人教版高中物理必修二专题强化卫星变轨问题和双星问题
高中物理 必修二 新课改教材优化方案 万有引力与宇宙航行卫星变轨及双星模型问题

上一页
返回导航
下一页
第七章 万有引力与宇宙航行
6
(2)突变
由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机, 使飞行器轨道发生突变,使其到达预定的轨道。
上一页
返回导航
下一页
第七章 万有引力与宇宙航行
7
发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速
圆周运动,速率为v1,在P点第一次点火加速,在短时间内将速率由v1增 加到v2,使卫星进入椭圆轨道Ⅱ;卫星运行到远地点Q时的速率为v3,此 时进行第二次点火加速,在短时间内将速率由v3增加到v4,使卫星进入 同步轨道Ⅲ,绕地球做匀速圆周运动。
Mm G r2
=mvr2
,得 v=
GM r
,半径
越大,线速度越小,B 错误;
根据开普勒第二定律,卫星与地球的连线在相同时间内扫过的面积相等, 由于P点与地球的连线较短,所以只有速度大才能在相等时间内扫过的面 积相等,C正确;
由轨道Ⅰ进入轨道Ⅱ属于离心运动,需要加速才可实现,D正确。
上一页
返回导航
下一页
5
2.两种常见形式 (1)渐变 由于某个因素的影响使卫星的轨道半径发生缓慢的变化,由于半径变化 缓慢,卫星每一周的运动仍可以看成是匀速圆周运动。
①关键要点:轨道半径r减小(近心运动)。 这种变轨运动的起因是阻力使卫星速度减小,所需要的向心力减小了, 而万有引力大小没有变,因此卫星将做近心运动,即轨道半径r将减小。 ②各个物理参量的变化:当轨道半径r减小时,卫星线速度v、角速度ω、 向心加速度a增大,周期T减小。
上一页
返回导航
下一页
第七章 万有引力与宇宙航行
8
假设中国火星探测器探测火星时,经历如图所示的变轨过程,下 列说法正确的是( )
高中物理双星四星问题和卫星变轨考点归纳复习

高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1:22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;2 2角速度ω1,ω2线速度V1 V2角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m1ω2r1=m2ω2r2m1r1=m2r2r1:r2=m2:m1线速度之比与质量比相反:(由半径之比推导)V1=ωr1V2=ωr2V1:V2=r1:r2=m2:m1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r确定后,与之对应的卫星线速度r GMv =、周期GM r T 32π=、向心加速度2rGM a =也都是确定的。
高中物理双星四星问题和卫星变轨考点归纳

高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 12 2线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
天体运动中卫星变轨问题与双星模型问题(解析版)

突破20 卫星变轨问题与双星模型问题一、卫星变轨问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ。
2.三轨道运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点时的加速度也相同。
(3)周期:设卫星在轨道Ⅰ、Ⅱ、Ⅲ上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
【典例1】神舟十一号飞船与天宫二号空间实验室在太空中自动交会对接的成功,显示了我国航天科技力量的雄厚。
已知对接轨道所处的空间存在极其稀薄的大气,下列说法正确的是() A.为实现对接,飞船与天宫二号运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫二号的动能可能会增加C.如不加干预,天宫二号的轨道高度将缓慢降低D.进入天宫二号的航天员处于失重状态,说明航天员不受地球引力作用【答案】BC【典例2】如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A .飞行器在B 点处点火后,动能增加B .由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C .只有万有引力作用情况下,飞行器在轨道Ⅱ上通过B 点的加速度大于在轨道Ⅲ上通过B 点的加速度D .飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2π R g 0【答案】 D【跟踪短训】1.(多选) 同步卫星的发射方法是变轨发射,即先把卫星发射到离地面高度为200~300 km 的圆形轨道上,这条轨道叫停泊轨道,如图所示,当卫星穿过赤道平面上的P 点时,末级火箭点火工作,使卫星进入一条大的椭圆轨道,其远地点恰好在地球赤道上空约36 000 km 处,这条轨道叫转移轨道;当卫星到达远地点Q 时,再开动卫星上的发动机,使之进入同步轨道,也叫静止轨道。
微专题: 卫星变轨问题和双星问题

专题 卫星变轨问题和双星问题[学习目标] 1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.一、人造卫星的发射、变轨与对接 1.发射问题要发射人造卫星,动力装置在地面处要给卫星一很大的发射初速度,且发射速度v >v 1=7.9 km/s ,人造卫星做离开地球的运动;当人造卫星进入预定轨道区域后,再调整速度,使F 引=F 向,即G Mmr 2=m v 2r ,从而使卫星进入预定轨道.2.卫星的变轨问题卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.(1)当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.(2)当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.以上两点是比较椭圆和圆轨道切点速度的依据. 3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图1甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.图1(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.