高中物理速度选择器和回旋加速器的基本方法技巧及练习题及练习题
高考物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高考物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析一、速度选择器和回旋加速器1.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
求: (1)射出粒子的速率; (2)射出粒子的比荷;(3)MN 与挡板之间的最小距离。
【答案】(1)1U Bd (2)22cos v B L α(3)(1sin )2cos L αα-【解析】 【详解】(1)粒子在速度选择器中做匀速直线运动, 由平衡条件得:qυB 1=qUd解得υ=1UB d;(2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:由几何知识得:r =2cos Lα=2cos Lα粒子在磁场中做圆周运动,由牛顿第二定律得qυB 2=m2rυ,解得:q m =22cosvB Lα(3)MN与挡板之间的最小距离:d=r﹣r sinα=(1sin)2cosLαα-答:(1)射出粒子的速率为1UB d;(2)射出粒子的比荷为22cosvB Lα;(3)MN与挡板之间的最小距离为(1sin)2cosLαα-。
2.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场E和磁场B都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m、电荷量为q从P(x=0,y=h)点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R0大小;(2)若同时存在电场和磁场,粒子的速度v大小;(3)现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点。
高考物理速度选择器和回旋加速器及其解题技巧及练习题

高考物理速度选择器和回旋加速器及其解题技巧及练习题一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
高考物理速度选择器和回旋加速器解题技巧及练习题含解析

高考物理速度选择器和回旋加速器解题技巧及练习题含解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m vB qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
高考物理速度选择器和回旋加速器解题技巧和训练方法及练习题

高考物理速度选择器和回旋加速器解题技巧和训练方法及练习题一、速度选择器和回旋加速器1.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at ==粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
高中物理高考物理速度选择器和回旋加速器的技巧及练习题及练习题

高中物理高考物理速度选择器和回旋加速器的技巧及练习题及练习题一、速度选择器和回旋加速器1.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E m B L =(3)从dc 边距离d 点距离为32L 处射出磁场;3BL Eπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0Ev B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m ==得:2 q E m B L= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点x L =处离开磁场,在磁场中运动的时间3BL t E =π.2.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D上的A 点处.已知A 点与狭缝S 2,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1223=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=Lt v 则磁场中和在电场中时间之比1223=∶t t π3.如图所示,两平行金属板水平放置,间距为d,两极板接在电压可调的电源上。
高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题

高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题一、速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 3L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M 点飞出磁场,由几何关系:AM 222L R ⎛⎫- ⎪⎝⎭=32L 所以粒子离开的位置在AB 连线上距离A 点32L 处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan 12LL α==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan 3AMOAβ== 解得:60β︒= 所以偏转角之比:34αβ=。
2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
高考物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析
高考物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin =2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB== 由几何知识可得022cos 452mv AC R R qB===在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.3.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .【答案】(1)U=Bv0d;(2)mqBθ;(3)R=0tan2mvqBθ【解析】【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间.(3))由几何关系求半径R.【详解】(1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv0q=m2vr同时有T=2rvπ粒子在圆形磁场区域中运动的时间t=2θπT解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan2mvqBθ4.