微生物名词解释期末总结

微生物名词解释期末总结
微生物名词解释期末总结

名词解释

酶的活性中心是指在酶蛋白分子中与底物结合,并起催化作用的小部分氨基酸微区。

中间产物学说酶与底物先络合成一个络合物,此中间产物被看作为稳定的过度态物质,然后络合物再进一步分解,成为产物和游离态酶。

生长因子一类调节微生物正常代谢所必需、但不能用简单的碳、氮源自行合成的有机物,只需很少量。

培养基人工配制的、适合微生物生长繁殖或产生代谢产物用的营养基质。

选择培养基根据某微生物的特殊营养要求或其对化学、物理因素有抗性而设计的培养基,具有使混合样中的劣势菌变成优势菌的功能。

鉴别培养基在培养基中加有能与目的菌的无色代谢产物发生显色反应的指示剂,从而达到只需肉眼就能方便地从近似菌落中找出目的菌落的培养基。

基团转位一类既需要特异性载体蛋白的参与,又需要消耗能量的一种物质运输方式,其特点是溶质在运送前后分子结构发生变化。

发酵是指在无外在电子受体时,底物脱氢后所产生的还原力[H]不经呼吸链传递而直接交给某一内源性中间产物接受,以实现底物水平磷酸化产能的一类生物氧化反应。

好氧呼吸在是有氧的情况下,微生物将底物彻底氧化,脱下的氢完整的呼吸链(电子传递体系)传给分子氧并生成水和产生大量ATP的过程。

种群(population)指有相似特性和生活在特定空间的同一生物种的所有个体的集合体. 种群是生物群落的基本组分。

群落(community),指一定时间内生态系统是在一定时间和空间范围内由生物与它们的生境通过能量流动和物质循环所组成的一个自然体。居住在一定空间范围内的生物种群的集合。

生态平衡生态系统在一定的时间和空间内,保持相对稳定的状态,并能对外来干扰进行自我调节。

土壤自净土壤对进入其中的一定负荷的有机物或有机污染物具有吸附和生物降解能力,通过各种物理、生化过程自动土壤自净是有一定限度的,即自净容量。分解污染物使土壤恢复到原有水平的净化过程,称土壤自净。

土壤生物修复是利用土壤中天然的微生物资源或认为投加目的菌株,甚至用构建的特异降解功能菌投加到污染土壤中,将滞留的污染物快速降解和转化,使土壤恢复其天然功能。

水体自净河流(水体)接纳了一定量的有机污染物后,在物理的、化学的和水生物(微生物、动物和植物)等因素的综合作用后得到净化,水质恢复到污染前的水平和状态,叫作水体自净。

分批培养是将一定量的微生物接种在一个封闭的、盛有一定量液体培养基的容器内,保持一定的温度、pH和溶解氧量,微生物在其中生长繁殖,结果出现微生物数量又少变多,达到高峰后又由多变少,甚至死亡的变化规律。

光复活现象经紫外线照射的微生物,随即暴露于可见光下,有一部分受损伤的细胞可恢复其活力。

灭菌采用强烈的理化因素使任何物体内外部的一切微生物永远丧失其生长繁殖能力的措施。

消毒采用较温和的理化因素,仅杀死物体表面或内部一部分对人体有害的病原菌,从而被消毒的物体基本无害的措施灭菌.

水活度:在相同的温度和压力下,某溶液的蒸汽压(P)和纯水的蒸汽压(P0)之比,即 aw = P/P0

驯化在工业废水生物处理过程中,用含有某些污染物的工业废水筛选、培养来自处理其他废水的菌种,使它们适应该种工业废水并有效降解其中污染物能力的方法叫驯化。

半保留复制首先DNA双螺旋分子在解旋酶的作用下,两条多核苷酸链之间的氢键断裂,分离成两条单链,然后各自以原有的多核苷酸链为模板,根据碱基配对原则合成新的互补链,这样形成的两个子代DNA分子与原来的DNA分子完全相同,故称之为复制。又因子代DNA分子的双链一条来自亲代,另一条是新合成的,故称为半保留复制。

DNA变性当天然双链DNA分子在热、酸或碱等因素作用下,氢键被破坏,成为不规则的卷曲单链,称为DNA变性。

复性变性DNA溶液经适当处理后重新形成天然DNA的过程叫复性。

基因突变:点突变,由于DNA(RNA病毒和噬菌体的RNA)链上的一对或少数几对碱基被另一个或少数几个碱基对取代发生改变的突变类型。

诱变:指通过认为的方法,利用物理、化学或生物因素显著提高基因自发突变频率的手段。

移码突变:由于DNA序列中一个或少数几个核苷酸发生增添或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变,并进一步引起转录和转译错误的一类突变。

基因重组:两个不同性状的个体细胞的DNA融合,使基因重新组合,从而发生遗传变异,产生新品种的过程。

转化:受体菌直接吸收供体菌的DNA片段而获得后者部分遗传性状的现象,称为转化。

转导:通过缺陷噬菌体的媒介,把供体细胞的DNA片段携带到受体细胞中,通过交换与整合,后者获得前者部分遗传性状的现象。

普遍转导:通过完全缺陷噬菌体对供体菌基因组上的任何小片段DNA进行误包,而将其遗传性状传递给受体菌的现象。

局限转导:通过部分缺陷的温和噬菌体把供体菌的少数特定基因携带到受体菌中,并与后者的基因组整合,形成转导子的现象。

接合:通过供体菌和受体菌完整细胞间的直接接触,前者的部分DNA进入后者细胞内,并与其核染色体发生交换、整合,从而使后者获得供体菌的遗传性状的现象。

降解性质粒:携带有降解某些复杂有机物的酶的基因,含有这类质粒的细菌,特别是假单胞菌,能降解复杂的有机物,尤其是一些有毒的化合物,如芳香族化合物、农药、樟脑、辛烷等,该类质粒一般按其降解的底物来命名,如樟脑质粒(CAM)、辛烷质粒(OCT)等。

质粒育种:将两种多种微生物通过细胞接合或细胞融合技术,使供体菌的质粒转移到受体菌体内,使受体菌保留自身的功能质粒,同时获得供体菌的功能质粒,从而获得了具有几种功能质粒的新品种。

基因工程:是利用DNA重组技术,在体外通过人工剪切和拼接等方法,对生物的基因进行改造或重新组合,然后导入受体细胞内,使重组的基因在受体细胞中扩增和表达,从而产生出人类所需要的基因产物。

