换热器制造工艺指导流程

换热器制造工艺指导流程
换热器制造工艺指导流程

换热器制造工艺指导流程

编制/日期:校对/日期:审核/日期:- 2 -

编制/日期:校对/日期:审核/日期:- 3 -

编制/日期:校对/日期:审核/日期:- 4 -

编制/日期:校对/日期:审核/日期:- 5 -

换热器制造工艺规程

管壳式换热器制造工艺规程 1、主题内容与适用范围: 本规程规定了本公司管壳式换热器组装制造中的具体工艺要求 2、引用标准 《固定式压力容器安全技术监察规程》、GB151-2014《管壳式换热器》和GB150-2011《固定式压力容器》。 3、基本要求 管壳式换热器主要受压部分的焊接接头分为A、B、C、D、E五类,按下图所示。 a) 壳体圆筒部分的纵向接头、球形接头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头,均属A类焊接接头。 b) 壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头, 均属B类焊接接头,但已规定为A类的焊接接头除外。 c) 平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头,均属C类焊接接头。 d) 接管、人孔、凸缘、补强圈等与壳体连接的接头,均属D类焊接接头,但已规定为A、B类的 焊接接头除外。 e)非受压元件吊耳、支座垫板与压力容器连接的焊缝,均属E类焊接接头。 对不同板厚对接的规定: a) 下列不同板厚必须削薄厚板:

当? 2≤10mm,且? 1 -? 2 >3mm及? 2 >10mm且? 1 -? 2 ≥?n或>5mm时,必须削薄厚板:削薄形式分单面 削薄和双向削薄。见图2。 b) 下列不同板厚对接无须削薄: 当?≤10mm且?1-?2≤3mm及?2>10mm且?1-?2≤?2或≤5mm时,无须削薄板厚,且对口错边量b 以较薄板厚度为基准确定。 在测量对口错边量时,不应计入两板厚度的差值。 筒节长度应不小于300mm。组装时,不应采用十字焊缝,相邻圆筒的A类焊缝的距离,或封头A 类焊缝,焊缝的端点与相邻圆筒A类焊缝的距离应大于名义厚度?n 的三倍,且不 小于100mm,(当板厚不同时,?n按较厚板计算)。 4. 壳体园筒 园筒厚度 园筒厚度应按GB150的规定进行计算,但碳素钢和低合金钢及高合金钢园筒的最小厚度不应小于下表的规定。 mm

铝制板翅式换热器使用说明书_secret

铝制板翅式换热器使用说明书 目录 前言第1页 1 铝板翅式换热器结构介绍第1页 2 板式安装第4页 2.1设备到达检查第4页 2.2存放第4页 2.3板式安装第4页 3 安装第5页 3.1系统试压第5页 3.2 热交换介质的要求第5页 3.3 热交换介质的要求第6页 4、技术性能、安装尺寸第6页 5、维护与保养第6页 6、制造、检验、验收标准第7页 前言 铝板翅式换热器广泛用于低温精馏装置,如空气分离与液化设备、天然气分离与液化、乙烯精馏;也用于化工处理、机车冷却和其它领域; 本使用说明为铝板翅式换热器安装、使用、维护的一般知识,对文中黑体字部份应特别注意,以免对设备或人员造成伤害。在使用过程中对不清楚的地方应向制造厂家咨询。

1. 铝板翅式换热器结构介绍 1.1 铝板翅式换热器属间壁式紧凑换热器; 1.2 铝板翅式换热器的材质为防锈铝合金;换热介质在工作温度下不能对铝合金产生腐蚀或与铝合金有化学反应;这样会降低换热器的使用寿命; 1.3 板式由接管、板束体、其它附属装置组成; 1.3.1 接管 连接换热器与外部接管,可采用焊接、法兰连接或双金属接头连接;接管与板束体相连是封头,封头用于流体分布; 接管材料通常是5A02或5083 1.3.2 板束体 板束体是热交换的场所,结构单位是层;每层由导流片、翅片、封条、隔板组成;层组合为板束体高度(厚度);整体为真空钎焊,不可拆卸; 1.3. 2.1导流片分进、出口导流片,引导流体进、出各层; 1.3. 2.2翅片为流体热交换提供扩展面积和支承强度;节距一般从1mm~4.2mm,故不清洁介质不能入内,以免堵塞,特别在试压、管道吹扫时应特别注意; 1.3. 2.3 封条在每层的四周,把介质与外界隔开;在流体进、出口处开口; 1.3. 2.4隔板把相邻两层隔开,热交换通过隔板进行,常用隔板一般厚1mm~2mm; 1.3.3 其它附属装置包括:支座、吊耳、保冷等; 1.3.3.1支座支承换热器,支架与支座相连;如果需要,支座要考虑隔热; 1.3.3.2 吊耳为换热器吊装使用; 1.3.3.3 当换热器工作温度高于、低于环境温度时换热器应保温以减少冷损。保冷通常采用聚胺脂发泡或干燥珠光砂保冷; 1.4 板式可根据需要进行并联或串联以解决装置需要与钎焊设备尺寸限制的矛盾;并联布置时应注意换热器间流量分配的均匀度; 2 板式安装 2. 1设备到达检查