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E、磁感应强度为B的复合场区域.进入时氕与氘、氘与氚的间距均为d,射出复合场后进入y轴与MN之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN射出.虚线MN与PQ间为真空区域Ⅱ且PQ与MN平行.已知质子比荷为qm,不计重力.(1)求粒子做直线运动时的速度大小v;(2)求区域Ⅰ内磁场的磁感应强度B1;(3)若虚线PQ右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN上的一点,求该磁场的最小面积S和同时进入复合场的氕、氚运动到汇聚点的时间差△t.【答案】(1)EB(2)mEqdB(3)(2)BdEπθ+【解析】【分析】由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B1;分析可得氚粒子圆周运动直径为3r,求出磁场最小面积,在结合周期公式即可求得时间差.【详解】(1)粒子运动轨迹如图所示:由电场力与洛伦兹力平衡,有:Bqv=Eq解得:E vB =(2)由洛伦兹力提供向心力,有:2 1v qB v mr=由几何关系得:r=d解得:1mEBqdB=(3)分析可得氚粒子圆周运动直径为3r,磁场最小面积为:22 13222r r Sπ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭解得:S=πd2由题意得:B2=2B1由2rTvπ=可得:2mTqBπ=由轨迹可知:△t1=(3T1﹣T1)2θπ,其中112mTqBπ=△t2=12(3T2﹣T2)其中222mTqBπ=解得:△t=△t1+△t2=()()122m dBqB Eθπθπ++=【点睛】本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.5.如图所示,两平行金属板相距为d,板间电压为U.两板之间还存在匀强磁场,磁感应强度大小为B,方向垂直纸面向里.平行金属板的右侧存在有界匀强磁场区域Ⅰ和Ⅱ,其磁感应强度的大小分别为B和2B.三条磁场边界彼此平行且MN与PQ间的距离为L.一群质量不同、电荷量均为+q的粒子以一速度恰沿图中虚线OO'穿过平行金属板,然后垂直边界MN进入区域Ⅰ和Ⅱ,最后所有粒子均从A点上方(含A点)垂直于PQ穿出磁场.已知A点到OO'的距离为34L,不计粒子重力.求:(1)粒子在平行金属板中运动的速度大小;(2)从PQ穿出的粒子的最大质量和最小质量.【答案】(1)UvBd=(2)2max2536B qLdmU= ;2min23B qLdmU=【解析】【分析】(1)抓住带电粒子在平行金属板间做匀速直线运动,根据电场力和洛伦兹力相等求出粒子在平行金属板中运动的速度大小;(2)根据几何关系求出粒子在磁场中的最大半径和最小半径,结合半径公式求出粒子的最大质量和最小质量.【详解】(1) 带电粒子在平行金属板间做匀速直线运动,有:UqqvB d= 解得粒子在平行板中的运动速度v=U dB; (2) 由题意可知,根据mvr qB=知,质量越大,轨道半径越大,则质量最大的粒子从A 点射出,如图由于左边磁场磁感应强度是右边磁感应强度的一半,则粒子在左边磁场中的半径是右边磁场半径的2倍,根据几何关系知,右边磁场的宽度是左边磁场宽度的2倍,有:123(1cos )(1cos )4r r L θθ-+-=r 1sinθ+r 2sinθ=L ,2112r r =联立解得cosθ=725,12536L r = 根据max 1m v r qB =得最大质量为:m max =22536B LdqU粒子在左边磁场中的最小半径为:r min =23L 根据min minm v r qB =得最小质量为:m min =223B Ldq U. 【点睛】本题考查了带电粒子在磁场中的运动,关键作出运动的轨迹,通过几何关系求出临界半径是解决本题的关键,该题有一定的难度,对学生数学几何能力要求较高.6.如图所示,在两个水平平行金属极板间存在着竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C 和B 1=0.1T ,极板的长度,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直于纸面向外,圆形区域的圆心O 位于平行金属极板的中线上,圆形区域的半径。
高考物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析
高考物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin =2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C 的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qEqvB离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at ==粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m3.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
高考物理速度选择器和回旋加速器技巧小结及练习题
高考物理速度选择器和回旋加速器技巧小结及练习题一、速度选择器和回旋加速器1.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r='解得:2021v v += 故010212122v v v v -+≤≤=2.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (23)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2v =(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:5 4r L =由233v qv B m r= 得:354qBLv m =若粒子从板左边缘飞出,则:4L r =由244v qv B mr=得:44qBLv m=3.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高中物理速度选择器和回旋加速器技巧(很有用)及练习题
沿着 SJK 路径从 K 孔穿出,粒子受电场力和洛伦兹力平衡: qE qvB d
解得:
q m
E 2B2d
2
【点睛】
本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.
