷有无缺页,然后答题。 一.选择题(每小题3分,共10分) 1. 平面的法式方程是 ( ). A. 0=+++D Cz By Ax B. 1=++r z q y p x C. ()0,1cos cos cos 0cos cos cos 2 2 2 >=++=-++p p z y x γβαγβα其中 D. ()0,1cos cos cos 0 cos cos cos 2 22>=++=+++p p z y x γβαγβα其中 2. 两向量 21,n n 互相垂直的充要条件是 ( ). A. 021=?n n B. 021=?n n C. 21n n λ=. D. 以上都不对 3. 平面 0:11111=+++D z C y B x A π 与平面 0:22222=+++D z C y B x A π 互相垂直 的充要条件是 ( ). A. 2 12 12 1C C B B A A == B. 0212121=++C C B B A A C. 021212121=+++D D C C B B A A D. 以上都不对. 4. 1 11 11 11: n z z m y y l x x l -= -= -与2 22 22 22: n z z m y y l x x l -= -= -是异面直线,则必有 ( ). A.0212121=++n n m m l l B. 0212121≠++n n m m l l C. 021212122 2 1 11 =---z z y y x x n m l n m l D. 02 1212122 2 1 11 ≠---z z y y x x n m l n m l . 5. 若向量γβα ,,线性无关,则在该向量组中必有 ( ) A. 每个向量都可以用其它向量表示。 B. 有某个向量可以用其它向量表示。

解析几何考试试卷与答案_西南大学

西南大学 数学与统计学院 2012级 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是___1 6___. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是 4.点)2,0,1(到平面321x y z ++=的距离是 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_____40π____________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-, 13(0,,)M M b c =-

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是_______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→ b 的坐标是 ________________. 3. 已知向量{}{}3,2,,1,1,1x b a ==→→, 如果→ →b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+=-3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线1 23z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线???=-+-=-+0 201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线? ??+==-+1022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的

方程分别是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是 ________________(请用x y x ,,的一个方程表示). 10.曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面. 二、单项选择题(本大题共10小题,每小题3分,共30分) 1. 若=?-+=+-=→ →→→→→→→→→b a k j i b k j i a 则,23,532( ) A. 7 B. -7 C. -1 D. 0 2. 已知→→b a ,不共线, 与→→b a ,同时垂直的单位向量是( ) A. →→?b a B. →→?a b C. ||→→→ →??±b a b a D. ||→→→→??b a b a 3. 在空间右手直角坐标系下,点P(-1,2,-3)在第( )卦限. A. II B. III C. V D. VI 4. 若两个非零向量→→b a ,满足|→→+b a |=|→→-b a |,则一定有( ) A. →→⊥b a B. →→b a // C. →→b a 与同向 D. → →b a 与反向 5. 点M(1,-3,-2)关于y 轴的对称点N 的坐标是( )

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

向量代数与空间解析几何复习题

第七章 向量代数与空间解析几何 (一) 空间直角坐标系、向量及其线性运算 一、判断题 1. 点(-1,-2,-3)是在第八卦限。 ( ) 2. 任何向量都有确定的方向。 ( ) 3. 任二向量, =.则a =b 同向。 ( ) 4. 若二向量, + ,则,同向。 ( ) 5. 若+=+,则= ( ) 6. 向量b a , b a ,同向。 ( ) 7.若={ z y x a a a ,,},则平行于向量的单位向量为| |a a x a | |a z }。( ) 8.若一向量在另一向量上的投影为零,则此二向量共线。 ( ) 二、填空题 1. 点(2,1,-3)关于坐标原点对称的点是 2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。 4. 设向量a 与b 有共同的始点,则与,共面且平分a 与b 的夹角的向量为 5. 已知向量与方向相反,且||2||a b =,则由表示为= 。 6. ,与轴l 的夹角为 6 π,则a l prj = 7. 已知平行四边形ABCD 的两个顶点A (2,-3,-5)、B (-1,3,2)。 以及它的对角线 交点E (4,-1,7),则顶点C 的坐标为 ,则顶点D 的坐标为 。 8. 设向量与坐标轴正向的夹角为α、β、γ,且已知α =ο 60,β=ο 120。则γ= 9. 设a 的方向角为α、β、γ,满足cos α=1时,a 垂直于 坐标面。 三、选择题