例1 如图2所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )图2A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P点的加速度,D 项错误.【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的对接和变轨问题判断卫星变轨时速度、加速度变化情况的思路:(1)判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.(2)判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.(3)判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.(4)判断卫星的加速度大小时,可根据a =F m =G Mr 2判断.二、双星问题1.如图3所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕它们连线上的某一固定点做周期相同的匀速圆周运动,这种结构叫做“双星”.图32.双星问题的特点(1)两星的运动轨道为同心圆,圆心是它们之间连线上的某一点. (2)两星的向心力大小相等,由它们间的万有引力提供. (3)两星的运动周期、角速度相同.(4)两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .3.双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1=m 2ω2r 2.例2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图4所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,求双星的运行轨道半径r 1和r 2及运行周期T .图4答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力 对m 1:Gm 1m 2L2=m 1r 1ω2, 对m 2:Gm 1m 2L 2=m 2r 2ω2,且r 1+r 2=L , 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2.由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T=4π2L3G(m1+m2).【考点】双星问题【题点】双星问题1.(卫星的变轨问题)(多选)肩负着“落月”和“勘察”重任的“嫦娥三号”沿地月转移轨道直奔月球,如图5所示,在距月球表面100 km的P点进行第一次制动后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,之后,卫星在P点又经过第二次“刹车制动”,进入距月球表面100 km 的圆形工作轨道Ⅱ,绕月球做匀速圆周运动,在经过P点时会再一次“刹车制动”进入近月点距月球表面15公里的椭圆轨道Ⅲ,然后择机在近月点下降进行软着陆,则下列说法正确的是()图5A.“嫦娥三号”在轨道Ⅰ上运动的周期最长B.“嫦娥三号”在轨道Ⅲ上运动的周期最长C.“嫦娥三号”经过P点时在轨道Ⅱ上运动的线速度最大D.“嫦娥三号”经过P点时,在三个轨道上的加速度相等答案AD解析由于“嫦娥三号”在轨道Ⅰ上运动的半长轴大于在轨道Ⅱ上运动的半径,也大于轨道Ⅲ的半长轴,根据开普勒第三定律可知,“嫦娥三号”在各轨道上稳定运行时的周期关系为TⅠ>TⅡ>TⅢ,故A正确,B错误;“嫦娥三号”在由高轨道降到低轨道时,都要在P点进行“刹车制动”,所以经过P点时,在三个轨道上的线速度关系为vⅠ>vⅡ>vⅢ,所以C错误;由于“嫦娥三号”在P点时的加速度只与所受到的月球引力有关,故D正确.【考点】卫星、飞船的对接和变轨问题【题点】卫星、飞船的发射和变轨问题2.(卫星、飞船的对接问题)如图6所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()图6A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误.3.(双星问题)如图7所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图7A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3. 综上所述,选项C 正确. 【考点】双星问题 【题点】双星问题一、选择题考点一 卫星的变轨问题1.(多选)如图1所示,航天飞机在完成太空任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的近地点,关于航天飞机的运动,下列说法中正确的有( )图1A.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的向心加速度小于在轨道Ⅰ上经过A 的向心加速度 答案 ABC【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题2.(多选)如图2所示,在嫦娥探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,则( )图2A.飞船在轨道Ⅲ上的运行速率大于g 0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1 答案 BC解析 由m v 2R =mg 0知,v =g 0R ,即飞船在轨道Ⅲ上的运行速率等于g 0R ,A 错误.由v =GMr 知,v Ⅰ<v Ⅲ,而飞船在轨道Ⅱ上的B 点做离心运动,有v ⅡB >v Ⅲ,则有v ⅡB >v Ⅰ,B 正确.由a n =GMr 2知,飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度,C 正确.由T =2πr 3GM知,飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=8∶1,D 错误. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题3.如图3所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )图3A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 3 答案 D解析 根据万有引力提供向心力,即GMm r 2=ma n 得:a n =GMr 2,由题图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,所以v 3>v 2,根据GMm r 2=m v 2r得:v =GMr,又因为r 1<r 3,所以v 1>v 3,故v 1>v 3>v 2.