05刚体的定轴转动习题解答

合集下载

第五章刚体定轴转动典型题型

第五章刚体定轴转动典型题型

• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。


质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt


钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩

质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。


• 5)角动量守恒定律和机械能守恒定律的综 合应用

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

刚体定轴转动练习题及答案

刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

第05章 角动量 角动量守恒定律(参考答案)

第05章 角动量 角动量守恒定律(参考答案)

m 1v 1 m 2v 2
v1 v2
9
爬与不爬,两小孩同时到达滑轮! 5.19 由一根长为 l,质量为 M 的静止的细长棒,可绕其一 端在竖直面内转动。若以质量为 m,速率 v0 的子弹沿与棒 垂直的方向射向棒的另一端。 (1)若子弹穿棒而过,速度为 v,求棒的旋转角速度 (2)若子弹嵌入棒中,求棒的最大旋转角 答案: (1)以 m , M 为系统,以 O 为参考点。
O
M
l
v m
碰撞时刻,角动量守恒
1 mlv0 J mlv Ml 2 mlv 3
解得:

3m(v0 v) Ml
(2)碰撞时刻,角动量守恒
得:
1 mlv0 J ml 2 M m l 2 3 3mv0 M 3m l
1 2 1 2 1 J mv Mg l 1 cos mgl 1 cos 2 2 2
(3)设碰后角速度为 ω’
' L ' 2mv 1
a a ' a mv 2 3 2 6

2m 1 a a 2 a ' a m '( )2 ma 2 ' 3 3 2 6 3
1 2 L' L ma2 ma 2 ' 2 3 根据角动量守恒,有
解得
'
3 4
5.17 质量为 m 的小球, 以速度 v0 在水平冰面 上滑动,撞在与小球运动方向垂直的一根细木棍 的一端,并粘附在木棍上。设木棍的质量为 M , 长度为 l。试求: (1 )忽略冰的摩擦,定量地描述 小球附在木棍上后,系统的运动情况。 (2 )刚刚 发生碰撞之后,木棍上有一点 p 是瞬时静止的, 问该点在何处?

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。

解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。

解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。

解:转动惯性大小,刚体的形状、质量分布及转轴的位置。

4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。

解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。

解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。

刚体的定轴转动习题

刚体的定轴转动习题
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
刚体的定轴转动习
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 刚体定轴转动的基本概念 • 刚体定轴转动的力学分析 • 刚体定轴转动的运动分析 • 刚体定轴转动的习题解析 • 刚体定轴转动的实际应用案例
PART 03
刚体定轴转动的运动分析
刚体的角速度与角加速度
角速度
描述刚体转动快慢的物理量,用ω表 示。单位是弧度/秒(rad/s)。
角加速度
描述刚体转动角速度变化快慢的物理 量,用α表示。单
转动轨迹
刚体转动的路径是一个圆或椭圆,其形 状取决于刚体的质量和转动轴的位置。
PART 04
刚体定轴转动的习题解析
简单习题解析
题目
一个质量为m,半径为R的 圆盘,以边缘某点为轴, 以角速度ω做定轴转动, 求圆盘的动量。
解析
根据动量的定义,圆盘的 动量P=mv=mrω,其中r 是质点到转动轴的距离, m是质量,v是线速度,ω 是角速度。
题目
一质量为m的杆,长度为l, 一端固定,绕另一端点做 定轴转动,求杆的转动惯 量。
航空航天器姿态调整中的应用
01
02
03
卫星轨道调整
卫星在轨道调整过程中, 通过刚体定轴转动实现姿 态的调整,从而改变推进 力的方向。
飞机飞行控制
飞机飞行过程中,通过刚 体定轴转动实现舵面的操 纵,从而调整飞行姿态和 方向。
火箭发射
火箭发射过程中,通过刚 体定轴转动实现发动机的 转向和稳定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mR F t 4212==∆αθ 所以:m F M W /42=∆=θ 6. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J + B .0121ωJ J J + C .021ωJ J D .012ωJ J 解:答案是A 。

简要提示:角动量守恒7. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( )A.自转周期增加,转动动能增加; B.自转周期减小,转动动能减小; C.自转周期减小,转动动能增加; D. 自转周期增加,转动动能减小。

解:答案是C 。

简要提示: 由角动量守恒,ωω2025252Mr MR =,得转动角频率增大,所以转动周期减小。

转动动能为22k 2020k 5221,5221ωωMr E MR E ==可得E k > E k0。

8. 如图,一质量为m 0的均匀直杆可绕通过O 点的水平轴转动,质量为m的子弹水平射入静止直杆的下端并留在直杆内,则在射入过程中,由子弹和杆组成的系统( )A. 动能守恒B. 动量守恒C. 机械能守恒D. 对O 轴的角动量守恒解:答案是D 。

m 0 选择题8图二 填空题1. 半径为30cm 的飞轮,从静止开始以0.5rad ⋅ s –2的角加速度匀加速转动,则飞轮边缘上一点在转过2400时的切向加速度为 ;法向加速度为 。

解:答案是 0.15 m ⋅ s –2; 0.4π m ⋅ s –2。

简要提示:1τs m 15.0-⋅==αr a 。

由221t αθ=,t αω=,得:22n s m 4.0-⋅==πωr a2. 一质量为0.5 k g 、半径为0.4 m 的薄圆盘,以每分钟1500转的角速度绕过盘心且垂直盘面的轴的转动,今在盘缘施以0.98N 的切向力直至盘静止,则所需时间为 s 。