限制性内切酶:指能识别双链DNA分子的特定序列,并在其识别位点或其附近切割DNA的一类内切酶。

假菌丝当酵母菌进行一连串的芽殖后,如果长大的子细胞与母细胞不立即分离,其间仅以极狭小的面积相连,这种藕节状的细胞串成为假菌丝。

灭菌:采用强烈的理化因素使任何物体内外部的一切微生物永远丧失其生长繁殖能力的措施。

消毒:采用较温和的理化因素,仅杀死物体表面或内部一部分对人体有害的病原菌,而对被消毒的物体基本无害的措施灭菌。

固定化酶,通过物理吸附法或化学键合法将水溶性酶和固态的不溶性载体相结合,使酶变成不溶于水但仍保留催化活性的衍生物。

固定化微生物,用制备固定化酶的方法将微生物固定在载体上,即成固定化微生物。

半保留复制:首先DNA双螺旋分子在解旋酶的作用下,两条多核苷酸链之间的氢键断裂,分离成两条单链,然后各自以原有的多核苷酸链为模板,根据碱基配对原则合成新的互补链,这样形成的两个子代DNA分子与原来的DNA分子完全相同,故称之为复制。又因子代DNA分子的双链一条来自亲代,另一条是新合成的,故称为半保留复制。

当天然双链DNA分子在热、酸或碱等因素作用下,氢键被破坏,成为不规则的卷曲单链,称为DNA变性。

变性DNA溶液经适当处理后重新形成天然DNA的过程叫复性。

基因突变:点突变,由于DNA(RNA病毒和噬菌体的RNA)链上的一对或少数几对碱基被另一个或少数几个碱基对取代发生改变的突变类型。

诱变:指通过认为的方法,利用物理、化学或生物因素显著提高基因自发突变频率的手段。

好氧活性污泥是由多种多样的好氧微生物和兼性厌氧微生物(兼有少量厌氧微生物)与污(废)水中的有机和无机固体物混凝交织在一起所形成的絮状体。

菌胶团:所有具有荚膜或粘液或明胶质的絮凝性细菌互相絮凝聚集成的细菌团块。

好氧生物膜是由多种多样的好氧微生物和兼性厌氧微生物粘附在生物滤池滤料上或粘附在生物转盘盘片上的一层带粘性、薄膜状的微生物混合群体。

厌氧活性污泥:由兼性厌氧菌和专性厌氧菌与废水中的有机杂质交织在一起形成的颗粒污泥。

捷径反硝化,即通过限制充氧量(0.5~1.0mg/L)和缩短曝气时间等条件,抑制硝化细菌生长,促使亚硝化细菌生长,迅速将氨氧化为HNO2后,随即利用有机物将HNO2还原为N2的过程。

某些微生物在好氧时能大量吸收磷酸盐合成自身核酸和ATP,并且能逆浓度过量吸磷合成贮能的多磷酸盐颗粒(异染粒和PHB)在体内,供其内源呼吸用。这些细菌称为聚磷菌。

堆肥化使依靠自然界广泛分布的细菌、放线菌和真菌等微生物,有控制地促进可生物降解的有机物向稳定的腐殖质转化的过程。

生物修复是利用天然存在的或特别培养的微生物在可调控环境条件下将环境中的有毒污染物转化为无害物质的处理技术。

生物地球化学循环:指生物圈中的各种化学元素,经生物化学作用在生物圈中的转化和运动。

有机氮化物在氨化微生物的脱氨基作用下产生氨,称为氨化作用。

在有氧条件下,氨经亚硝化细菌和硝化细菌的作用转化成硝酸的作用,称为硝化作用。

在厌氧条件下,反硝化细菌将将硝酸盐还原成亚硝酸盐和气态氮化物(N2和N2O)的作用,称为反硝化作用。

分子氮通过固氮微生物固氮酶系的催化形成氨,进而合成为有机氮化物的作用,称为固氮作用。

硫化作用:在有氧条件下,通过硫细菌的作用将硫化氢转化成元素硫,再进而氧化成硫酸的过程。

在厌氧条件下,某些微生物利用硫酸盐作为末端电子受体还原成不被同化的H2S的作用,称为反硫化作用。这些微生物为硫酸盐还原菌,

菌落在固体培养基上,由一个细菌繁殖起来的,由无数细菌组成的、肉眼可见的具有一定形态的细菌集团。

由细胞质膜上的鞭毛基粒长出穿过细胞壁伸向菌体外的一条纤细呈波浪弯曲的丝状物叫鞭毛,具有运动功能。

某些细菌在其生长发育后期,在细胞内形成一个圆形或椭圆形、壁厚、含水量极低、抗逆性极强的休眠体,称为芽孢。

荚膜:某些细菌在其细胞壁表面分泌一层粘性物质,把细胞壁完全封住,使细菌和外界环境有明显的边缘,这层粘性物质叫荚膜。

质粒:游离于原核生物核基因组以外,具有独立复制能力的细胞质遗传因子。

酶是生物体内合成的一种具有催化性能的蛋白质,它是生物催化剂。

抗生素:是一类由微生物或其他生物生命活动过程中合成的次生代谢产物或人工衍生物,它们在很低的浓度时就能抑制或干扰它种生物的生命活动,因而可用作优良的化学治疗剂。

《环境微生物学》复习重点总结

《环境微生物学》复习重点 1、微生物是如何分类的?答:各种微生物按其客观存在 的生物属性(如个体形态及大小、染色反应、菌落特征、细胞结构、生理生化反应、与氧的关系、血清学反应等)及它们的亲缘关系,由次序地分门别类排列成一个系统,从大到小,按界、门、纲、目、科、属、种等分类。种是分类的最小单位,“株”不是分类单位。 2、微生物有哪些特点?答:(一)个体极小。微生物的个体极小,有几纳米到几微米,要通过光学显微镜才能看见,病毒小于0.2微米,在光学显微镜可视范围外,还需要通过电子显微镜才可看见。(二)分布广,种类繁多。环境的多样性如极端高温、高盐度和极端pH造就了微生物的种类繁多和数量庞大。(三)繁殖快。大多数微生物以裂殖的方式繁殖后代,在适宜的环境条件下,十几分钟至二十分钟就可繁殖一代。在物种竞争上取得优势,这是生存竞争的保证。(四)易变异。多数微生物为单细胞,结构简单,整个细胞直接与环境接触,易受外界环境因素影响,引起遗传物质DNA的改变而发生变异。或者变异为优良菌种,或使菌种退化。 3 革兰氏阳性菌和革兰氏阴性菌的细胞壁结构有什么异同?各有哪些化学组成?答:革兰氏阳性菌细胞壁厚约20-80nm,结构较简单,含肽聚糖,革兰氏阴性菌细胞壁厚约10nm,结

