腐蚀磨损概述
磨损的定义及分类

磨损的定义及分类
磨损:是物体或零件相互接触并相对运动的系统中发生的一种现象,这种现象普遍的存在于生产生活中。
磨损消耗了机器运转的能量,使机器零部件使用寿命缩短,造成材料的消耗。
磨损的结果是零部件几何尺寸(体积)变小,零部件失去原有设计所规定的功能而失效。
失效包括完全丧失原定功能;功能降低和有严重损伤或隐患,继续使用会失去可靠性及安全性。
磨损的分类:按照表面破坏机理特征,磨损可以分为磨粒磨损、粘着磨损、表面疲劳磨损、腐蚀磨损和微动磨损等。
前三种是磨损的基本类型,后两种只在某些特定条件下才会发生。
磨粒磨损:物体表面与硬质颗粒或硬质凸出物(包括硬金属)相互摩擦引起表面材料损失。
磨粒磨损主要出现在以下两种情况:一是粗糙而坚硬的表面贴着软表面滑动;另一种情况是由游离的坚硬粒子在两个摩擦面之间滑动而产生的磨损。
粘着磨损:摩擦副相对运动时,由于固相结合作用的结果,造成接触面金属损耗,因为机械零件的表面从宏观上是光滑的,而微观尺度(从显微镜下观察)总是粗糙不平的,所以,当两个表面粘合时,受力的地方只是那些表面上比较高的凸点。
表面疲劳磨损:两接触表面在交变接触压应力的作用下,材料表面因疲劳而产生物质损失。
表面疲劳磨损是表面或亚表面中裂纹形成以及疲劳裂纹扩展的过程。
腐蚀磨损:零件表面在摩擦的过程中,表面金属与周围介质发生化学或电化学反应,因而出现的物质损失。
微动磨损:两接触表面间没有宏观相对运动,但在外界变动负荷影响下,有小振幅的相对振动(小于100μm),此时接触表面间产生大量的微小氧化物磨损粉末,因此造成的磨损称为微动磨损。
东臻科技专业解决冶金、化工、电力、钢铁等行业机械设备磨损问题,咨询电话。
锅炉结焦、腐蚀和磨损的原因、危害和预防

54锅炉结焦、腐蚀和磨损的原因、危害和预防张弘权 韩长龙|国家能源集团吉林龙华长春热电一厂摘要:锅炉的结焦、腐蚀、和磨损对锅炉设备的安全与稳定运行有着极其严重的危害,它们形成的原因很多,必须根据其形成原因进行预防,以减少对锅炉设备的危害,保证发电机组的安全与稳定运行。
关键词:锅炉;结焦;腐蚀;磨损1 锅炉结焦所有固体燃料都有一定的灰分。
燃煤灰分的熔点有高有低,熔点较低的煤容易结焦。
对于煤粉锅炉来说,火焰中心的区域温度很高,灰粒一般呈现融化或软化状态。
当采用固态排渣方式,如果灰粒在接触路墙、水冷壁、炉膛出口受热面和落入冷灰斗之前没有充分冷却,就会粘附在这些地方而形成灰渣,从而使成渣地区或受热面的温度升高。
由此形成了一个自然加剧的恶性循环结焦过程。
形成锅炉结焦的原因很多,大致有以下几个方面:1.1 灰的性质灰的熔点越高,则越不容易结焦;反之,熔点越低,越容易结焦。
灰的组成很复杂。
灰的熔点与灰的化学成分及周围的介质有关,灰的化学成分及其成分的含量比列决定灰熔点的高低,灰的熔点比其混合物中最低熔点还要低。
1.2 周围介质成分对结焦的影响燃烧过程中,由于供风不足或燃料与空气的混合不良,使使燃烧达不到完全燃烧,未完全燃烧将产生还原性气体,灰的熔点就会大大降低。
1.3 运行操作不当由于燃烧调整不当,使炉膛火焰发生偏斜或一、二次风配合不合理,一次风速过高,煤粒没有完全燃烧而在高温软化状态下粘附在受热面上继续燃烧,而形成了恶性循环。