管壳式换热器工艺设计说明书

管壳式换热器工艺设计说明书 1.设计方案简介 1.1工艺流程概述 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。 图1 工艺流程草图 1.2选择列管式换热器的类型 列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛

的传热设备。其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料围广,操作弹性也较大等。因此在高温、高压和大型装置上多采用列壳式换热器。如下图所示。 1.2.1列管式换热器的分类 根据列管式换热器结构特点的不同,主要分为以下几种: ⑴固定管板式换热器 固定管板式换热器,结构比较简单,造价较低。两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。 固定板式换热器 ⑵浮头式换热器 浮头式换热器,一端管板式固定的,另一端管板可在壳体移动,因

而管、壳间不产生温差应力。管束可以抽出,便于清洗。但这类换热器结构较复杂,金属耗量较大;浮头处发生漏时不便检查;管束与壳体间隙较大,影响传热。 浮头式换热器适用于管、壳温差较大及介质易结垢的场合。 ⑶填料函式换热器 填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。但壳程介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。 ⑷U形管式换热器 U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,层管子损坏后不易更换。 U形管式换热器适用于管、壳壁温差较大的场合,尤其是管介质清洁,不易结垢的高温、高压、腐蚀性较强的场合。

换热器制作工艺规程

换热器制作工艺规程 换热器是压力容器中比较常见的换热设备,在制造过程中应严格执行《压力容器安全技术监察规程》和GB151《管壳式换热器》及相关标准的规定。另外,还应按照以下工艺要求进行换热器的制造、检验、验收。 1、壳体 1.1用钢板卷制时,内直径允许偏差可通过外圆周长加以控制,其外圆周长允许上偏差为10mm,下偏差为零。 1.2 筒体同一断面上,最大直径与最小直径之差为e≤0.5%DN。 且:当DN≤1200mm时,其值不大于5mm; 当DN>1200mm时,其值不大于7mm 1.3 筒体直线度允许偏差为L/1000(L为筒体总长) 且:当L≤6000mm时,其值不大于4.5mm; 当L>6000mm时,其值不大于8mm 直线度检查应通过中心线的水平和垂直面,即沿圆周0°90°180°270°四个部位测量。 1.4 壳体内壁凡有影响管束顺利装入或抽出的焊缝均应磨至与母材表面平齐。 1.5 在壳体上设置接管或其他附件而导致壳体变形较大,影响管束顺利安装时,应采取防止变形措施。 1.6 插入式接管,管接头除图样有规定外,不应伸出管箱、壳体的内表面,而且在穿管前应将内侧角焊缝先焊,为防止筒体变形,外侧角焊缝待组装管束后再施焊。

2、换热管 2.1 换热管管端外表面应除锈、去污。用于焊接时,管端清理长度应不小于管外径,且不小于25mm;用于胀接时,管端应呈现金属光泽,其长度不应小于2倍的管板厚度。 2.2 换热管拼接时应符合以下要求: 2.2.1 对接接头应作焊接工艺评定,试件的数量、尺寸、试验方法应符合JB4708的规定: 2.2.2 同一根换热管的对接焊缝,直管不得超过一条;U型管不得超过二条;最短管长不应小于300mm,包括至少50mm直管段的U型弯管段范围内不得有拼接焊缝; 2.2.3 管端坡口应采用机械方法加工,焊前应清洗干净; 2.2.4 对口错边量应不超过换热管壁厚的15%,且不大于0.5mm;直线度偏差以不影响顺利穿管为限; 2.2.5 对接后应先取相应钢球直径(d≤25 钢球直径0.75di;25<d≤40 钢球直径0.8di;d>40 钢球直径0.85di;di为管子内径= 2.2.6 对接接头应进行射线检测,抽查数量应不少于接头总数的10%,且不少于一条,以JB/T4730的Ⅲ级为合格;如有一条不合格时,应加倍抽查;再出现不合格时,应100%检查; 2.2.7 对接后的换热管,应逐根进行液压试验,试验压力为设计压力的2倍。 2.3 U型管的弯制:U型管弯管段的圆度偏差,应不大于换热管名义外径的10%;但弯曲半径小于2.5倍换热管名义外径的U形弯管段可按15%