构复杂,分外壁层和内壁层,外壁层又分三层:最外层是脂多糖,中间是磷脂层,内层是脂蛋白。内壁含肽聚糖,不含磷壁酸。化学组成:革兰氏阳性菌含大量肽聚糖,含独磷壁酸,不含脂多糖。革兰氏阴性菌含极少肽聚糖,含独脂多糖,不含磷酸壁。 4、叙述革兰氏染色的机制和步骤。答:将一大类细菌染上色,而另一类染不上色,一边将两大类细菌分开,作为分类鉴定重要的第一步。其染色步骤如下:1在无菌操作条件下,用接种环挑取少量细菌于干净的载玻片上涂布均匀,固定。2用草酸铵结晶紫染色1min,水洗去掉浮色。3用碘—碘化钾溶液媒染1min,倾去多余溶液。4用中型脱色剂如乙醇或丙酮酸脱色,革兰氏阳性菌不被褪色而呈紫色。革兰氏阴性菌被褪色而成无色5用蕃红染液复染1min,格兰仕阳性菌仍呈紫色,革兰氏阴性菌则呈现红色。革兰氏阳性菌和格兰仕阴性菌即被区分开。 5、何谓放线菌?革兰氏染色是何种反应?答:在固体培养基上呈辐射状生长的菌种,成为放线菌。除枝动菌属革兰氏阴性菌,革兰氏染色呈红色外,其余全部放线菌均为革兰氏阳性菌,革兰氏染色呈紫色。 6、什么叫培养基?按物质的不同,培养基可分为哪几类?按试验目的和用途的不同,可分为哪几类?答:根据各种微生物的营养要求,将水、碳源、氮源、无机盐及生长因子等

生物化学重点名词解释汇总情况

生物化学名词解释(英汉)完全版! 6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。不能再水解成更小分子的糖类,如葡萄糖等。同生化 7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。 8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。 10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线性的或带有分支的。 11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。 13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 15,肽聚糖(peptidoglycan):N-乙酰葡糖胺和N-乙酰胞壁酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽链组成的杂化的分子,多糖是分子的主要成分。 第六章1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 3,不饱和脂肪酸(unsaturated fatty acid):至少含有一对—C=C—双键的脂肪酸。 4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5,三脂酰甘油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和甘油是三脂酰甘油的混合物。 11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着划分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞通讯有关的重要部位。 13,在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。 14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或在的膜蛋白的离子相互作用和形成氢键与膜的或外表面弱结合的膜蛋白。 15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 17,通道蛋白(channel protein):是带有中央水相通道的在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。

微生物学名词解释汇总

1.微生物:指一切肉眼瞧不见的,需借助光学显微镜或电子显微镜才能观察到的微小生物的 总称(<0、1㎜)。特点:小、简、低。 2.微生物学就是一门在分子、细胞或群体水平上研究微生物的形态构造、生理代谢、遗传 变异、生态分布与分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程与环境保护等实践领域的科学。 3.原核微生物就是指一大类只含1个DNA分子的原始核区而无核膜包裹的原始单细胞生 物。 4.细菌就是一大类细胞细小、结构简单、胞壁坚韧、多以二分裂方式繁殖与水生性较强的 原核生物。 5.原生质体指在人为条件下,用溶菌酶除尽原有细胞壁或用青霉素抑制新生细胞壁的合成 后得到的仅有一层细胞膜包裹的圆球状渗透敏感细胞。只能在等渗或高渗(细菌宜等渗或低渗)培养液中保存或生长。一般由革兰氏阳性细菌生成。 6.球状体又叫原生质球,指还残留部分细胞壁,尤其就是G-外膜的原生质体。 7.支原体:就是在长期进化中形成的、适应自然条件的无细胞壁的原核生物。 8.细胞质指细胞膜包围的除核区以外的一切半透明、胶体状、颗粒状物质的总称。原核生 物的细胞质就是不流动的,真核生物的不断流动。 9.贮藏物就是一类由不同化学成分累积而成的不溶性颗粒,主要功能就是储存营养物。 10.核区指原核生物所特有的无核膜包裹、无固定形态的原始细胞核。其化学成分就是大型 环状双链DNA,一般不含蛋白质。用富尔根染色法可见到紫色、形态不定的核区。除染色体复制时,一般为单倍体。 11.质粒:自主复制的染色体外的遗传成分,通常就是小型共价闭合环状双链DNA。 12.芽孢,某些细菌在生长发育后期,在细胞内形成一个圆形或椭圆形、厚壁、含水量极低、 折光性强、抗逆性强的休眠体。每一个营养细胞内仅生成一个芽孢,不起繁殖作用。 13.芽孢萌发:由休眠状态的芽孢变为营养状态的细菌的过程。 14.裂殖指一个细胞通过分裂形成两个子细胞的过程。 15.二分裂,一个细胞在其对称中心形成一隔膜,进而分裂成两个形态、大小、构造完全相同 的子细胞。(Most) 16.芽殖指在母细胞表面先形成一个小突起,待长到与母细胞相仿后再相互分离并独立生活 的繁殖方式。 17.菌落,在固体培养基上以母细胞为中心形成的肉眼可见的、具有一定形态的子细胞群。 18.菌苔,很多菌落连成一片。 19.克隆,由一个细菌繁殖而来的菌落。 20.放线菌就是一类呈丝状生长、以孢子繁殖的G+细菌。 21.基内菌丝(营养菌丝、基质菌丝),孢子落在固体基质表面并发芽后,不断伸长、分枝并以放 射状向基质表面与内层扩展,形成大量色浅、较细的具有吸收营养与排泄代谢废物功能的基内菌丝体。无分隔,直径与细菌相仿,可产生色素。 22.营养菌丝(二级菌丝),基内菌丝体不断向空间方向分化出颜色较深、直径较粗的分支菌 丝。 23.孢子丝,在生长发育到一定阶段,气生菌丝上分化出可形成孢子的菌丝,称为孢子丝。 24.静息孢子,就是一种着生于丝状体细胞链中间或末端的形大、色深、壁厚的休眠细胞,富 含贮藏物,能抵御干旱或冷淡。 25.链丝段,又叫连锁体或藻殖段,就是由长细胞链断裂而成的短链段,具有繁殖功能。 26.支原体就是一类缺少细胞壁的真细菌,能离开活细胞独立生长繁殖的最小原核微生物。植 物支原体—类支原体。