8.某粒子实验装置原理图如图所示,狭缝 S1 、 S2 、 S3 在一条直线上, S1 、 S2 之间存在 电压为 U 的电场,平行金属板 P1 、 P2 相距为 d,内部有相互垂直的匀强电场和匀强磁场, 磁感应强度为 B1 。比荷为 k 的带电粒子由静止开始经 S1 、 S2 之间电场加速后,恰能沿直 线通过 P1 、 P2 板间区域,从狭缝 S3 垂直某匀强磁场边界进入磁场,经磁场偏转后从距离 S3 为 L 的 A 点射出边界。求:
切,即: x=vt ⑦
y= 1 at2 ⑧ 2
qE1=ma ⑨
x tan30º= Sad y ⑩
vy at ⑾
v tan30º = vy ⑿
得:E1= 3mv2
⒀
2qS ad
所以: B1 2B0L ⒁ E1 U0
6.如图中左边有一对平行金属板,两板相距为 d,电压为 U,两板之间有匀强磁场,磁感 应强度大小为 B0,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为 R、圆心 为 O 的圆形区域内也存在匀强磁场,磁感应强度大小为 B,方向垂直于纸面朝里。一正离 子沿平行于金属板面、从 A 点垂直于磁场的方向射入平行金属板之间,沿同一方向射出平 行金属板之间的区域,并沿直径 CD 方向射入磁场区域,最后从圆形区域边界上的 F 点射 出。已知速度的偏向角为 θ=90°,不计重力。求:
力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.
4.如图所示,在直角坐标系 xOy 平面内有一个电场强度大小为 E、方向沿-y 方向的匀强电 场,同时在以坐标原点 O 为圆心、半径为 R 的圆形区域内,有垂直于 xOy 平面的匀强磁 场,该圆周与 x 轴的交点分别为 P 点和 Q 点,M 点和 N 点也是圆周上的两点,OM 和 ON 的连线与+x 方向的夹角均为 θ=60°。现让一个 α 粒子从 P 点沿+x 方向以初速度 v0 射入,α 粒子恰好做匀速直线运动,不计 α 粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α 粒子仍从 P 点以同样的速度射入,从 M 点离开圆形区域,求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理速度选择器和回旋加速器的基本方法技巧及练习题及练习题 一、速度选择器和回旋加速器 1.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场。A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1。平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板的中心线。挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B2,CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,现有大量质量均为m,电荷量为q的带正电的粒子(不计重力),自O点沿OO′方向
水平向右进入电磁场区域,其中有些粒子沿直线OO′方向运动,通过小孔O′进入匀强磁场B2,如果这些粒子恰好以竖直向下的速度打在CD板上的E点(E点未画出),求:
(1)能进入匀强磁场B2的带电粒子的初速度v; (2)CE的长度L (3)粒子在磁场B2中的运动时间.
【答案】(1)1 EB (2) 122mEqBB (3) 2mqB
【解析】 【详解】 (1)沿直线OO′运动的带电粒子,设进入匀强磁场B2的带电粒子的速度为v,
根据 B1qv=qE 解得:
v=1
E
B
(2)粒子在磁感应强度为B2磁场中做匀速圆周运动,故:
22v
qvBmr
解得: r=2mvqB=12
mE
qBB
该粒子恰好以竖直向下的速度打在CD板上的E点,CE的长度为:
L=45rsino=2r=12
2mE
qBB (3) 粒子做匀速圆周运动的周期
2 mTqB
2tmqB
2.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E=200V/m,方向竖直向下;磁感应强度大小为B0=0.1T,方向垂直于纸面向里。图中右边有一半径R为0.1m、圆心为O的圆形区域内也存在匀强磁场,磁感应强度
大小为B=33T,方向垂直于纸面向里。一正离子沿平行于金属板面,从A点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD方向射入圆形磁场区域,最后从圆形区域边界上的F点射出已知速度的偏向角θ=π3,不计离子重力。求: (1)离子速度v的大小;
(2)离子的比荷qm; (3)离子在圆形磁场区域中运动时间t。(结果可含有根号和分式)
【答案】(1)2000m/s;(2)2×104C/kg;(3)4310s6
【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B0qv=qE 解得:
02000m/sEvB
(2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示 由洛仑兹力公式和牛顿第二定律有: 2v
Bqvmr
由几何关系有:
2Rtanr
离子的比荷为: 4 210C/kgqm
(3)弧CF对应圆心角为θ,离子在圆形磁场区域中运动时间t,
2tT 2mTqB
解得: 43106ts