1.4 炉膛容积热负荷过大由于炉膛设计不合理,或锅炉不适当的超出力,而造成炉膛容积热负荷过大,使炉膛温度过高,灰粒到达水冷壁壁面和炉膛出口时还不能得到足够的冷却,从而造成结焦。
1.5 吹灰、除焦不及时当炉膛受热面积灰、结焦过多,清理不及时都会造成受热面壁温升高,从而使受热面产生严重结焦。
结焦会对锅炉产生如下的危害:A.结焦会引起汽温偏高。
在炉膛大面积结焦时,会使炉膛吸热量大大减少,炉膛出口烟气温度偏高,使过热器传热强化,造成过热汽温偏高,并使过热器管壁超温。
腐蚀疲劳和磨耗腐蚀 全面腐蚀与局部腐蚀

2.环境特征
❖ (2)通常环境腐蚀性增强,CF破环倾向增大,例如对于钢 (尤其是高强度钢),CF裂纹扩展速率按照下列顺序递增: 惰性气体大气水蒸气水硫酸盐水溶液氯化物水 溶液氢气氛硫化氢。
❖ 但腐蚀过强导致局部腐蚀转化为均匀腐蚀,可能反而降低 钢的CF破坏倾向。如温度升高引起钢的严重腐蚀,造成许 多浅的裂纹源,从而降低局部的应力集中,并使阳极与阴 极面积比变大,结果使钢的抗腐蚀疲劳能力提高。另外, 氧时常通过吸附或化学反应促进裂纹闭合,阻碍CF裂纹的 扩展.从而提高CF条件疲劳极限值。
❖ 湍流腐蚀和空泡腐蚀是两种特殊而重要的冲蚀形式。
湍流腐蚀
❖ 在材料表面或设备的某些特定部位、由于介质流速的急 剧增大而形成湍流,由湍流导致的冲蚀即称为湍流腐蚀。 湍流使金属表面液体的搅动比层流更为剧烈,结果使金属 与介质的接触更为频繁。湍流不仅加速了腐蚀剂的供应和 腐蚀产物的移去,而且又附加了一个流体对金属表面的切 应力。该切应力能够把已经形成的腐蚀产物剥离,并随流 体转移开。当流体中含有气泡或固体颗粒时,切应力的力 矩增大,金属表面损伤更加严重。湍流腐蚀大多发生在叶 轮、螺旋桨,以及泵、搅拌器、离心机、各种导管的弯曲 部分。
应力作用下的腐蚀破坏
空泡 腐蚀
应力腐蚀 开裂SCC
冲击腐蚀或 湍流腐蚀
微动腐蚀或 微振腐蚀FC
腐蚀
腐蚀 疲劳 CF
氢致 断裂
一、腐蚀疲劳破坏的特征
❖ 金属材料和工程结构在交变应力和腐蚀介质协同、交互作 用下导致的破坏现象,称为腐蚀疲劳失效。
❖ 腐蚀疲劳过程受力学因素、环境因素和材料因素交互影响, 与一般腐蚀、纯机械疲劳和应力腐蚀失效相比,表现出诸 多自身的特征。
二、磨耗腐蚀
❖ 磨耗腐蚀是指金属材料与周围环境介质中之间存 在摩擦和腐蚀的双重作用,而导致金属材料的破 坏现象。由于这种破坏是应力和环境中化学介质 协同促进的过程,因此也是应力作用下腐蚀的形 式之一。
磨损机理

磨损与形貌测量一)磨损机理根据近年来的研究,人们普遍认为按照不同的磨损机理来分类是比较恰当的,通常将磨损划分为四个基本类型:粘着磨损;磨粒磨损;表面疲劳磨损;腐蚀磨损;微动磨损。
虽然这种分类还不十分完善,但它概括了各种常见的磨损形式。
例如:腐蚀磨损是表面和含有固体颗粒的液体相摩擦而形成的磨损,它可以归入磨粒磨损。
微动磨损的主要原因是接触表面的氧化作用,可以将它归纳在腐蚀磨损之内。
还应当指出:在实际的磨损现象中,通常是几种形式的磨损同时存在,而且一种磨损发生后住住诱发其它形式的磨损。