故选D. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题4.(多选)如图4所示,搭载着“嫦娥二号”卫星的“长征三号丙”运载火箭在西昌卫星发射中心点火发射.卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km 、周期为118 min 的工作轨道Ⅲ,开始对月球进行探测,下列说法正确的是( )图4A.卫星在轨道Ⅲ的运行速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上经过P 点的加速度比在轨道Ⅰ上经过P 点的加速度大C.卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上的长D.卫星在轨道Ⅰ上经过P 点的速度比在轨道Ⅲ上经过P 点的速度大 答案 AD解析 卫星在轨道Ⅲ上的半径大于月球半径,根据G Mmr 2=m v 2r,得v =GMr,可知卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度小,A 正确.卫星在轨道Ⅲ上和在轨道Ⅰ上经过P 点时所受万有引力相等,所以加速度也相等,B 错误.轨道Ⅲ的半径比轨道Ⅰ的半长轴小,根据开普勒第三定律,卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上的短,C 错误.卫星从轨道Ⅰ经多次变轨进入轨道Ⅲ,在P 点需依次减速,D 正确. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题5.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图5所示,关闭发动机的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站C 绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R .那么以下选项正确的是( )图5A.月球的质量为4π2r 3GT2B.航天飞机到达B 处由椭圆轨道进入空间站圆轨道时必须加速C.航天飞机从A 处到B 处做减速运动D.月球表面的重力加速度为4π2RT 2答案 A解析 设空间站质量为m ,在圆轨道上,由G mM r 2=m 4π2r T 2,得M =4π2r 3GT 2,A 正确;要使航天飞机在椭圆轨道的近月点B 处与空间站C 对接,必须在接近B 点时减速,否则航天飞机将继续做椭圆运动,B 错误;航天飞机飞向B 处,根据开普勒第二定律可知,向近月点靠近做加速运动,C 错误;月球表面的重力加速度等于月球表面附近卫星的向心加速度,选项中4π2RT 2中的T 是空间站在半径为r 的轨道上做圆周运动的周期,比近月卫星周期大,D 错误. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题 考点二 双星问题6.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知引力常量为G ,由此可求出S 2的质量为( ) A.4π2r 2(r -r 1)GT 2B.4π2r 13GT 2 C.4π2r 3GT 2 D.4π2r 2r 1GT 2答案 D解析 设S 1和S 2的质量分别为m 1、m 2,对于S 1有 G m 1m 2r 2=m 1⎝⎛⎭⎫2πT 2r 1,得m 2=4π2r 2r 1GT 2.【考点】双星问题 【题点】双星问题7.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2 其中:r 1+r 2=L 故r 1=m 2m 1+m 2Lr 2=m 1m 1+m 2L故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误. 【考点】双星问题 【题点】双星问题8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍 答案 A解析 双星系统内的两颗星运动的角速度相同,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相同,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 【考点】双星问题 【题点】双星问题9.(多选)宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起.如图6所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图6A.质量之比m A ∶m B =2∶1B.角速度之比ωA ∶ωB =1∶2C.线速度大小之比v A ∶v B =1∶2D.向心力大小之比F A ∶F B =2∶1 答案 AC解析 双星都绕O 点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A 星:G m A m BL 2=m A ω2r A ①对B 星:G m A m BL 2=m B ω2r B ②联立①②得m A ∶m B =r B ∶r A =2∶1.根据双星运行的条件有:角速度之比ωA ∶ωB =1∶1,由v =ωr 得线速度大小之比v A ∶v B =r A ∶r B =1∶2,向心力大小之比F A ∶F B =1∶1,选项A 、C 正确,B 、D 错误. 【考点】双星问题 【题点】双星问题10.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2kT D.n kT 答案 B解析 如图所示,设两恒星的质量分别为M 1和M 2,轨道半径分别为r 1和r 2.根据万有引力定律及牛顿第二定律可得GM 1M 2r 2=M 1(2πT )2r 1=M 2(2πT )2r 2,解得G (M 1+M 2)r 2=(2πT )2(r 1+r 2),即GMr 3=(2πT)2①当两星的总质量变为原来的k 倍,它们之间的距离变为原来的n 倍时,有GkM (nr )3=(2πT ′)2②联立①②两式可得T ′=n 3kT ,故选项B 正确. 【考点】双星问题 【题点】双星问题 二、非选择题11.(变轨问题)中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图7所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,求:图7(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2. 答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)飞船在预定圆轨道上飞行时由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn ④由①③④式联立解得h 2=3gR 2t 24n 2π2-R . 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题。