板翅式换热器

板翅式换热器 同组人:张弘达18、张来超14 薛业成06、张太平02

引言: 板翅式换热器:通常由隔板、翅片、封条、导流片组成。在相邻两隔板间放置翅片、导流片以及封条组成一夹层,称为通道,将这样的夹层根据流体的不同方式叠置起来,钎焊成一整体便组成板束,板束是板翅式换热器的核心。 --------张弘达 一、板翅式换热器的发展 二十世纪三十年代,板翅式换热器首先在航空工业上被采用,它结构紧凑、轻巧、传热效率高等特点引起了研究人员和设计工作者的兴趣。随后在制冷、石油化工、空气分离、航空航天、动力机械、超导等工业部门得到广泛应用,被公认是高效新型换热器之一。 1942年,美国的诺利斯首先进行了平直翅片、锯齿翅片、波纹翅片、钉状翅片的传热机理研究,找出几种主要翅片的摩擦因子(f),传热因子(j)与雷诺数(Re)的关系,为以后的研究与设计奠定了基础。1947年美国海军研究署、船舶局、航空局合作在斯坦福大学拟定了系统的研究计划并扩大了研究范围。 板翅式换热器发展中另一方面是制造工艺,对于结构复杂、隔板和翅片又很薄的铝合金钎焊工艺掌握是在经历了一段相当漫长又曲折过程,在突破许多关键技术后才达到今天的水平。 现在国外板翅式换热器最高设计压力可达10MPa以上,最大

芯体尺寸(L×W×H)6000~7000×1200×1200mm,重达10吨以上,可以有十多种流体同时换热。我国是从20世纪60年代中期开始板翅式换热器试验研究,70年代初期自行开发成功,并首先在空分设备上得到应用。90年代初,杭氧厂引进美国S.W公司大型真空钎焊炉和板翅式换热器制造技术,板翅式换热器生产在我国得到飞速发展。现在已在空气分离、石油化工(乙烯、合成氨、天然气分离与液化)、动力机械及航天(神舟号飞船)等工业部门得到广泛应用。并有部分出口国外(美国、加拿大等国)。 我国板翅式换热器目前的生产水平相当于国际上20世纪90年代中期水平。杭氧现已开发有近50种不同型式和尺寸规格的翅片,可满足各种换热要求。 二、板翅式换热器特点 (1)传热效率高。 (2)结构紧凑,单位体积换热面积为管壳式换热器5倍以上,最大可达几十倍。管壳式换热器一般为150~200m2/m3,而板翅式换热器因翅片具有扩展二次表面,使传热面积可达到1500~2500 m2/m3。 (3)轻巧、牢固。铝材密度ρ为2.7g/cm3,而钢材为7.8g/cm3,铜材为8.9g/cm3。 (4)适应性大,可适用多种介质热交换。在同一设备内可允许多达十多种介质之间热交换,可作气—气、气—液、液—液之间换热,亦可作冷凝和蒸发。 (5)经济性好。由于结构紧凑、铝材又轻,降低了设备投资费。

换热器的发展现状及前景

换热器的研究发展现状及前景 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现 1换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分,具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。