例如疲劳磨损的磨屑会导致磨粒磨损,而磨粒磨损所形成的新净表面又将引起腐蚀或粘着磨损微动磨损就是一种典型的复合磨损。
在微动磨损过程中,可能出现粘着磨损、氧化磨损、磨粒磨损和疲劳磨损等多种磨损形式。
随着工况条件的变化,不同形式磨损的主次不同。
二)典型的磨损过程(三阶段)1、磨合磨损过程在一定载荷作用下形成一个稳定的表面粗糙度,且在以后过程中,此粗糙度不会继续改变,所占时间比率较小。
2、稳定磨损阶段经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命。
3、剧烈磨损阶段经稳定磨损后,零件表面破坏,运动副间隙增大→动载、振动→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效。
三)摩擦表面的形态分析由于摩擦现象发生在表面层,表层组织结构的变化是研究摩擦磨损规律和机理的关键,现代表面测试技术已先后用来研究摩擦表面的各种现象。
1、摩擦磨损表面形貌的分析摩擦过程中表面形貌的变化可以采用表面轮廓仪和电子显微镜来进行分析。
表面轮廓仪是通过测量触针在表面上匀速移动,将触针随表面轮廓的垂直运动检测、放大,并且描绘出表面的轮廓曲线。
再经过微处理机的运算还可以直接测出表面形貌参数的变化。
目前常用的表面微观形貌分析设备为扫描电子显微镜。
电子扫描的图像清晰度好,并有立体感,放大倍数变化范围宽(20-20000倍),检测范围亦较大。
机械磨损的种类及解决方法

机械磨损的主要类型和解决方法许多机械的运行环境大多都很恶劣,受环境的影响机械零件的磨损也加快,零件的失效形式有很多,因磨损、变形、断裂、腐蚀和蠕变引起的零件失效是最主要的原因。
磨损是零件失效的主要形式,据统计有75%的机械零件是由于磨损而失效的。
多数机械设备由于负荷重、冲击大、温度高,工作环境恶劣等因素,机械磨损更为显著。
根据机械磨损产生的原因和磨损过程的本质,磨损又可分为黏着磨损、磨粒磨损、疲劳磨损和腐蚀磨损。
(1)黏着磨损:微观地看矿山机械零件表面都是凸凹不平的,两表面接触时,实际是局部的点接触。
在相对滑动和一定载荷作用下,接触点发生塑性变形或剪切,使零件表面温度升高,表面膜破裂,严重时表面金属软化或熔化。
此时接触面产生黏着,由于相对运动,旧的戳着点不断被剪断。
新的教着点又形成。
如此循环构成熟着磨损。
(2)磨粒磨损:硬的颗粒或凸起物在摩擦过程中引起材料脱落的现象称磨粒磨损。
据国外统计,在冶金矿山机械工业中,由于磨粒磨损而引起的损失约占成本的40%;在煤炭工业中占成本的30%。
所以由磨粒磨损引起零件失效所占比例是较高的。
(3)表面疲劳磨损:疲劳磨损是机械表面有摩擦存在的情况下,同时存在交变接触应力致使表面产生初生的显微裂纹,并不断发展引起材料微粒脱落的现象。
例如滚动轴承滚动体表面、齿轮齿面分度圆附近、钢轨与轮的接触表面等,常出现小麻点或痘斑状凹坑,这就是典型的表面疲劳磨损所致。
疲劳磨损与零件疲劳破坏的主要区别是前者存在摩擦和磨损,表面发生塑性变形和发热现象,且受液体润滑介质的影响。
而后者主要受交变应力作用引起疲劳破坏。