医学微生物学名词解释总结

第一二章细菌的形态结构与生理 1、微生物:(P1)存在于自然界形体微小,数量繁多,肉眼看不见,必须借助 与光学显微镜或电子显微镜放大数百倍甚至上万呗,才能观察的一群微小低等生物体。 2、微生物学:(P2)用以研究微生物的分布、形态结构、生命活动(包括生理 代、生长繁殖)、遗传与变异、在自然界的分布与环境相互作用以及控制他们的一门科学 3、医学微生物学:(P3)主要研究与人类医学有关的病原微生物的生物学症状、 对人体感染和致病的机理、特异性诊断方法以及预防和治疗感染性疾病的措施,以控制甚至消灭此类疾病为的目的的一门科学 4、代时:细菌分裂倍增的必须时间 5、细胞壁:包被于细菌细胞膜外的坚韧而富有弹性的膜状结构 6、肽聚糖或粘肽:原核细胞型微生物细胞壁的特有成分,主要由聚糖骨架、四 肽侧链及肽链或肽键间交联桥构成 7、脂多糖:(P13)LPS 革兰阴性菌细胞壁外膜伸出的特殊结构,即细菌毒素。 由类脂A、核心多糖和特异多糖3个部分组成 8、质粒:(P15)是细菌染色体外的遗传物质,双链闭合环状DNA结构,带有遗 传信息,具有自我复制功能。可使细菌或的某些特定形状,如耐药、毒力等 9、荚膜:(P16)某些细菌能分泌粘液状物质包围与细胞壁外,形成一层和菌体 界限分明、不易着色的透明圈。主要由多糖组成,少数细菌为多肽。其主要功能是抗吞噬,并有抗原性

10、鞭毛:(P16)从细菌细胞膜伸出于菌体外的细长弯曲的蛋白丝状物,是细 菌的运动器官,见于革兰阴性菌、弧菌和螺菌。 11、菌毛:(P17)是存在于细菌表面,由蛋白质组成的纤细、短而直的毛状结 构,只有用电子显微镜才能那个观察,多见于革兰阴性菌 12、芽孢:(P18)那个环境条件下,某些革兰阳性菌能在菌体形成一个折光性 很强的不易着色小题,成为生孢子,简称芽孢 13、细菌L型:(P14)即细菌缺陷型。有些细菌在某些体外环境及抗生素等作 用下,可部分或全部失去细胞壁。 14、磷壁酸:(P12)是由核糖醇或甘油残基经磷酸二酯键互相连接而成的多聚 物。为大多数革兰阳性菌细胞壁的特有成分。有两种,即壁磷壁酸和膜磷壁酸 15、细菌素:(P25)是某些细菌菌株产生的一类具有抗菌作用的蛋白质或蛋白 质与脂多糖的复合物 16、专性需氧菌:(P 23)此类细菌具有较完善的呼吸酶系统,需要分子氧作 为受氢体,只能在有氧的情况下生长繁殖。 17、热原质:(P25)是细菌产生的一种脂多糖,将它注入人体或动物体可引起 发热反应 18、专性厌氧菌:(P23)此类细菌缺乏完善的呼吸酶系统,只能在无氧条件下 生长繁殖 19、抗生素:(P25)为某些微生物代过程中产生的一类能抑制或杀死某些其他 微生物或癌细胞的物质 20、兼性厌氧菌:(P23)此类细菌具有完善的酶系统,不论在有氧或无氧环境

微生物期末重点总结

微生物期末重点总结

微生物期末重要内容串讲1 1.比面值(P8):把某一物体的单位体积所占有的表面积称为比面值。物体的体积越小,其比面值就越大。微生物是一个比面值大(小体积,大面积)的系统,因此拥有巨大的营养物质吸收面,代谢物质排泄面,环境信息交换面。现以球体的比面值为例: 比面值=表面积/体积= 2.菌落(P34):将单个细菌细胞或(其他微生物)细胞或一小堆同种细胞接种到固体培养基表面(有时为内层),当它占有一定的发展空间并处于适宜的培养条件下,该细胞就会迅速生长繁殖并形成细胞堆,此即菌落。如果菌落是一个单细胞繁殖成的,它就是一个纯种细胞或克隆。如果把大量分散的纯种细胞密集地接种在固体培养基的较大平面上,结果长出大量“菌落”已互相连成一片,这就是菌苔。 菌落特征:一般呈现湿润、较光滑、较透明、较粘稠、易挑取、质地均匀以及菌落正反面或边缘与中央部位颜色一致等。 3.荚膜(P27):荚膜是细胞的特殊结构,是某些细菌在细胞壁外包围的一层粘液性物质,一般由

糖和多肽组成。细菌不仅可利用荚膜抵御不良环境;保护自身不受白细胞吞噬;而且能有选择地粘附到特定细胞的表面上,表现出对靶细胞的专一攻击能力。 4.反硝化作用(P116):反硝化细菌在缺氧条件下,还原硝酸盐释放出分子态氮(N2)或一氧化二氮(N2O)的过程。微生物和植物吸收利用硝酸盐有两种完全不同的用途:一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3—NH4—有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养;另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称反硝化作用或脱氮作用:NO3—NO2—N2。能进行反硝化作用的只有少数细菌(一般为兼性厌氧微生物),这个生理群称为反硝化细菌。 5.L型细菌(P23):由英国学者李斯特(Lister)发现的细菌,它是一种典型的细胞壁缺陷型细菌,专指那些实验室或宿主体内通过自发突变而形成的遗传性稳定的细胞壁缺损菌株,在固体培养基上可以形成“油煎蛋”似的小菌落。 6.温和噬菌体(溶源性)(P77):某些噬菌体侵染细菌后,将自身基因组整合到细菌细胞染色体