全焊接板式换热器的制造工艺和简介

全焊接板式换热器的制造工艺和简介 晨怡热管(1.青海大学化机系,青海西宁810016;2.兰州兰石换热设备有限责任公司,甘肃兰州730050 1.祁玉红 2.李治国2008-6-29 18:21:18 摘要:简要介绍了全焊接板式换热器的芯体和外壳的制造工艺以及在制造过程中所采用的 焊接技术。通过介绍可知,全焊接板式换热器是一种传热效率高、结构紧凑独特的新一代换热设备。 关键词:全焊接板式换热器;制造工艺;结构设计 中图分类号:TQ051.5文献标志码:B文章编 号:1005-2895(2007)03-0124-03 0前言 板式换热器是1种高效而紧凑的换热设备。由于有传热系数高、压力损失小、结构紧凑、维修方便等诸多优点,并且随着结构的改进和大型化制造技术的提高,板式换热器的应用日益受到人们的重视[1]。但是传统的散装式板式换热器(可拆卸式板式换热器),由于本身结构的局限性,使用压力不超过2.5MPa,使用温度不超过250℃,最大组装面积2000m3,另外还存在橡胶密封垫在高温下容易失效的缺陷以及在某些特定介质中的应用问题一直未 能解决。因此,为了提高板式换热器的使用温度和压力,扩大其使用范围,国内外陆续开发、制造并使用了多种焊接板式换热器。这些焊接板式换热器已经越来越多地用于化工、石油、动力、冶金等领域的加热、冷却、冷凝、蒸发和热回收等过程中。 经应用证实全焊接板式换热器其有以下优点: (1)适用温度为-200~900℃,压力变化范围为真空~6.0MPa,最大组装面积可达6000m2。 (2)传热效率高,板片表面几乎都参与了热交换。 (3)由于板片热交换充分、均匀,波纹深度变化范围大,不论流体在板间或管间流道, 流动均顺畅,没有死区,阻力损失小。 (4)占地面积小,与可拆卸式相当。紧凑的结构可达到250m2/m3。 (5)重量轻,仅为相同换热面积管壳式换热器的1/5~1/4。 (6)同一种流体在列管式换热器内当雷诺数为4000~6000时,才能达到湍流状态,而在全焊接板式换热器内当雷诺数为100~300时,就可达到湍流状态。 (7)板片在四周交错焊接后,在运行过程中由于热胀冷缩现象,板片内应力释放,会使 板片表面污垢自动脱落下来。通常污垢热阻仅为列管式换热器污垢热阻的1/5~1/4。 1全焊接板式换热器的主要制造工艺 1.1全焊接板式换热器的芯体结构制造 全焊接板式换热器的板片材料通常为奥氏体不锈钢:304,304L,306,316L,321等 以及镍基合金、工业纯钛。材料只需具有基本的可焊性和冲压性能,都可以用来制作板片元件。板片厚度通常为0.4~1.0mm。 全焊接板式换热器的板片生产利用了板片成型自动化生产线。利用接刀、定位与找正技术,采用整板分次连续压制成型,其板片形式主要有水平平直波纹板片、窝形波纹板片、或平板板片等。通过改变换热板片的长度和叠加厚度来实现结构的变换。 单个板片两两正反通过翼边组焊成一束,板片四周交错焊接,这种独特的结构可以使 传热板片通过翼边焊接形成另一流体的通道。因此多个板束通过焊接联系起来就形成了2 个流体通道,即板间流道和管间流道(见图1,图2)[2]组成了全焊接板式换热器的芯体结

板翅式换热器及FLUENT软件的初步认识

前期报告 1.选题的目的和意义: 板翅式换热器由于其体积小、重量轻、效率高、结构紧凑等优点,在石油化工、航空航天、电子、原子能、机械和空调等领域得到了越来越广泛的应用。波纹翅片作为板翅式热交换器的一种常见翅片类型,研究其传热和流动特性对板翅式热交换器的设计具有指导作用,也对以后的工程计算有很大的帮助作用。 2.传热,流动及防结垢研究 关于传热,流动及防结垢的研究涉及范围宽广的许多问题。其最终目的有二:一是强化传热并尽量减少流动阻力,二是为更精确的设计计算提供理论基础和方法.强化传热同时避免过大的流动阻力的主要途径有两个方面,一方面开发出新的更高效的传热表面,另一方面更合理地选择有关参数和更合理地设计流体分配结构,使流动在流道中得以更均匀地分配。 1.2板翅换热器翅片的类型、特点及应用场合 1.2.1翅片类型 板翅换热器的传热面由平板和翅片表面组成,平板部分的传热面叫一次传热面,由翅片组成的叫二次传热面。二次传热面积占总传热面积的绝大部分,一般达70~90%。 (1)平直翅片:它是最基本的一种翅片,由金属薄片制成的一种最简单的翅片形式。其特点是有很长的带光滑壁的长方形翅片,其传热特性和流体流动特性与流体在长的圆形管道中的传热和流动特性

相似。翅片的主要作用是扩大传热面,而对于促进流体湍动的作用很小,但流道长度对传热效果有明显的影响。. (2)锯齿形翅片:结构特点是流体的流道被冲制成凹凸不平,其目的是增加流体湍动程度,并破坏传热边界层,从而强化传热过程使传热效率提高。 (3)多孔翅片:它是在平直翅片上冲出许多孔洞而成的.由于翅片上这些孔使传热边界层不断被破坏,不仅能提前向湍流过渡,而且能明显地增强过渡区和湍流区的传热,但在高雷诺数范围会出现噪音和振动. (4)波纹翅片:肋片纵向里波纹(或人字)状,可使流体的流向不断改变以促进湍流形成,弯曲处边界层可有微小破裂.流体在通道中流动时,由于不断改变流向而产生二次流及边界层分离而使传热效果得以增强。波纹越密,波幅越大,其增强效果也越大。 (5)错位翅片:在沿流体流动方向看是间断的而且是错位排列的。从传热和流动的角度来看,可以认为是由一系列相错排列的短的平直翅片组成的。传热系数高的主要原因是因为流体在流动中,其边界层在一个翅片段上还未及充分发展就被下一个错位的翅片段破坏了.从2整个流道长度来看,可以认为传热和流动都始终处于发展段. (6)百叶窗式翅片:其特点是翅片上冲有等距离的百叶窗式的栅格,向流道内凸出,其目的是破坏熟边界层,从而强化传热过程.在翅片尺寸相同条件下,栅格愈多传热效果愈好,但阻力亦愈大。1.2.2板翅换热器的优缺点