高中物理双星四星问题和卫星变轨考点归纳

高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 12 2线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
人教版2020高中物理 第六章 万有引力与航天 微型专题4 卫星变轨问题和双星问题学案 新人教版必修2
微型专题4 卫星变轨问题和双星问题[学习目标] 1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.一、人造卫星的发射、变轨与对接 1.发射问题要发射人造卫星,动力装置在地面处要给卫星一很大的发射初速度,且发射速度v >v 1=7.9km/s ,人造卫星做离开地球的运动;当人造卫星进入预定轨道区域后,再调整速度,使F 引=F 向,即G Mm r 2=m v 2r,从而使卫星进入预定轨道.2.卫星的变轨问题卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.(1)当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.(2)当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 以上两点是比较椭圆和圆轨道切点速度的依据. 3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图1甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.图1(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.例1 如图2所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )图2A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B解析 卫星在圆轨道上做匀速圆周运动时有:G Mm r 2=m v 2r ,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误. 在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度,D 项错误.【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的对接和变轨问题判断卫星变轨时速度、加速度变化情况的思路:(1)判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.(2)判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.(3)判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.(4)判断卫星的加速度大小时,可根据a =F m =G M r2判断.二、双星问题1.如图3所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕它们连线上的某一固定点做周期相同的匀速圆周运动,这种结构叫做“双星”.图32.双星问题的特点(1)两星的运动轨道为同心圆,圆心是它们之间连线上的某一点. (2)两星的向心力大小相等,由它们间的万有引力提供. (3)两星的运动周期、角速度相同.(4)两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .3.双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1=m 2ω2r 2.例2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图4所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,求双星的运行轨道半径r 1和r 2及运行周期T .图4答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力 对m 1:Gm 1m 2L2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L , 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2.由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L3G (m 1+m 2).【考点】双星问题 【题点】双星问题1.(卫星的变轨问题)(多选)肩负着“落月”和“勘察”重任的“嫦娥三号”沿地月转移轨道直奔月球,如图5所示,在距月球表面100km 的P 点进行第一次制动后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,之后,卫星在P 点又经过第二次“刹车制动”,进入距月球表面100km 的圆形工作轨道Ⅱ,绕月球做匀速圆周运动,在经过P 点时会再一次“刹车制动”进入近月点距月球表面15公里的椭圆轨道Ⅲ,然后择机在近月点下降进行软着陆,则下列说法正确的是( )图5A.“嫦娥三号”在轨道Ⅰ上运动的周期最长B.“嫦娥三号”在轨道Ⅲ上运动的周期最长C.“嫦娥三号”经过P 点时在轨道Ⅱ上运动的线速度最大D.“嫦娥三号”经过P 点时,在三个轨道上的加速度相等 答案 AD解析 由于“嫦娥三号”在轨道Ⅰ上运动的半长轴大于在轨道Ⅱ上运动的半径,也大于轨道Ⅲ的半长轴,根据开普勒第三定律可知,“嫦娥三号”在各轨道上稳定运行时的周期关系为T Ⅰ>T Ⅱ>T Ⅲ,故A 正确,B 错误;“嫦娥三号”在由高轨道降到低轨道时,都要在P 点进行“刹车制动”,所以经过P 点时,在三个轨道上的线速度关系为v Ⅰ>v Ⅱ>v Ⅲ,所以C 错误;由于“嫦娥三号”在P 点时的加速度只与所受到的月球引力有关,故D 正确. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题2.(卫星、飞船的对接问题)如图6所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图6A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 3.(双星问题)如图7所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图7A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得Gm 1m 2L2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2 所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω,故v 1∶v 2=r 1∶r 2=2∶3. 综上所述,选项C 正确. 【考点】双星问题 【题点】双星问题一、选择题考点一 卫星的变轨问题1.(多选)如图1所示,航天飞机在完成太空任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的近地点,关于航天飞机的运动,下列说法中正确的有( )图1A.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的向心加速度小于在轨道Ⅰ上经过A 的向心加速度 答案 ABC【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题2.(多选)如图2所示,在嫦娥探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,则( )图2A.飞船在轨道Ⅲ上的运行速率大于g 0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1 答案 BC解析 由mv 2R =mg 0知,v =g 0R ,即飞船在轨道Ⅲ上的运行速率等于g 0R ,A 错误.由v =GM r知,v Ⅰ<v Ⅲ,而飞船在轨道Ⅱ上的B 点做离心运动,有v ⅡB >v Ⅲ,则有v ⅡB >v Ⅰ,B 正确.由a n =GM r2知,飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度,C 正确.由T =2πr 3GM知,飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=8∶1,D 错误. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题3.如图3所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200km ,远地点N 距地面340km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )图3A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 3答案 D解析 根据万有引力提供向心力,即GMm r 2=ma n 得:a n =GMr2,由题图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km 的圆形轨道,所以v 3>v 2,根据GMm r 2=mv 2r得:v =GMr,又因为r 1<r 3,所以v 1>v 3,故v 1>v 3>v 2.故选D. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题4.(多选)如图4所示,搭载着“嫦娥二号”卫星的“长征三号丙”运载火箭在西昌卫星发射中心点火发射.卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100km 、周期为118min 的工作轨道Ⅲ,开始对月球进行探测,下列说法正确的是( )图4A.卫星在轨道Ⅲ的运行速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上经过P 点的加速度比在轨道Ⅰ上经过P 点的加速度大C.卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上的长D.卫星在轨道Ⅰ上经过P 点的速度比在轨道Ⅲ上经过P 点的速度大 答案 AD解析 卫星在轨道Ⅲ上的半径大于月球半径,根据G Mm r 2=m v 2r ,得v =GMr,可知卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度小,A 正确.卫星在轨道Ⅲ上和在轨道Ⅰ上经过P 点时所受万有引力相等,所以加速度也相等,B 错误.轨道Ⅲ的半径比轨道Ⅰ的半长轴小,根据开普勒第三定律,卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上的短,C 错误.卫星从轨道Ⅰ经多次变轨进入轨道Ⅲ,在P 点需依次减速,D 正确. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题5.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图5所示,关闭发动机的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站C 绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R .那么以下选项正确的是( )图5A.月球的质量为4π2r3GT2B.航天飞机到达B 处由椭圆轨道进入空间站圆轨道时必须加速C.航天飞机从A 处到B 处做减速运动D.月球表面的重力加速度为4π2R T2答案 A解析 设空间站质量为m ,在圆轨道上,由G mM r 2=m 4π2r T 2,得M =4π2r3GT 2,A 正确;要使航天飞机在椭圆轨道的近月点B 处与空间站C 对接,必须在接近B 点时减速,否则航天飞机将继续做椭圆运动,B 错误;航天飞机飞向B 处,根据开普勒第二定律可知,向近月点靠近做加速运动,C 错误;月球表面的重力加速度等于月球表面附近卫星的向心加速度,选项中4π2RT2中的T 是空间站在半径为r 的轨道上做圆周运动的周期,比近月卫星周期大,D 错误. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题 考点二 双星问题6.