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

微生物学名词解释(完美整理版)分析

微生物名词解释 A 氨基酸异养型微生物:能利用非氨基酸类简单氮源自行合成自身所需的一切氨基酸的微生物 艾姆氏试验:利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌物的方法。 ADCC:抗体依赖的细胞介导的细胞毒作用。是指表达IgGFc受体的NK细胞、巨噬细胞和中性粒细胞等,通过与已结合在病毒感染细胞和肿瘤细胞等靶细胞表面的IgG抗体的Fc段结合,而杀伤这些靶细胞的作用。 氨化作用:是指含氮有机物经微生物的分解而产生氨的作用。 B 伴胞晶体:少数芽孢杆菌在其形成芽孢的同时,在细胞内形成的一种菱形或双椎形碱溶性蛋白晶体。伴胞晶体对昆虫尤其是鳞翅目昆虫的幼虫有毒杀作用。 疵壁菌:嗜盐菌、产甲烷菌等古生菌的细胞壁中不含有典型的肽聚糖成分,被称为疵壁菌。 鞭毛:生长在某些细菌表面的长丝状、波曲的蛋白质。 包涵体:某些病毒感染宿主后,在宿主细胞内形成的一种光镜下可见、形态大小和数量不等的小体。 病毒:是一类只含一种类型核酸、专性活细胞内寄生、在离体条件下能以无生命的化学大分子状态长期存在并保持其活性的超显微非细胞结构的分子生物。 病毒粒子:成熟的、结构完整的、具有感染性的病毒个体。 巴斯德效应:酵母菌酒精发酵时通入氧气,发酵减慢,停止产生乙醇,葡萄糖消耗速率下降。氧对发酵的这种抑制现象称为巴斯德效应。 半合成培养基:是一类主要以化学试剂配制,同时还加有某种或某些天然成份的培养基 半固体培养基:指在液体培养基中加入少量的凝固剂而制成的半固体状态培养基。 表型:是指某一生物体所具有的一切外表特征及内在特性的总和,是遗传型在合适环境下的具体体现。变异:是生物体在某种内因和外因的作用下所起的遗传物质结构和数量的改变。 半抗原:即不完全抗原。指只具备免疫反应性而无免疫原性的抗原。 巴斯德消毒:用于牛奶、啤酒、果酱和酱油等不能进行高温灭菌、而又不影响食品风味的、但能杀死其中的无芽孢病原菌(如:结核杆菌、沙门氏菌等)的一种低温消毒方法。 BOD5:五日生化需氧量。是指在20℃下,1L污水中所含的有机物在进行微生物氧化时,5日内所消耗分子氧的毫克数。反映水体总的有机物污染程度。 补充培养基:凡只能满足相应地营养缺陷型突变株生长需要的组合或半组合培养基称为补充培养基。 B细胞:即B淋巴细胞,一种在细胞膜表面带有自己和合成的免疫球蛋白的淋巴细胞。 被动免疫:从胎盘或初乳中获得的或者注射抗体、细胞免疫制剂后获得的免疫。 补体:是存在于正常人体或动物体血清中的、在抗原抗体反应中有补充抗体作用的一组非特异性血清蛋白。补体是一类酶原,能被任何抗原-抗体复合物所激活。 补体结合试验:是一种有补体参与,并以绵羊红细胞和溶血素是否发生溶血反应作指示的一种高灵敏度的抗原与抗体结合反应。 C 传染:是指寄生物与宿主间发生相互关系的一个过程。即当外源或内源的少量寄生物突破其宿主的“三道防线”后,在宿主的一定部位生长繁殖,并引起一系列病理生理的过程。 出发菌株:用于诱变育种的原始菌株。 沉淀反应:可溶性抗原与其相对应的抗体在合适的条件下反应,并出现肉眼可见的沉淀物现象,称为沉淀反应。 初次应答:指首次用适量抗原注射动物后,须经一段较长的潜伏期即待免疫活性细胞进行增值分化后,才能在血流中检出抗体,这种抗体多为IgM,滴度低,维持时间短,且很快会下降。 转染:噬菌体感染细菌并将其DNA注入细菌体内,并导致宿主细胞遗传性状改变的过程称为转染。 COD:化学需氧量。是使用强氧化剂使1L污水中的有机物质迅速进行化学氧化时所消耗的毫克数。反映水体总的有机物污染程度。 超敏反应:是致敏机体接触相同抗原时产生的一种异常的特异性免疫应答,表现为机体的组织损伤

微生物名词解释

名词解释: 2.致病微生物(病原微生物):能够引起人类和动植物发生疾病的微生物. 3.条件致病微生物:在正常情况下不致病,只有在特定情况下导致疾病的一类微生物. 4.菌落:菌落是细菌在固体培养基上生长,由单个细菌分裂繁殖成一堆肉眼可见的细菌集团. 5.质粒:质粒是染色体外的遗传物质,存在于细胞质中,为闭合环状的双链DNA,带有遗传信息.控制细菌的某些遗传性状,可独立复制,不是细菌生长必不可少的,失去质粒的细菌仍然能正常生活. 6.芽胞:芽胞是某些细菌在一定条件下,在菌体内部形成一个圆形或椭圆形小体,是细菌的休眠形式. 7.细菌L型:细菌的细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细胞壁受损的细菌在高渗环境下仍可存活者,称细菌细胞壁缺陷型或细菌L型. 8.中介体:中介体是细菌部分细胞膜内陷、折叠、卷曲形成的囊状物,多见于革兰阳性菌.它能有效的扩大细胞膜的面积,相应的增加了呼吸酶的含量,可为细菌提供大量的能量.功能类似于真核细胞线粒体,又称为拟线粒体. 9.普通菌毛:普通菌毛是遍布于某些细菌表面的很细、很短、直而硬的丝状物,每菌可达数百根,为细菌粘附结构,能与宿主细胞

表面的特异性受体结合.与细菌的致病性密切相关. 10.性菌毛:性菌毛比普通菌毛长而粗,呈中空管状结构.由致育因子F质粒编码. 11.菌毛:菌毛是某些细菌表面存在着的一种直的、比鞭毛更细、更短的丝状物.与细菌的运动无关.由菌毛蛋白组成,具有抗原性. 12.鞭毛:鞭毛是在许多细菌的菌体上附有的细长并呈波状弯曲的丝状物,为细菌的运动器官. 13.荚膜:荚膜是某些细菌在细胞壁外包绕一层粘液性物质,为多糖或蛋白质的多聚体,用理化方法去除后并不影响菌细胞的生命活动.凡粘液性物质牢固地狱细胞壁结合,厚度≥0.2μm,边界明显者为荚膜. 14.热原质:热原质是细菌合成的一种极微量的注入人体或动物体内能引起发热反应的物质.为细胞壁的脂多糖结构,故大多源于革兰阴性菌. 15.细菌素:细菌素是某些菌株产生的一类具有抗菌作用的蛋白质.其作用范围窄,仅对有近缘关系的细菌有杀伤作用.可用于细菌分型和流行病学调查. 16.培养基:培养基是由人工方法配制而成的,专供微生物生长繁殖使用的混合营养制品. 17.消毒:消毒是指杀死物体上病原微生物的方法,并不一定杀死