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

换热器分类

换热器分类 夹套式换热器 结构如图所示。夹套空间是加热介质和 冷却介质的通路。这种换热器主要用于 反应过程的加热或冷却。当用蒸汽进行 加热时,蒸汽上部接管进入夹套,冷 凝水由下部接管流出作为冷却器时,冷 却介质(如冷却水)由夹套下部接管进 入,由上部接管流出。 夹套式换热器结构简单,但由于其加热 面受容器壁面限制,传热面较小,且传 热系数不高。 二.喷淋式换热器喷淋式换热器的结构 与操作如下图所示。这种换热器多用作 冷却器。热流体在管内自下而上流动, 冷水由最上面的淋水管流 出,均匀地分布在蛇管 上,并沿其表面呈膜状自 上而下流下,最后流入水 槽排出。喷淋式换热器常 置于室外空气流通处。冷 却水在空气中汽化亦可带 走部分热量,增强冷却效 果。其优点是便于检修, 传热

效果较好。缺点是喷淋不 易均 .套管式换热 器

套管式换热器的基本部件由 直径不同的直管按同轴线相 套组合而成。内管用180 暗 幕 * Сざ任?~ 6m。若管子太长,管中间会 向下弯曲,使环隙中的流体分布不均匀 套管换热器的优点是构造简单,内管能耐高压,传热面积可根据需要增减,适当选择两管的管径,两流体皆可获得适宜的流速,且两流体可作严格逆流。其缺点是管间接头较多,接头处易泄漏,单位换热器体积具有的传热面积较小。故适用于流量不大、传热面积要求不大但压强要求较高的场合。 四.管壳式换热器 1.固定管板式结构如图所示。管子两端与管板的连接方式可用焊接法或胀接法固定。壳体则同管板焊接。从而管束、管板与壳体成为一个不可拆的整体。这就是固定 管板式名称的由来

折流板主要是圆缺形与盘环形两 种,其结构如图所示。 操作时,管壁温度是由管程与壳程 流体共同控制的,而壳壁温度只与 壳程流体有关,与管程流体无关。 管壁与壳壁温度不同,二者线膨胀 不同,又因整体是固定结构,必产 生热应力。热应力大时可能使管子 压弯或把管子从管板处拉脱。所 以当热、冷流体间温差超过50℃时应有减小热应力的措施,称“热补偿”。 固定管板式列管换热 器常用“膨胀节” 结构进行热补偿。图 所示的为具有膨胀 节的固定管板式换 热器,即在壳体上焊 接一个横断面带圆弧 型的钢环。该膨胀节 在受到换热器轴向 体伸缩,从而减小热应力。但这种补偿方式仍不适用于热、冷流体 温差较大 大于70℃)的场合,且因膨胀节是承压薄弱处,壳程流体压强不宜超过6at 。 管式列管换热 器

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学 《材料工程原理B》课程设计 设计题目: 5.5×104t/y热水冷却换热器设计 专业: ----------------------------- 班级: ------------- 学号: ----------- 姓名: ---- 日期: --------------- 指导教师: ---------- 设计成绩:日期:

换热器设计任务书

目录 1.设计方案简介 2.工艺流程简介 3.工艺计算和主体设备设计 4.设计结果概要 5.附图 6.参考文献

1.设计方案简介 1.1列管式换热器的类型 根据列管式换热器的结构特点,主要分为以下四种。以下根据本次的设计要求,介绍几种常见的列管式换热器。 (1)固定管板式换热器 这类换热器如图1-1所示。固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。 (2)U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 (3)浮头式换热器 浮头式换热器的结构如下图1-3所示。其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

换热器制造工艺

浅谈换热器管板与换热管胀焊并用连接的制造工艺 摘要:简要叙述了换热器管板与换热管胀焊并用连接的制造工艺,并提出了控制其连接质量的方法。 关键词:换热管管板连接问题及对策 GBl5l—l999标准中规定,强度胀接适用于设计压力~<4MPa、设计温度 ≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。 1先胀后焊 管子与管板胀接后,在管端应留有15ram长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15ram的未胀管段与管板孔之间存在一个间隙(见图1)。在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。据国外资料介绍,间隙腔内压力在焊接收口时可达到200~ 300MPa的超高压状态。间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。