1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B ) 225)3(+- (C )22)3(4-+ (D )2254+ 2 . 已 知 梯 形 OABC 、 2 12 1 -21--2121-, ⊥ b + + - + < - +>-yoz 2AOB ∠42222)(b a b a ?=?a ?b a ???2 a b ??a ??b ωc a ρρ?0??≠a c b ??=b a ??=b a ?? ?22 2b b a a +?+??a b b a ???ρ?=?c b a ???、、a c b c b a ???????=?=,c b a ???、、b a ??,111,,γβα2 22,,γβαb a ∧ (2 12121cos cos cos cos cos cos γγββαα++) (b a ?∧3 π,8,5==b a ??b a ??-24,19,13=+==b a b a ??ρ?a b -v v 32)(π=∧b ?2 ,1==b a ??a b ?v v 72,26,3=?==b a b a ????b a ???}1,2,2{},4,3,4{=-=b a ??a }4,6,4{},2,3,2{--=-=b a ?? )(b ?∧b a ??,λb a P ???5+=λb a Q ???-=3MNP ∠π 4 3π2π 4π2a =0=?b a ??0??=a 0??=b c a b a c b a ???????-=-)(0??≠a c a b a ????=c b ??=}. 4,4,1{},2,3,{-==b x a ?? b a ??//}1,3,1{1},1,1,2{-=-= b a ?? b a ??、}2,1,2{}3,2,1{}1,3,2{=-=-=c b a ? ??、、d ?b a ??,. 14d c ?? ,求向量上的投影是312123 a a a b b b == 2222222 123123112233()()()a a a b b b a b a b a b ++++=++?..a C B c A B ????= =c a c a S ABD ρ?????= ?l l πππ⊥πππθ2 π πππ5πd 2 2212C B A D D ++-5 1 232-==-z y x { 7 421 253=+--=-+z y x z y x 1 3241z y x =+=-300 { x y z x y z ++=--={ 1240 322=+--=+-+z y x z y x 2 33211+=+=-z y x 1 0101z y x =-=+{ 0440 4=--=--y x z x ?? ? ??==+=4321z t y t x { 7 27 2=-+=++-z y x z y x

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

2015年《高校自主招生考试》数学真题分类解析之7、解析几何

专题之7、解析几何 一、选择题。 1.(2009年复旦大学)设△ABC三条边之比AB∶BC∶CA=3∶2∶4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是 2.(2009年复旦大学)平面上三条直线x?2y+2=0,x?2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是 A.只有唯一值 B.可取二个不同 值 C.可取三个不同 值 D.可取无穷多个 值 3.(2010年复旦大学)已知常数k1,k2满足0

A.y=x?1 B.y=?x+3 C.2y=3x?4 D.3y=?x+5 7.(2011年复旦大学)设有直线族和椭圆族分别为x=t,y=mt+b(m,b为实数,t为参数)和(a是非零实数),若对于所有的m,直线都与椭圆相交,则a,b应满足 A.a2(1?b2)≥1 B.a2(1?b2)>1 C.a2(1?b2)<1 D.a2(1?b2)≤1 8.(2011年复旦大学)极坐标表示的下列曲线中不是圆的是 A.ρ2+2ρ(cos θ+sin θ)=5 B.ρ2?6ρcos θ?4ρsin θ=0 C.ρ2?ρcos θ=1 D.ρ2cos 2θ+2ρ(cos θ+sin θ)=1 9. 10.(2012年复旦大学) B.抛物线或双曲 C.双曲线或椭圆 D.抛物线或椭圆 A.圆或直线 线 11.(2011年同济大学等九校联考)已知抛物线的顶点在原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y?20=0,则抛物线方程为 A.y2=16x B.y2=8x C.y2=?16x D.y2=?8x A.2 B.2 C.4 D.4 13.(2011年清华大学等七校联考)AB为过抛物线y2=4x焦点F的弦,O为坐标原点,且∠OFA=135°,C为抛物线准线与x轴的交点,则∠ACB的正切值为 14.(2012年清华大学等七校联考)椭圆长轴长为4,左顶点在圆(x?4)2+(y?1)2=4上,左准线为y 轴,则此椭圆离心率的取值范围是

第六章 空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB u u u r 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB u u u r 的模;(3)AB u u u r 的方向余弦;(4)AB u u u r 方向上的单位向量. 解:(1)()3,8,2AB =-u u u r ,AB u u u r 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k r ;(2)AB =u u u r ;(3)AB u u u r (4)AB u u u r 382) i j k -++r r r . 2、设向量a r 和b r 夹角为60o ,且||5a =r ,||8b =r ,求||a b +r r ,||a b -r r . 解:||a b +==r r ||a b -= =r r =7. 3、已知向量{2,2,1}a =r ,{8,4,1}b =-r ,求 (1)平行于向量a r 的单位向量; (2)向量b r 的方向余弦. 解(1)3a = =r 平行于向量a r 的单位向量221{,,}333 ±; (2)9b ==r ,向量b r 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB u u u r =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0);