(4)腐蚀磨损:当两表面在腐蚀环境(气体或液体)中摩擦时,会在机械表面上产生反应生成物,反应生成物与表面结合能力弱,在不断的摩擦中一般都会磨掉,磨掉后露出的金屈又迅速生成新的反应物,如此反复形成腐蚀磨损。
它与一般化学府蚀的根本区别是后者没有摩擦。
为了解决机械磨损的问题,需要减少机械部件之间以及机械部件与其他颗粒物的接触面及摩擦力,减少机械与腐蚀环境的接触。
机械磨损

机械磨损一、机械磨损的理论两相互接触产生相对运动的摩擦表面之间的摩擦将产生阻止机件运动的摩擦阻力,引起机械能量的消耗并转化而放出热量,使机件产生磨损.每当摩擦时,接触点形成的粘着与滑溜不断相互交替的结果,造成表面的损伤,这就是磨损。
二、二、机械磨损的类型(一)粘着磨损根据粘着程度的不同,粘着磨损的类型也不同。
若剪切发生在粘着结合面上,表面转移的材料极轻微,则称“轻微磨损”.如缸套与活塞环的正常磨损。
当剪切发生在软金属浅层里面,转移到硬金属表面上.称为“涂抹”,如重载蜗轮副的蜗杆的磨损。
若剪切发生在软金属接近表面的地方,硬表面可能被划伤,称为“擦伤”,如滑动轴承的轴瓦与轴摩擦的“拉伤”,当剪切发生在摩擦副的一方或两方全属较深的地方.称为“撕脱”.如滑动轴承的轴瓦与轴的焊合层在较深部位剪断时就是撕脱。
若摩擦副之间咬死不能相对运动则称为“咬死”,如滑动轴承在油膜严重破坏的条件下,过热、表面流动、刮伤和撕脱不断发十时,又存在尺寸较大的异物硬粒部分嵌人在合金层中.则此异物与轴摩擦生热.上述两种作用叠加在一起,使接触面薪附力急剧增加,造成轴与滑动轴承抱合在一起,不能转动.相互咬死。
(二)磨料磨损由于一个表面硬的凸起部分和另一表面接触,或者在两个摩擦表面之间存在着硬的颗粒,或者这个颗粒嵌人两个摩擦面的一个面爪.在发生相对运动后.使两个表面中某一个面的材料发生位移面造成的磨损称为磨料磨损。
在农业、冶金、矿山、建筑、上程和运输等机械中许多零件与泥沙、矿物、铁屑、灰渣等直接摩擦,都会发生不同形式的磨料磨损口据统计,因磨料磨损而造成的损失,占整个工业范围内磨损损失的50%左右。
由于产生的条件有很大不同,磨料磨损一般可以分为如下三种类型。
1 .凿削磨料磨损机械的许多构件直接与灰渣、铁屑、矿石颗粒相接触,这些颗粒的硬度一般都很高,并且具有锐利的棱角,当以一定的压力或冲击力作用到金属表面上时,即从零件表层凿下金属屑。
这种磨损形式称为附削磨料磨损。
磨损分类

粘着磨损当摩擦副两对偶表面作相对滑动时,由于粘着致使材料从一个表面转移到另一表面或材料从表面脱落而引起的磨损现象,统称粘着磨损。
1.磨损机理由于摩擦副两对偶表面间实际接触面积很小,接触点应力很高,接触点温度有时高达1000℃,甚至更高,而基体温度一般较低,因此一旦脱离接触,其接触点温度便迅速下降(一般情况下接触点高温持续时间只有几ms)。
摩擦副对偶表面处于这种高温和高应力状态下,润滑油膜、吸附膜或其它表面膜则发生破裂,使接触微峰产生粘着,随后在滑动中粘着点被剪断。
由于相对运动使表面膜破坏更严重、更易粘着。
这种粘着、剪断、再粘着的交替过程就构成了粘着磨损。