板翅式换热器新技术及应用_凌祥

第31卷 第2期2002年3月 石 油 化 工 设 备 PET RO-CHEM ICAL EQ U IPM EN T V o l.31 N o.2 M ar. 2002 试验研究 文章编号:1000-7466(2002)02-0001-04 板翅式换热器新技术及应用 凌 祥,周帼彦,邹群彩,涂善东 (南京工业大学过程装备先进制造技术重点实验室,江苏南京 210009) 摘要:介绍了作者近年来在板翅式换热器研究与开发方面所做的工作:①为提高铝板翅式换热器翅片和隔板表面的耐蚀性和亲水性,开发了一种表面处理技术。②开发的板翅式换热器快速创型系统,具有优化设计、参数化绘图和快速报价等功能,能降低产品成本,提高设计效率十几倍。③通过应用先进制造工艺和引进新材料开发了一系列具有抗强腐蚀、抗结垢、耐高温和耐高压能力的板翅式换热器系列新产品。④应用大型有限元分析系统对高压板翅式换热器的结构特性进行了初步分析,得出了一些提高产品可靠性的设计准则。 关 键 词:板翅式换热器;快速创型;表面处理;先进制造工艺;有限元分析 中图分类号:TQ051.51 文献标识码:A N ew techniques of plate-fin heat exchangers and its application LIN G Xiang,ZHO U Guo-ya n,ZO U Qun-cai,T U Sha n-do ng (Adv anced M a nufacturing Technolog y Lab.o f Process Equipment, N anjing Univ ersity o f Techno lo g y,N anjing210009,China) Abstract:The resear ches made o n plat e-fin heat exchang ers by author s w ere intro duced.Fir stly,a surface tr eatment me tho d for fins and pa rting sheet is propo sed in o rder to enha nce their resistance to co rr osio n and hydro philic ca pability.Secondly,a rapid innov ation sy stem which inv o lv ed a lo t of functio ns such a s optima l ther mal desig n,pa ramet ric dr awing and r apid quo tatio n is dev eloped.The practice applicatio n o f this sy stem sho ws the desig n efficiency increases8to10tim es and the cost decr ease va stly.Thir dly,sev eral new type o f pla te-fin heat ex cha ng ers with specia l perfo rma nce,such as co rro sio n-proo f,anti-fo uling a nd high temper ature resistant etc,w er e dev eloped th ro ug h ado pting new adva nced ma terials and new a dv anced manufac turing techno log y. Fina lly,the st reng th ana ly sis fo r plate-fin heat exchang ers subjected to hig h pr essur e w as car ried out.So me design criteria to ensure the reliability of pla te-fin heat ex chang er s a re o btained. Key words:pla te-fin heat ex chang er;r apid innov ation;sur face t reatme nt;adv anced manufac turing techno log y; finite element a naly sis 板翅式换热器具有结构紧凑、传热效率高等特点,与传统的管壳式换热器相比,其传热效率提高20%~30%,成本可降低50%,现已广泛应用于石油化工、航空航天、电子、原子能和机械等领域。目前板翅式换热器的制造材料主要使用铝合金,因此存在耐腐蚀性差、承压低等缺点。另外,板翅式换热器结构比较复杂,人工进行热力设计困难,特别是有相变、多股流体换热的情况,用手工进行精确热力设计计算几乎不可能。为了进一步拓宽其应用范围,近年来板翅式换热器的设计理论、试验研究、制造工艺及开拓应用的研究方兴未艾[1],特别是一些新技术的渗透,使板翅式换热器的应用范围更加广泛,下面将 收稿日期:2001-09-22  基金项目:江苏省教委自然科学研究项目(99K JB460005)  作者简介:凌 祥(1967-),男(汉族),江苏东台人,副教授,主要从事过程装备先进再制造技术、新型高效过程设备和计算机辅助工程(CA E)的研究与开发。