微生物期末考试知识点总结

巴斯德效应:在有氧条件下。兼性厌氧微生物终止发酵,进行有氧呼吸,这种呼吸抑制发酵的现象称为巴斯德效应。即呼吸抑制作用。 巴斯德的贡献:1.证实了微生物活动和否定了微生物自然发生学说;2开创了免疫学——预防接种。3.发酵的研究 ;4.巴斯德消毒法,观察丁醇发酵时发现厌氧生命,提出好氧厌氧属于。 柯赫的贡献:1设计了分离和纯化细菌的方法:划线法、混合平板法。2.设计了培养细菌用的肉汁胨培养液和营养琼脂培养基。3.设计了细菌染色技术。4.提出柯赫法则:(证明某种生物是否为某种疾病的病原的基本原则)i.病原体微生物一定伴随着病害而存在; ii; 必须能自原寄主分理处这种微生物,并培养成为纯培养; iii. 分离培养出的病原体比能在实验动物身上产生相同的症状 iiii 必须自人工接种发病的寄主内,能重新分离出同一病原微生物并培养成纯培养。 3.试述染色法的机制并说明此法的重要性。 答:革兰氏染色的机制为:通过结晶紫初染和碘液媒染后,在细菌的细胞膜内可形成不溶于水的结晶紫与碘的复合物。G+由于其细胞壁较厚、肽聚糖网层次多和交联致密,故遇脱色剂乙醇处理时,因失水而使网孔缩小,在加上它不含类脂,故乙醇的处理不会溶出缝隙,因此能把结晶紫与碘的复合物牢牢留在壁内,使其保持紫色。反之,G-细菌因其细胞壁薄、外膜层类脂含量高、肽聚糖层薄和交联度差,遇脱色剂乙醇后,以类脂为主的外膜迅速溶解,这时薄而松散的肽聚糖网不能阻挡结晶紫与碘复合物的溶出,因此细胞退成无色。这时,在经沙黄等红色染料复染,就使 G-细菌呈红色,而 G+细菌则仍保留最初的紫色。 此法证明了 G+和 G-主要由于起细胞壁化学成分的差异而引起了物理特性的不同而使染色反应不同,是一种积极重要的鉴别染色法,不仅可以用与鉴别真细菌,也可鉴别古生菌。 5. 试述几种细菌细胞壁缺损型的形成,特点和实际意义。 自发缺壁突变:L 型细菌 实验室中形成 彻底除尽:原生质体 人工方法去壁 部分去除:原生质球 自然界长期进化中形成:支原体 实际意义:原生质体和原生质球比正常有细胞壁的细菌更易导入外源遗传物质,故是遗传规律和进行原生质体育种的良好实验材料。 L 型细菌:细菌在某种环境条件下(如低浓度青霉素)因基因突变而产生的缺乏细胞壁的遗传性能稳定的变异类型。

最新生物化学名词解释总结

1、CDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录 成cDNA,与适当的载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA 克隆集。 2、柠檬酸-丙酮酸循环:线粒体内CoA与草酰乙酸缩合柠檬酸后,经 内膜上的三羧酸载体转运至胞液中,在柠檬酸裂解酶催化下需消 耗ATP将柠檬酸裂解回草酰乙酸和乙酰CoA,后者可利用脂肪酸合成,而草酰乙酸经还原后,在苹果酸脱氢酶的催化下生成苹果 酸,苹果酸又在苹果酸酶的催化下变成丙酮酸,丙酮酸经内膜载 体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸。 3、三羧酸循环:乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸, 反复地进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。 4、抗代谢物:是指化学结构上与天然代谢物类似,这些物质进入体 内可与正常代谢物拮抗,从而影响正常代谢的进行。 1、从头合成:指利用简单物质,经复杂酶促反应合成嘌呤核苷酸。 2、补救合成:指利用体内游离的嘌呤或嘌呤核苷,经简单反应合成 嘌呤核苷酸。 3、(嘌呤核苷酸)从头合成途径:是指由磷酸核糖、甘氨酸、天冬氨 酸、谷氨酰胺、一碳单位及CO2等简单物质为原料,经一系列酶促反应合成嘌呤核苷酸的过程。

4、(嘌呤核苷酸)补救合成途径:指利用体内游离的嘌呤或嘌呤核苷, 经过简单的反应重新合成嘌呤核苷酸的过程。 5、(嘧啶核苷酸)从头合成途径:指由磷酸核糖、谷氨酰胺、CO2和 天冬氨酸等简单物质为原料,经一系列酶促反应合成嘧啶核苷酸 的过程。 6、(嘧啶核苷酸)补救合成途径:指利用体内游离的嘧啶或嘧啶核苷, 经过简单的反应步骤合成嘧啶核苷酸的过程。 7、痛风症:是一种嘌呤代谢性疾病,基本生化特征是高尿酸血症, 临床常用别嘌呤醇治疗,别嘌呤醇与次黄嘌呤结构类似,可抑制 黄嘌呤氧化酶,从而抑制尿酸的生成。 DNA生物合成 1、中心法则:DNA通过复制将遗传信息由亲代传递给子代;通过转 录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现 型,DNA的复制、转录、翻译过程,称中心法则。 2、反转录:以RNA为模板,指导DNA合成的过程,也称逆转录。即 遗传信息是从RNA流向DNA,是RNA指导下的DNA合成过程,以RNA为模板,四种dNTP为原料,合成与RNA互补的DNA单链,称反转录。 3、半保留复制:DNA在复制时,以亲代DNA的每一股作为模板,合 成完全相同的两个双链子代DNA,每个子代DNA中含由一股亲代