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知引力常量为G ,由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT2B.4π2r 13GT 2C.4π2r 3GT2D.4π2r 2r 1GT2答案 D解析 设S 1和S 2的质量分别为m 1、m 2,对于S 1有G m 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1,得m 2=4π2r 2r 1GT 2.【考点】双星问题 【题点】双星问题7.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2 其中:r 1+r 2=L 故r 1=m 2m 1+m 2L r 2=m 1m 1+m 2L故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误. 【考点】双星问题 【题点】双星问题8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍 答案 A解析 双星系统内的两颗星运动的角速度相同,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相同,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误.【考点】双星问题 【题点】双星问题9.(多选)宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起.如图6所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图6A.质量之比m A ∶m B =2∶1B.角速度之比ωA ∶ωB =1∶2C.线速度大小之比v A ∶v B =1∶2D.向心力大小之比F A ∶F B =2∶1 答案 AC解析 双星都绕O 点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A 星:G m A m B L2=m A ω2r A ① 对B 星:Gm A m B L2=m B ω2r B ② 联立①②得m A ∶m B =r B ∶r A =2∶1.根据双星运行的条件有:角速度之比ωA ∶ωB =1∶1,由v =ωr 得线速度大小之比v A ∶v B =r A ∶r B =1∶2,向心力大小之比F A ∶F B =1∶1,选项A 、C 正确,B 、D 错误. 【考点】双星问题 【题点】双星问题10.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2kT D.n kT 答案 B解析 如图所示,设两恒星的质量分别为M 1和M 2,轨道半径分别为r 1和r 2.根据万有引力定律及牛顿第二定律可得GM 1M 2r 2=M 1(2πT )2r 1=M 2(2πT )2r 2,解得G (M 1+M 2)r 2=(2πT )2(r 1+r 2),即GMr 3=(2πT)2①当两星的总质量变为原来的k 倍,它们之间的距离变为原来的n 倍时,有GkM (nr )3=(2πT ′)2② 联立①②两式可得T ′=n 3kT ,故选项B 正确. 【考点】双星问题 【题点】双星问题 二、非选择题11.(变轨问题)中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图7所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,求:图7(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMm R 2① 根据牛顿第二定律有:GMm(R +h 1)2=ma A ② 由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)飞船在预定圆轨道上飞行时由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T=t n ④由①③④式联立解得h2=3gR2t24n2π2-R.【考点】卫星、飞船的对接和变轨问题【题点】卫星、飞船的发射和变轨问题。
第六章 专题强化 卫星变轨问题和双星问题(教师版)
专题强化——卫星变轨问题和双星问题重点探究重点探究一、人造卫星的变轨问题 1.变轨问题概述(1)稳定运行:卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r.(2)变轨运行:卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化. ①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁. ②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 2.实例分析 (1)飞船对接问题 飞船与在轨空间站对接先使飞船位于较低轨道上,然后让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道飞船完成对接(如下图甲所示).注意:若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如下图乙.(2)同步卫星的发射、变轨问题如下图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入同步圆轨道3做圆周运动.例1 (2019·通许县实验中学期末)如下图所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B 解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确; 在Q 点从轨道1到轨道2需要做离心运动,故需要加速.所以在Q 点v 2Q >v 1Q ,C 项错误. 在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度,D 项错误.总结提升判断卫星变轨时速度、加速度变化情况的思路1.判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.2.判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.3.判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.4.判断卫星的加速度大小时,可根据a =F m =G Mr2判断.针对训练 (多选)(2019·定远育才实验学校期末)航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如下图所示.