中国换热器产业现状及发展趋势_黄庆军

第1期 中国换热器产业现状及发展趋势 黄庆军1 任俊超1 苏是2 黄蕾2 (1.四平市换热器协会, 吉林 四平 136000) (2.太原科技大学机电学院, 山西 太原 030024) [摘 要] 分析了国内换热器的市场规模、竞争格局、产业布局以及外资企业在华投资布局,介绍了国内换热器的技术现状和差距,预测了今后的产业发展趋势。 [关键词] 换热器;现状;发展趋势 1 市场规模分析 2008年,中国换热器产业市场规模在360亿元左右,主要集中在石油、化工、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场,其市场规模在100亿元以上;电力冶金领域换热器市场规模在60亿元左右;船舶工业换热器市场规模在30亿元以上;机械工业换热器市场规模约为30亿元;集中供热行业换热器市场规模超过25亿元。 2 市场竞争格局 按照产品类型的不同,我国换热器产业市场竞争主要集中在以下四大产品领域。 板式换热器领域,国内外企业竞争激烈,大量外资企业已经完成在中国的布局。其中,四平巨元瀚洋、兰石换热设备公司、四平维克斯是我国板式换热器领域内资企业中的龙头企业,其板式换热器年产值都在2亿元以上。外资企业主要包括阿法拉伐(江阴)、舒瑞普(北京、苏州)、APV(上海、北京)、丹佛斯(天津)、传特(北京)、桑德克斯(上海、宁波)、风凯(常州)等企业,世界著名的板式换热器企业大都已经进入中国市场。此外,沈阳太宇、蓝科高新(原兰石所)、上海艾克森、湖北登峰、山东北辰、佛山澜石、上海南华等企业也是我国重要的板式换热器企业。 管壳式换热器领域,我国生产企业众多,且规模都较小。其中,抚顺机械设备制造有限公司、兰石集团炼化设备公司、中石化南京化工机械是我国内资管壳式换热器的龙头企业,其管壳式换热器年产值都在2亿元以上;江苏中圣集团、无锡化工装备总厂、宝钛集团南京宝色股份、西安核设备制造厂(原国营524厂)、合肥通用特种材料设备有限公司是我国特种材料换热器领域的重要企业,其特种材料管壳式换热器年产值都在1.5亿元以上;中石化镇海石化建安工程有限公司、中石化北京燕化、中石化茂名重力石化机械制造有限公司等企业依托母公司中石化的市场优势,也形成了一定的换热器生产规模,年产值在1~2亿元左右;此外,张家港化工机械、大连金重公司、湖北长江石化设备公司、大连东方亿鹏、合肥通用特种材料设备有限公司、西安大秦化工机械(原西安化工机械厂)、林德工程(大连)、天津国际机械(原天津市换热装备总厂)、大连东方亿鹏等企业也是国内管壳式换热器的主要生产企业,管壳式换热器的年产值都在1亿元以上。相对而言,管壳式换热器外资企业在华布点不多,比较知名的有日本森松(上海)、林德工程(大连)、美国艾普尔(苏州)、德国风凯(常州),这主要缘于我国石油化工领域换热器企业众多,生产能力较强,国外企业进入中国市场较为困难。 空冷式换热器领域,哈空调是我国最大的空冷式换热器生产企业。此外,江苏双良股份、国电集团北京龙源冷却技术有限公司、四川简阳空冷器、蓝科高新(原兰石所)、兰州兰石集团长征机械、西安大秦化工机械(原西安化工机械厂)、湖北长江石化设备、江阴电力设备冷却器公司等企业也具有一定的竞争力。外资企业中,基伊埃(芜湖、廊坊)、斯必克(张家口)在空冷式换热器领域具有较强的竞争力。 板翅式换热器领域,杭州杭氧股份和开封空分集团是我国石油化工领域著名的板翅式换热器企业,浙江银轮股份、贵州永红航空机械、无锡马山 作者简介:黄庆军(1967—),男,1992年毕业于燕山大学,硕士研究生学历,高级工程师。主要从事换热器行业分析及产品研究。

中高压板翅式换热器的设计与开发

职称论文 题目:中高压板翅式换热器的设计与开发单位:XXXXXXXXXXX 姓名:XXX 二零一五年六月

中高压板翅式换热器的设计与开发 XXX (X X X X X X X X X) 【论文摘要】本文提出了低、中、高压板翅式换热器分类意见,介绍了中高压板翅式换热器设计特点,阐述了采用真空钎焊制造中、高压板翅式换热器工艺的特殊措施。并以低压板式换热器制造成功实践说明采用特殊工艺措施是正确的、可行的。同时介绍了中高压换热器的应用前景。 关键词:中高压板翅式换热器真空钎焊翅片封条流道空分装夹 一、板翅式换热器的发展现状 随着空分技术和机械行业的不断发展,板翅式换热器的应用也越来越广泛,要求板翅式换热器的设计压力也越来越高。尤其进入20世纪80年代以来,随着我国内地和沿海油田的不断开发和石油化工行业的快速发展,承受中、高压的板翅式换热器应用日趋广泛,由于国内无法制造中、高压力的板翅式换热器,当时我国用于大型空分设备和石油化工设备中的中、高压板翅式换热器全部依赖进口。 板翅式换热器根据设计压力不同分为低压(3.0MPa以下),中压(3.0-6.4MPa)和高压(6.4-9.6MPa)。低压板翅式换热器大多用于空分设备。中、高压板翅式换热器用于空分液化设备,天燃气液化及分离设备,石油、天燃气化工设备及乙烯冷箱。近年来随着真空钎焊技术的发展,相关的工艺也相对成熟起来,我公司又有多年低压板翅式换热器的设计和生产的成功经验,为开发中、高压板翅式换热器奠定了物质技术基础。我公司生产的常规的板翅式换热器均能达到3.0Mpa以上的压力,且产品的使用状况良好。