微生物学名词解释

1、微生物:指一切肉眼瞧不见或瞧不清的微小生物的总称。 2、微生物学:就是一门在细胞、分子或群体水平上研究微生物形态、构造、生 理代谢、遗传变异、生态分类与分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程与环境保护等实践领域的科学,其根本任务就是发掘、利用、改善与保护有益微生物、控制消灭或改造有害微生物,为人类社会的进步服务。 3、磷壁酸:就是结合在G+细菌细胞壁上的一种酸性多糖,主要成分为甘油磷酸或 核酸醇磷酸。 4、原核微生物:即广义的细菌。指一大类细胞核无核膜包裹,只存在核区的裸露 DNA的原始单细胞生物。 5、原生质体:指在人为条件下,用溶菌酶除尽原有细胞壁或用青霉素抑制新生细 胞壁合成后,所得到仅有一层细胞膜包裹的圆球状渗透敏感细胞。 6、细菌:就是一类细胞细短(直径约0、5um,长度约0、5~5um),结构简单、胞 壁坚韧、多以二分裂方式繁殖与水生性较强的原核生物。 7、固质空间:在G-细菌中,其外膜与细胞膜间的狭窄胶质空间(约12~15nm),其 中存在着多种固质蛋白,包括水解酶类、合成酶类与运输蛋白等。 8、 L-型细菌:在实验室或宿主体内通过自发突变而形成遗传性稳定的细胞壁缺 损菌株。 9、球状体:又称原生质球。指还残留了部分细胞壁(尤其就是G-细菌外膜层)的 原生质体。 10、外膜:就是G-细菌细胞壁所特有的结构,位于壁的最外层,化学成分为脂多糖。 11、脂多糖(LPS):就是位于G-细菌细胞壁最外层的一层较厚(8~10nm)的类脂多 糖类物质,由类脂A-核心多糖与D-特异侧链等部分组成。 12、伴孢晶体:少数芽孢杆菌,在形成芽孢的同时,会在芽孢旁形成一颗菱形、方 形或不规则形的碱溶性蛋白质晶体。 13、放线菌:一类主要呈菌丝状生长与以孢子繁殖的陆生性较强的原核生物。 14、间体:由细胞膜内褶形成的囊状构造,其内充满着层状或管状泡囊。多见于 G+菌。 15、芽孢:某些细菌在其生长发育后期,在细胞内形成的一个圆形或椭圆形,厚壁, 含水量低,挑选性强的休眠结构。每一个营养细胞内仅形成一个芽孢,故并无繁殖功能。 16、支原体:一类无细胞壁,介于独立生活与细胞内寄生生活间的最小型原核生 物。 17、蓝细菌:一类进化历史悠久,G-,无鞭毛,含叶绿素a,能进行产氧光合作用的 大型原核生物。 18、菌落:在固体培养基上(内)以母细胞为中心的一堆肉眼可见的,有一定形态, 构造等特征的子细胞集团。 19、立克次氏体:一类专性寄生于真核细胞内的G-原核生物。 20、衣原体:一类在真核细胞内专性能寄生的小型G-原核生物。 1、真核微生物:一大类细胞核具有核膜包裹,能进行有丝分裂。细胞质中存在线粒体或同时存在叶绿体等多种细胞的生物,叫真核生物。真菌、显微藻类与原生动物等就是属于真核生物类的微生物,故称为真核微生物。 2、酵母菌:一般泛指能发酵糖类的各种单细胞真菌。

生物化学名词解释完全版

第一章 1,氨基酸(amino acid):就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相与固定相 (可以就是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其她分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只就是按照分子的大小,而不就是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳与SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图就是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列与功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂与重新形成就是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),就是肽键主链上的重复结构。就是由参于肽链形成的氮原子,碳原子与它们的4个取代成分:羰基氧原子,酰氨氢原子与两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋与β-折叠。二级结构就是通过骨架上的羰基与酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构就是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要就是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力与盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上就是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都就是右手螺旋结构,螺旋就是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0、54nm,每一圈含有3、6个氨基酸残基,每个残基沿着螺旋的长轴上升0、15nm、 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,就是由伸展的多肽链组成的。折叠片的构象就是通过一个肽键的羰基氧与位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以就是平行排列(由N到C方向)或者就是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也就是多肽链中常见的二级结构,就是连接蛋白质分子中的二级结构(α-螺旋与β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点就是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往就是甘氨酸。这两种转角中的第二个残侉大都就是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif)、在蛋白质中,特别就是球蛋白中,经常可以瞧到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构

医学微生物名词解释大全

微生物名词解释 第1、2章细菌的形态结构与生理 microorganism微生物:存在于自然界形体微小,数量繁多,肉眼看不见,必须借助于光学显微镜或电子显微镜放大数百倍甚至上万倍,才能观察的一群微小低等生物体。 microbiology微生物学:用以研究微生物的分布、形态结构、生命活动(包括生理代谢、生长繁殖)、遗传与变异、在自然界的分布与环境相互作用以及控制它们的一门科学。 medical microbiology医学微生物学:主要研究与人类医学有关的病原微生物的生物学性状、对人体感染和致病的机理、特异性诊断方法以及预防和治疗感染性疾病的措施,以控制甚至消灭此类疾病为目的的一门科学。 代时:细菌分裂倍增的必须时间。 bacterium细胞壁:是包被于细菌细胞膜外的坚韧而富有弹性的膜状结构。 peptidoglucan or mucopeptide肽聚糖或粘肽:是原核细胞型微生物细胞壁的特有成分,主要由聚糖骨架、四肽侧链及肽链或肽键间交联桥构成。 lipoplysaccharide,LPS脂多糖:革兰阴性菌细胞壁外膜伸出的特殊结构,即细菌内毒素。由类脂A、核心多糖和特异多糖构成。 plasmid质粒:是细菌染色体外的遗传物质,结构为双链闭合环状DNA,带有遗传信息,具有自我复制功能。可使细菌获得某些特定性状,如耐药、毒力等。 capsule荚膜:某些细菌能分泌黏液状物质包围于细胞壁外,形成一层和菌体界限分明、不易着色的透明圈。主要由多糖组成,少数细菌为多肽。其主要的功能是抗吞噬作用,并具有抗原性。 flagella鞭毛:是从细菌细胞膜伸出于菌体外的细长弯曲的蛋白丝状物,是细菌的运动器官,见于革兰阴性菌、弧菌和螺菌。pipi菌毛:是存在于细菌表面,有蛋白质组成的纤细,短而直的毛状结构,只有用电子显微镜才能观察,多见于革兰阴性菌。 spone芽胞:某些细菌在一定条件下,在菌体内形成一个圆形或卵圆形的小体。见于革兰阳性菌,如需氧芽胞菌和厌氧芽胞杆菌。是细菌在不利环境下的休眠体,对外界环境抵抗力强。 L-form of bacterium细菌L型:有些细菌在某些体内外环境及抗生素等作用下,可部分或全部失去细胞壁,此现象首先由Lister研究发现,故称细菌L型。在适宜条件下,多数细菌L型可回复成原细菌型。 磷壁酸:为大多数革兰阳性菌细胞壁的特有成分,约占细菌细胞壁干重的20-40%,有2种,即壁磷壁酸和膜磷壁酸。