关于航天飞机的运动,下列说法中正确的有( )A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度答案 ABC 解析 在轨道Ⅱ上由A 点运动到B 点,由开普勒第二定律可得经过A 的速度小于经过B 的速度,A 正确;从轨道Ⅰ的A 点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动,所以在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度,B 正确;根据开普勒第三定律R 3T 2=k ,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,C 正确;在轨道Ⅱ上和在轨道Ⅰ上通过A 点时所受的万有引力相等,根据牛顿第二定律,加速度相等,D 错误.二、双星或多星问题 1.双星模型(1)如下图所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”.(2)双星问题的特点:①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供. ③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L . (3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L 2=m 2ω2r 2. 2.多星系统在宇宙中存在类似于“双星”的系统,如“三星”、“四星”等多星系统,在多星系统中:(1)各个星体做圆周运动的周期、角速度相同. (2)某一星体做圆周运动的向心力是由其他星体对它引力的合力提供的. 例2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如下图所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2, 对m 2:Gm 1m 2L 2=m 2r 2ω2,且r 1+r 2=L , 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2. 由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得 周期T =4π2L 3G (m 1+m 2).例3 宇宙间存在一些离其他恒星较远的三星系统,如下图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G ,下列说法正确的是( )A.每颗星做圆周运动的角速度为GmL 3B.每颗星做圆周运动的加速度与三星的质量无关C.若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D.若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍 答案 C 解析 任意两星间的万有引力F =G m 2L2,对任一星受力分析,如图所示,由图中几何关系和牛顿第二定律可得:3F =ma =mω2L3,联立可得ω=3Gm L 3,a =ω2L 3=3GmL 2,选项A 、B 错误;由周期公式可得T =2πω=2πL 33Gm,L 和m 都变为原来的2倍,则周期T ′=2T ,选项C 正确;由速度公式可得v =ωL 3=GmL,L 和m 都变为原来的2倍,则线速度v ′=v ,选项D 错误. 随堂演练1.(卫星变轨问题)(2019·启东中学高一下学期期中)2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如下图所示,地球在椭圆轨道 Ⅰ 上运行到远日点B 变轨,进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是( B )A.沿轨道 Ⅰ 运动至B 点时,需向前喷气减速才能进入轨道 ⅡB.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道 Ⅰ 运行时,在A 点的加速度小于在B 点的加速度D.在轨道 Ⅰ 上由A 点运行到B 点的过程,速度逐渐增大2.(卫星、飞船的对接问题)如下图所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接答案 C 解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误.3.(双星问题)冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17 B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍答案 A 解析 双星系统内的两颗星运动的角速度相等,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相等,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误.4.(双星问题)(多选)宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知某双星系统的运转周期为T ,两星到共同圆心的距离分别为R 1和R 2,引力常量为G ,那么下列说法正确的是( )A.这两颗恒星的质量必定相等B.这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C.这两颗恒星的质量之比m 1∶m 2=R 2∶R 1D.其中必有一颗恒星的质量为4π2R 1(R 1+R 2)2GT 2答案 BCD 解析 两星有共同的周期T ,由牛顿第二定律得G m 1m 2(R 1+R 2)2=m 14π2T 2R 1=m 24π2T 2R 2,所以两星的质量之比m 1∶m 2=R 2∶R 1,故C 正确;由上式可得m 1=4π2R 2(R 1+R 2)2GT 2,m 2=4π2R 1(R 1+R 2)2GT 2,m 1+m 2=4π2(R 1+R 2)3GT 2,故A错误,B 、D 正确.专题强化训练一、选择题1.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如下图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )A.v 1>v 2,v 1=GMrB.v 1>v 2,v 1>GMr C.v 1<v 2,v 1=GMrD.v 1<v 2,v 1>GMr答案 B 解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,因为过近地点做匀速圆周运动的速度为v =GMr,由于“东方红一号”在椭圆轨道上运动,所以v 1>GMr,故B 正确.2.