二、高压板翅式换热器整体结构 高压板翅式换热器芯体由隔板、翅片和封条3部分组成。在相邻两隔板之间放置翅片及封条,组成一夹层,称之为通道。对于高压板翅式换热器,由于承受的压力较高,隔板与翅片、封条的钎焊要求也比较高,隔板的复合层要比低压换热器隔板的复合层厚,封条的宽度也需相应增加。由于板翅式换热器芯体结构复杂,钎焊缝的检查受到结构限制,不可能进行无损检测和其他检查,也无法做强度核算,所以只能通过试样的爆破试验来确定产品的耐压强度。按ASME规范规定,试样的爆破试验压力应是最大许用工作应力的3~5倍,且以翅片母材拉伸断裂为合格标准。对于高压板翅式换热器,其翅片的最大许用工作压力相应提高。为了达到这一要求,应选择性能较好的翅片材料,同时增加翅片的厚度。我公司现有翅片型式有锯齿型、平直型和波纹型。在中高压板翅式换热器翅片的选用时,应尽量避免采用锯齿型翅片。因为锯齿型翅片是切开的,削弱了承压能力,同时小节距厚翅片的锯齿型很难生产制造。选用翅片规格的原则是压力越高节距越小,当节距小到工艺无法生产时,再用增加翅片厚度(节距放大)来满足设计压力的要求,即小节距厚翅片。我公司常用的中压翅片特性参数见下表1: 表1

板翅式换热器

铝制板翅式换热器介绍 1. 概述 板翅式换热器的出现把换热器的换热效率提高到了一个新的水平,同时板翅式换热器具有体积小、重量轻、可处理两种以上介质等优点。目前,板翅式换热器已广泛应用于石油、化工、天然气加工等行业。 2. 基本结构 板翅式换热器的板束单元结构如图所示,它的每一层都是由翅片、隔板和封条三部分组成。在相邻的两隔板间放置翅片及封条组成的夹层,称为通道。将这样的夹层根据介质的不同流动方式叠置起来钎焊成整体,即组成板束。再在板束上配置适当的介质进出口的导流片和封头,就组成了一个完整的板翅式换热器 。 由此可以看出,一台典型的板翅式换热器主要组成元件有翅片、隔板、封条、导流片和封头等。 a-翅片 翅片是铝板翅式换热器的基本元件,传热过程主要通过翅片热传导及翅片与流体之间的对流传热来完成。翅片的主要作用是扩大传热面积, 提高换热器得紧凑性,提高传热效率,兼做隔板的支撑,提高换热器的强度和承压能力。翅片间的节距一般从1mm~4.2mm ,翅片的种类和型式多种多样,常用的形式有锯齿型、多孔型、平直型、波纹型等,国外还有百叶窗式翅片、片条翅片、钉状翅片等。 b-隔板 隔板是二层翅片之间的金属平板,,它在母体金属表面覆盖有一层钎料合金,在钎焊时合金熔化而使翅片、封条与金属平板焊接成一体。隔板把相邻两层隔开,热交换通过隔板进行,常用隔板一般厚1mm~2mm 。 c-封条 封条在每层的四周,其作用是把介质与外界隔开。封条按其截面形状可分为燕尾槽形、槽钢形和腰鼓形三种。一般,封条的上下两个侧面应具有0.3/10的斜度,以便在与隔板组合成板束时形成缝隙,利于溶剂的渗透和形成饱满的焊缝。 d-导流片 导流片一般布置在翅片的两端,在铝板翅式 换热器中主要是起流体的进出口导向作用,以利于流体在换热器内的均匀分布,减少流动死区,提高换热效率。 e-封头 封头也叫集流箱,通常由封头体、接管、端板、法兰等零件经焊接组合而成。封头的作用是分布和集聚介质、连接板束与工艺管道。 另外,一台完整的板翅式换热器还应包括支

相关文档
最新文档