微生物名词解释精华版

B 病原体:凡能引起传染病的各种微生物和其他生物。 包涵体:病毒在增值的过程中,常使寄主细胞内形成一种蛋白质性质的病变结构,当其聚集并使宿主细胞发生变异,形成具有一定形态,构造并能用光镜可以观察与识别的特殊群体。 鞭毛、菌毛、性毛。鞭毛:生长在某些细菌表面的长丝状。波曲的蛋白质附属物。菌毛:又称纤毛、伞毛、线毛或须毛,是一种长在细菌体表的纤细,中空、短直且数量较多的蛋白质类附属物,具有使菌体附着于物体表面的功能。性毛:又称性菌毛,构造和成分与菌毛相同,但比菌毛长,且每个细胞仅一至少数几根。一般见于G细菌的雄性菌株中,具有向雌性菌株传递物质的作用,有的还是RNA噬菌体的特异性吸附受体。 巴氏消毒法:是一种专用于牛奶、啤酒、果酒或酱油等不宜进行高温灭菌的液态风味食品或调料的低温消毒方法。 补充培养基:凡只能满足相应的营养缺陷型突变株生长需要的组合或半组合培养基。 C 超氧化物歧化酶:一种在较高浓度分子氧的条件下,才能生

长的具有完整呼吸链、以分子氧作为最终氢受体的活性物质,能消除生物体在新陈代谢过程中产生有害物质的酶。 传染:指外源或内源性病原体突破其宿主的三道免疫“防线”后,在宿主的特定部位定植、生长繁殖或产生酶及毒素,从而引起一系列病理生理的过程。 F 防腐:利用某种理化因素完全抑制霉腐微生物的生长繁殖,即通过制菌作用防止食品、生物制品等对象发生霉腐的措施。 附加体:某些质粒具有聚合体染色体发生螯合与脱离的功能,这类质粒称为附加体。 复壮:狭义的复壮仅是一种消极的措施,指的是在菌种已发生衰退的情况下,通过纯种分离和测定典型性状、生产性能等指标,从已衰退的群体中筛选出少数尚未退化的个体,以达到恢复原菌株固有性状的相应措施;广义的复壮则是一项积极的措施,即在菌种的典型特征或生产性状尚未衰退前,就经常有意识的采取纯种分离的生产性状的测定工作,以在 G 固化培养基:由液体培养基中加入适量凝固剂而形成的液体培养基。 共生:指两种生物共居在一起,相互分工合作、互相有利,相依

微生物期末考试总结

1.讨论五大共性对人类的利弊。 答:①.“吸收多,转化快”为高速生长繁殖和合成大量代谢产物提供了充分的物质基础,从而使微生物能在自然界和人类实践中更好地发挥其超小型“活的化工厂”的作用。②.“生长旺盛,繁殖快”在发酵工业中具有重要的实践意义,主要体现在它的生产效率高、发酵周期短上;且若是一些危害人、畜和农作物的病原微生物或会使物品霉腐变质的有害微生物,它们的这一特性就会给人类带来极大的损失或祸害。③“适应强,易变异”,有益的变异可为人类创造巨大的经济和社会效益;有害的变异使原本已得到控制的相应传染病变得无药可治,进而各种优良菌种产生性状的退化则会使生产无法正常维持。④“分布广,种类多”,可以到处传播以至达到“无孔不入”的地步,只要条件合适,它们就可“随遇而安”,为人类在新世纪中进一步开发利用微生物资源提供了无限广阔的前景。 2.试图示G+和G-细菌细胞壁的主要构造,并简要说明其异同。 3.试述染色法的机制并说明此法的重要性。 答:革兰氏染色的机制为:通过结晶紫初染和碘液媒染后,在细菌的细胞膜内可形成不溶于水的结晶紫与碘的复合物。G+由于其细胞壁较厚、肽聚糖网层次多和交联致密,故遇脱色剂乙醇处理时,因失水而使网孔缩小,在加上它不含类脂,故乙醇的处理不会溶出缝隙,因此能把结晶紫与碘的复合物牢牢留在壁内,使其保持紫色。反之,G-细菌因其细胞壁薄、外膜层类脂含量高、肽聚糖层薄和交联度差,遇脱色剂乙醇后,以类脂为主的外膜迅速溶解,这时薄而松散的肽聚糖网不能阻挡结晶紫与碘复合物的溶出,因此细胞退成无色。这时,在经沙黄等红色染料复染,就使G-细菌呈红色,而G+细菌则仍保留最初的紫色。此法证明了G+和G-主要由于起细胞壁化学成分的差异而引起了物理特性的不同而使染色反应不同,是一种积极重要的鉴别染色法,不仅可以用与鉴别真细菌,也可鉴别古生菌。 4.真菌的一般特性 营养体为单细胞或发达的菌丝体、细胞壁的主要成分是几丁质(Chitin)、没有根茎叶的分化,不含叶绿素,为化能异氧型生物(Chemoheterotroph)、靠产生大量有性或无性孢子的方式进行繁殖和许多真菌特别是病原真菌具有双相性五个特性。 5.酵母的应用及危害 酵母菌是人类应用比较早的微生物,其应用有: 在食品方面——酿酒、制作面包、生产调味品等。 在医药方面——生产酵母片、核糖核酸、核黄素、细胞色素C、B族维生素、乳糖酶、脂肪酶、氨基酸等。 在化工方面——使石油脱腊、以石油为原料生产柠檬酸等。 在农业方面——生产饲料(例如SCP)。 在生物工程方面——作为基因工程的受体菌。 酵母菌的危害: 腐生性酵母菌能使食物、纺织品和其他原料腐败变质; 少数耐高渗的酵母菌和鲁氏酵母、蜂蜜酵母可使蜂蜜和果酱等败坏;

相关文档
最新文档