粘着点的剪断位置决定粘着磨损的严重程度,按粘着磨损的严重程度,可将粘着磨损分为以下几类(设摩擦副的两个基体A与B以及粘着点AB的抗剪强度依次为τA、τB、τAB,其中τA<τB。
(1)轻微磨损若τAB<τA<τB,则剪切发生在粘着.界面,材料转移极微,磨损很轻。
通常在金属表面具有氧化膜、硫化膜以及其它表面膜时,发生此种粘着磨损,如缸套一活塞环副的正常磨损。
(2)徐抹若τA<τAB<τB ,则剪切发生在A的表面浅层内,被剪切下的材料涂抹在B的表面上,并形成很薄的涂层,随后变为A材料之间的摩擦。
由于表层的冷作硬化,剪切仍发生在A的浅表层,其磨损程度比轻微磨损略大,摩擦因数与轻微磨损相当,如重载蜗杆一蜗轮副的磨损常为此种情况(蜗轮表面的铜涂抹在蜗杆表面上)。
(3)擦伤若τA<τB<τAB,则剪切发生在A的亚表层内(有时也发生在B的亚表层内),被剪切下的材料转移到B 表面上而形成粘着物,这些粘着物又擦伤A表面,如内燃机中铝活塞一缸套副常发生这种粘着磨损。
(4)胶合若τA<τB<τAB,且接触点局部温度较高和接触应力很大,则剪切发生在一方或双方基体较深层处,这时表面将沿着滑动方向呈现明显的撕脱。
这是一种危害性极大的磨损(容易发展变为咬死),有时会突然发生,所以一定要预防。
腐蚀复习提纲 (1)

题型:填空,名词解释,简答题,分析题第1章金属电化学腐蚀基本理论1.掌握腐蚀的定义与分类。
腐蚀—指材料由于环境作用引起的破坏或变质。
金属腐蚀—指金属表面与周围介质发生化学或电化学作用而遭受破坏的现象。
按腐蚀机理金属腐蚀可分为化学腐蚀、电化学腐蚀、物理溶解三大类。
按破坏的特征金属腐蚀可分为全面腐蚀、局部腐蚀。
2.化学腐蚀:金属与电介质直接发生化学作用而引起的破坏。
腐蚀介质直接与金属表面的原子相互作用而产生腐蚀,没有电流产生,为单纯的氧化还原反应。
电化学腐蚀:金属表面与电解质水溶液或熔盐所形成局部电池所产生的腐蚀。
表现为阳极失去电子,阴极得到电子以及产生电流。
3.熟练掌握常见的局部腐蚀类型。
应力腐蚀破坏:拉应力与腐蚀介质联合作用发生开裂破坏。
腐蚀疲劳:腐蚀介质与交变应力或脉冲应力作用下产生的腐蚀。
磨损腐蚀:摩擦副在腐蚀介质中产生的腐蚀。
孔腐蚀:腐蚀集中在某些活性点上,蚀孔直径等于或小于蚀孔深度。
晶间腐蚀:腐蚀沿晶间进行,使晶粒间失去结合力,金属强度急剧降低。
缝隙腐蚀:发生在铆接、螺纹连接、焊接接头、密封垫片等缝隙处的腐蚀。
电偶腐蚀:在电解液中,异种金属接触时,电位较正金属促使电位较负的金属加速其腐蚀。
4.掌握金属腐蚀的历程。
金属腐蚀的本质就是金属与周围介质作用变成化合物的过程,即氧化还原反应。
根据氧化还原反应发生的条件不同,将金属的腐蚀历程分为两种类型:化学腐蚀(Chemical corrosion),其特点是氧化剂直接与金属表面的原子碰撞,化合而形成腐蚀产物,即氧化还原在反应粒子相碰撞的瞬间直接于碰撞的反应点上完成。
例如高温气体中活泼金属的初期氧气过程。
电化学腐蚀(Electrochemical corrosion),其特点是金属的腐蚀存在两个同时进行却相互独立的氧化还原过程,即阳极反应(anode reaction)和阴极反应(cathode reaction)。
例如锌在含氧中性水溶液中的腐蚀。