空间解析几何例题

第4章 向量代数与空间解析几何习题解答 习题4.1 一、计算题与证明题 1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ?+?+?. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=?b a ,0=?c b ,0=?a c 所以0=?+?+?a c c b b a 2.已知3||=?b a , 4||=?b a , 求||||b a ?. 解:3cos ||=?=?θb a b a (1) 4sin ||=?=?θb a b a (2) ()2 22)1(+得()252 =?b a 所以 5=?b a 3.设力k j i F 532++-=作用在点)1,6,3(A , 求力F 对点)2,7,1(,-B 的力矩的大小. 解:因为()1,6,3A ,()2,7,1-B 所以()31,2--=AB 力矩()()k j i k j i F AB M 53232++-?-+-=?= k j i k j i k j i 41614321 2523253315 32312-+=--+-----=---= 所以,力矩的大小为 ()136416142 22=-++=M 4.已知向量x 与)2,5,1(,-a 共线, 且满足3=?x a , 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a 则325=-+=?z y x x a (1)

又x 与a 共线,则0=?a x 即 ()()()0 52525121252 51=-+++--=+---=-k y x j x z i z y k y x j y x i z y z y x k j i 所以 ()()()052522 22=-+++--y x x z z y 即010********* 2 2 =-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π () 30 3 25110cos 2 2 2 2 2 2 2 2 2 ?++= -++?++?= =z y x z y x a x 整理得 10 3 2 2 2 = ++z y x (3) 联立()()()321、、 解出向量x 的坐标为?? ? ??-51,21,101 5.用向量方法证明, 若一个四边形的对角线互相平 分, 则该四边形为平行四边形. 证明:如图所示,因为平行四边形ABCD 的对角线 互相平分,则有 MA CN ND BM ==, 由矢量合成的三角形法则有MA BM BA += MA BM BM MA MD CM CD +=+=+= 所以CD BA = 即BA 平行且等于CD 四边形ABCD 是平行四边形 6.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--B AB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得 ()()()()()()2222 22321783++-++= -+-+-z y x z y x 化简得027532=-++z y x

线性代数与解析几何试题(附解析)-中国科技大学

中 国 科 学 技 术 大 学 2005—2006学年第2学期考试试卷 考试科目: 线性代数 得分: 学生所在系: 姓名: 学号: 一、判断题(30分,每小题6分)。判断下列命题是否正确,并简要说明理由。 1. 三维空间向量c b,a,共面的充要条件是0det =??? ? ? ???????????c c b c a c c b b b a b c a b a a a 。 2. 设A 为n 阶实正交方阵,I 为n 阶单位阵,则I A 2-为可逆方阵。 3. 设n m ?阶非零实矩阵A 和B 满足0='B A ,则A 的行向量线性相关, 并且B 的行向量也线性相关。 4. 设)(R M n 是n 阶实方阵全体按矩阵的加法与数乘运算构成的线性空间,则 满足0tr =A 的n 阶实方阵A 的全体构成)(R M n 的子空间。 5. 设B A ,为方阵,且???? ? ?B A 是实正定对称方阵,则B A ,也是实正定对称方阵。 二、计算题(62分)。 1. (15分)b a ,为何值时,下列线性方程组有解?当有解时,求出该方程组的通解。 ?????? ?=-+++=+++=-+++=++++b x x x x x x x x x a x x x x x x x x x x 5432154325 432154321334536223231 2. (15分)设n 阶实方阵?????? ? ??----=211211 2O O A n ,求n A det 和1 4 -A 。 3. (17分)设V 是由所有2阶实方阵构成的实线性空间。在定义内积Y X Y X '=tr ),(后, V 成为一个欧氏空间。现定义V 上的变换X X X '+ : A 。 (1)证明: A 是一个线性变换;(2)求 A 在基??? ??????? ?????? ?????? ?????? ? ?1000,0100,0010,0001下的表示矩阵; (3)求 A 的所有特征值与特征向量;(4)求V 的一组标准正交基,使得 A 在此基下的表示矩阵为对角阵。 4. (15分)通过正交变换化二次型222)()()(),,(x z z y y x z y x f -+-+-=为标准形;并判 断三维欧氏空间中的曲面3)()()(222=-+-+-x z z y y x 是哪一类曲面。 三、证明题(8分)。以下两小题任选一题。 1. 设n m R A ?∈,m n R B ?∈,I 是n 阶单位方阵。证明: (1))rank(0rank AB n B I A +=??? ? ? ?-。 (2)n B A AB -+≥)rank()rank()rank(。 2. 设实对称方阵A 满足3A A =,证明:A 正交相似于对角形???? ? ? ?-0s r I I 。