解:答案是 16 s 。

简要提示:由定轴转动定律,α221MR FR =,t αω=, 得: s 1698.024.05.0502=⨯⨯⨯==πωF mR t3 . 一长为l ,质量不计的细杆,两端附着小球m 1和m 2(m 1>m 2),细杆可绕通过杆中心并垂直于杆的水平轴转动,先将杆置于水平然后放开,则刚开始转动的角加速度应为 。

解:答案是 l m m g m m )()(22121+-。

简要提示:由刚体定轴转动定律,α4)(2)(22121l m m l g m g m +=- 得: l m m g m m )()(22121+-=α4. 如图所示,质量为m 0,半径为r 的绕有m 1l m 2 填空题3图细线的圆柱可绕固定水平对称轴无摩擦转动,若质量为m 的物体缚在线索的一端并在重力作用下,由静止开始向下运动,当m 下降h 的距离时,m 的动能与m 0的动能之比为 。

解:答案是 02m m。

简要提示:由r ω=v ,, 得:0k 20m m E E km m =5. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮rm 0m填空题4图 填空题5图连结在一起后,共同的角速度为ω.若A 轮的转动惯量为 J A ,则B 轮的转动惯J B =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.解:答案是 ωωω/)(-A A J简要提示:两飞轮不受外力矩的作用,所以系统的角动量守恒,得:ωω)(B A A A J J J +=所以: ωωω/)(-=A A B J J6. 一位转动惯量为J 0的花样滑冰运动员以角速度ω 0自转,其角动量为 ;转动动能为 。

当其收回手臂使转动惯量减为J 0 /3时,则其角速度变为 ;转动动能变为 。

解:答案是J 0ω 0; 2/200ωJ ; 3ω 0;2/3200ωJ简要提示:角动量守恒7. 一圆形转台可绕中心轴无摩擦的转动,台上有一辆玩具小汽车相对台面由静止启动,当其绕轴作顺时针圆周运动时,转台将作转动;当汽车突然刹车停止转动的过程中,系统的守恒;而和不守恒。

解:答案是逆时针;角动量;动量;机械能三计算题1. 一细杆绕其上端在竖直平面内摆动,杆与竖直方向的夹角t2cos4ππθ=。

求:(1) 杆摆动的角速度和角加速度;(2) 距上端0.5m处的一点的速度和加速度。

解:(1)tt2sin8dd2ππθω-==;tt 2cos 16d d 3ππωα-==(2)tl 2sin162ππω-==v ;t l a 2cos323τππα-==;t l a 2sin128242n ππω==2. 有一个板长为a 、板宽为b 的均匀矩形薄板,其质量为m 。

求矩形板对于与板面垂直并通过板中心的轴的转动惯量。

解:如图,把矩形薄板分成无限多个小质元,任取一个小质元,其面积为d S ,设薄板的质量面密度为σ,则小质元质量为y x S m d d d d σσ==小质元d m 对于中心轴的转动惯量yx y x m r J d d )(d d 222σ+==整个矩形板的转动惯量)(121)( 121d d )(d 2222222222b a m b a ab y x y x J J a a b b +=+=+==⎰⎰⎰--σσ3. 质量分别为 m 和2m 、半径分别为 r 和2 r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为 m 的重物,如图所示.求盘的角加速度的大小.解:隔离物体,分别对重物和转盘受力分析,如图所示。

根据牛顿定律和刚体转动定律,有:a m T mg '='-ma mg T =-2/922ααmr J Tr r T ==-⋅'由转盘和重物之间的运动学关系,有:αr a 2='αr a =联立以上方程,可得:r g192=ααT ’T4. 如图所示,半径为r ,转动惯量为J 的定滑轮A 可绕水平光滑轴o 转动,轮上缠绕有不能伸长的轻绳,绳一端系有质量为m 的物体B ,B 可在倾角为θ 的光滑斜面上滑动,求B 的加速度和绳中张力。

解:物体B 的运动满足牛顿第二定律ma T mg =-θsin定滑轮A 的运动满足刚体定轴转动定律αJ Tr =加速度和角加速度之间满足关系αr a =联立解得B 的加速度计算题4图BAJ , roθθsin 22g Jmr mr a +=a 的方向沿斜面向下。

绳中张力为θsin 2mg Jmr J T +=5. 如图所示,质量为m 1的物体可在倾角为θ 的光滑斜面上滑动。

m 1的一边系有劲度系数为k 的弹簧,另一边系有不可伸长的轻绳,绳绕过转动惯量为J ,半径为r 的小滑轮与质量为m 2(>m 1)的物体相连。

开始时用外力托住m 2使弹簧保持原长,然后撤去外力,求m 2由静止下落h 距离时的速率及m 2下降的最大距离。

解:在m 2由静止下落h 距离的过程中机械能守恒,因此有k m 1θJm 2计算题5图ωsin2121)(211222212gh m kh J m m gh m ++++=v式中r v =ω,解得m 2由静止下落h 距离时的速率221212/)sin (2r J m m kh gh m m ++--=θv 2m 下降到最低时,1m 、2m 速率为零,代入上式,得到m 2下降的最大距离gm m kh )sin (212max θ-= 6. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0。

质量为 m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.在转动过程中沿转轴方向的合外力矩为零,所以角动量守恒.对地球、小球和环系统机械能守恒。

取过环心 O 的水平面为势能零点.小球到B 点时,有:ωω)(2000mR J J +=(21212122220200B R m J mgR J v ++=+ωωω其中v B 表示小球在 B 点时相对于地面的竖直分速度,也就是它相对于环的速度。

相关文档
最新文档