3.如图,正方形ABCD区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L。一个带电粒子(不计重力)从AD中点以速度v水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v从AD中点飞入场区,最后恰能从C点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD中点以相同的速度v进入场区,求: (1)该粒子最后飞出场区的位置;
(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少? 【答案】(1)AB连线上距离A点32L处,(2)34。 【解析】 【详解】 (1)电场、磁场共存时,粒子匀速通过可得:
qvBqE
仅有电场时,粒子水平方向匀速运动: Lvt 竖直方向匀加速直线运动:
2122LqEtm
联立方程得: 2qELvm
仅有磁场时: 2mv
qvBR
根据几何关系可得: RL
设粒子从M点飞出磁场,由几何关系: AM=222LR=32L 所以粒子离开的位置在AB连线上距离A点32L处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:
2tan12LL
解得:45
仅有磁场时,设飞出时速度偏角为β:
tan3AMOA
解得:60 所以偏转角之比: 34
。
4.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S为粒子源,A为速度选择器,当磁感应强度为B1,两板间电压为U,板间距离为d时,仅有沿轴线方向射出的粒子通过挡板P上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B2,磁场右边界MN平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L的D点,不计粒子重力。求:
(1)射出粒子的速率; (2)射出粒子的比荷; (3)MN与挡板之间的最小距离。
【答案】(1)1UBd(2)22cosvBL(3)(1sin)2cosL 【解析】 【详解】 (1)粒子在速度选择器中做匀速直线运动, 由平衡条件得:
qυB1=qUd 解得υ=1UBd; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:
由几何知识得: r=2cosL=
2cos
L
粒子在磁场中做圆周运动,由牛顿第二定律得qυB2=m2r,解得: qm=
2
2cosv
BL
(3)MN与挡板之间的最小距离: d=r﹣rsinα=
(1sin)2cosL
答:(1)射出粒子的速率为1UBd;(2)射出粒子的比荷为22cosvBL; (3)MN与挡板之间的最小距离为(1sin)2cosL。
5.如图所示为质谱仪的原理图,A为粒子加速器,电压为1U,B为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B,左右两板间距离为d,C为偏转分离器,内部匀强磁场的磁感应强度为2B,今有一质量为m,电量为q且初速为0的带电粒子经加速器A加速后,沿图示路径通过速度选择器B,再进入分离器C中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷; (2)粒子经加速器A加速后所获得的速度v; (3)速度选择器的电压2U; (4)粒子在C区域中做匀速圆周运动的半径R。 【答案】(1)带正电;(2)12qUvm;(3)1212qUUBdm (4)12
21mUrBq
【解析】 【分析】 (1)根据电荷在磁场中的偏转方向即可判断电荷的正负; (2)根据动能定理求解速度 (3)根据平衡求解磁场强度
(4)根据2vqvBmr求解运动轨道半径; 【详解】 (1)根据电荷在磁场中的运动方向及偏转方向可知该粒子带正电; (2)粒子经加速电场U1加速,获得速度v ,由动能定理得:
21
1
2qUmv
解得:12qUvm
⑵在速度选择器中作匀速直线运动,电场力与洛仑兹力平衡得21
UqqvBd
解得:2111
2UBdvBdqU
m
⑶在B2中作圆周运动,洛仑兹力提供向心力,2v
qvBmr
解得:122
21mUmv
rBqBq
故本题答案是:(1)带正电;(2)12qUvm;(3)1212qUUBdm (4)12
21mUrBq
6.如图,在整个直角坐标系xoy区域存在方向沿y轴负方向的匀强电场,场强大小为E;在x>0区域还存在方向垂直于xoy平面向内的匀强磁场。一质量为m、电荷量为q的带正电粒子从x轴上x=-L的A点射出,速度方向与x轴正方向成45°,粒子刚好能垂直经过y轴,并且在第一象限恰能做直线运动,不计粒子重力
(1)求粒子经过y轴的位置
(2)求磁感应强度B的大小
(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和
最低点的y坐标。
【答案】(1)y=12L (2)mEBqL (3)3mqELvm 72yL 【解析】 【分析】 (1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y轴的位置;
(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B;(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。 【详解】 (1)粒子在第二象限做类平抛运动,设初速度为v,
1222vvv
L=v1t 22
vyt
联立解得2Ly,则经过y轴上2Ly的位置;