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

向量与空间解析几何练习题

题型 1.向量的线性运算(三角形法则、平行四边形法则);向量的坐标运算 2.向量的平行、垂直以及它们之间的夹角、向量的投影 3.向量的数量积(点积);向量的向量积(叉积)4.直线方程、平面方程 5.曲线方程、曲面方程 内容 一.向量的概念及其运算 1.向量的概念 6.数乘向量 2.向量的模7.向量的数量积 3.单位向量8.向量的向量积 4.方向角9.向量的混合积 5.向量的加减运算10.向量之间的关系 二.平面与直线 1.平面方程 2.直线方程 3.平面束 4.两平面的位置关系

5.平面与直线的位置关系 6.两直线的位置关系 7.点到平面的距离 三.曲面方程 1.球面方程 2.柱面方程 3.旋转方程 4.锥面 5.其他二次曲面 四.空间曲线方程 1.空间曲线的一般方程(面交式) 2.空间曲线的参数方程 3.空间曲线在平面上的投影方程 典型例题向量I 向量的概念与运算 向量II 平面与直线方程 向量III 曲面与空间曲线方程 自测题七综合题与方法相结合

4月6日向量练习题 基础题: 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A ) 2π B )4π C )3 π D )π 6. 设,23,a i k b i j k =-=++求a b ?是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 7. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A )362 B )3 64 C )32 D )3 8.点P(-3,2,-1)关于平面XOY 的对称点是_______,关于平面YOZ 的对称点是_________,关于平面ZOX 的对称点是__________,关于X 轴的对称点是__________,关于Y 轴的对称点是____________,关于Z 轴的对称点是____________。 9.设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ 10. 平行于向量)6,7,6(-=a 的单位向量为______________. 11.设向量的模是4,它与轴的夹角是3 π,则它在轴上的投影为_________。 12.已知A(4,0,5),B (7,1,3),则=→-0AB ____ _____。 13.已知5,3==b a ,问________=λ时,b a λ+与b a λ-相互垂直。 14.已知7,3,2=-==b a b a ,则.________ ),(=∧b a 15.已知a 与b 垂直,且,12,5==b a 则._____________,=-=+b a b a 16.向量c b a ,,两两垂直,且3,2,1===c b a ,则c b a s ++=的长度为______.

大学生数学竞赛空间解析几何练习题

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。 解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以 '223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=?=为基本向量 建立一个新的坐标系''''O X Y Z ,则坐标变换公式为 '' 2222 ''2222'/B A x x z A B A B A B y D B x z A B A B z y ?=+?++? ?=-- +?++? ?=?? 在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2'''' 22 22 2 2 2 2 6( )(/)1 B A A B y x z D B x z A B A B A B A B ++ -- + =+++ + 所以交线的方程为: '2' '''22 22 22 22 '6()(/)1 B A A B y x z D B x z A B A B A B A B z ?++--+ =?++++? ?=? 化简得: '2' '22 22 '6()(/)1 0B A y x D B x A B A B z ?+--=?++? ?=? 因为交线是圆,所以 226AB A B -=+ 解得 322A B =-.

试题2:求过点)0,1,0(P 并且和两条直线 ? ? ?=+=+++?? ?=+=++020 13:,0201:21y x z y x l y x y x l 均相交的直线的方程。 解:把直线的方程化为点向式方程为: ,1 11 2 :,1 20 1:21-+==-=+=-z y x l z y x l 设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=, 试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程. 解:设所求的直线的方程为:141x lt y mt z nt =+??=-+??=+? ,又因为所求的直线在二次曲 面上,所以对任意的,t 有 2222(1 )(4)(1) 3(1)( 4)(1)(1 )6(1) l t m t n t l t m t l t n t n t ++--+++-+++-+=, 化简得; 2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以 222230 (1)7570l m n ml nl l m n ?+-++=? ++=? 由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得 220 (1)570 m n m n ?-=? +=?

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

相关文档
最新文档