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大C.两个天体的向心力大小一定相等D.两个天体的向心加速度大小一定相等答案 C 解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2,其中:r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1 故质量大的天体线速度较小,故A 错误.3.(2019·定州中学期末)如下图所示,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道 Ⅲ,最后降落到月球表面上.下列说法正确的是( D )A.“嫦娥三号”在地球上的发射速度大于11.2 km/sB.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等4.(多选)如下图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大答案 BD 解析 因为b 、c 在同一轨道上运行,故其线速度、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c ,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b ,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确.5.(2019·杨村一中期末)如下图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是()A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L答案 C 解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2,所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3.综上所述,选项C 正确.6.(2019·榆树一中期末)如下图所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2,加速度大小分别为a 1和a 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是( )A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 3答案 D 解析 根据万有引力提供向心力,即GMm r 2=ma n 得:a n =GMr 2,由题图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,所以v 3>v 2,假设飞船在半径为r 1的圆轨道上做匀速圆周运动,经过M 点时的速率为v 1′,根据GMm r 2=m v 2r 得:v = GMr,又因为r 1<r 3,所以v 1′>v 3,飞船在圆轨道M 点时需加速才能进入椭圆轨道,故v 1>v 1′,故v 1>v 3>v 2.故选D.7.我国未来将建立月球基地,并在绕月轨道上建造空间站.如下图所示,关闭发动机的航天飞机仅在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站C 绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R .那么以下选项正确的是( A )A.月球的质量为4π2r 3GT2 B.航天飞机到达B 处由椭圆轨道进入空间站圆轨道时必须加速C.航天飞机从A 处到B 处做减速运动D.月球表面的重力加速度为4π2RT2解析 设空间站质量为m ,在圆轨道上,由G mM r 2=m 4π2r T 2,得M =4π2r 3GT 2,A 正确;要使航天飞机在椭圆轨道的近月点B 处与空间站C 对接,必须在接近B 点时减速,否则航天飞机将继续做椭圆运动,B 错误;航天飞机飞向B 处,根据开普勒第二定律可知,向近月点靠近做加速运动,C 错误;月球表面的重力加速度等于月球表面附近卫星的向心加速度,选项中4π2RT 2中的T 是空间站在半径为r 的轨道上做圆周运动的周期,比近月卫星周期大,D 错误.8.(2019·武邑中学调研)某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知引力常量为G ,由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 13GT 2C.4π2r 3GT 2D.4π2r 2r 1GT 2答案 D 解析 设星体S 1和S 2的质量分别为m 1、m 2,对于S 1有 G m 1m 2r 2=m 1⎝⎛⎭⎫2πT 2r 1,得m 2=4π2r 2r 1GT 2.9.(多选)如下图所示,在嫦娥探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,忽略月球的自转,则( )A.飞船在轨道Ⅲ上的运行速率大于g 0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1答案 BC 解析 由m v 2R=mg 0知,v =g 0R ,即飞船在轨道Ⅲ上的运行速率等于g 0R ,A 错误.由v =GMr知,v Ⅰ<v Ⅲ,而飞船在轨道Ⅱ上的B 点做离心运动,有v ⅡB >v Ⅲ,则有v ⅡB >v Ⅰ,B 正确.由a n =GMr 2知,飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度,C 正确.由T =2πr 3GM知,飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=8∶1,D 错误.10.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做匀速圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时匀速圆周运动的周期为( ) A.n 3k 2T B.n 3kT C.n 2kT D.n kT 答案 B 解析 设两恒星的质量分别为m 1、m 2,距离为L , 双星靠彼此的引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2G m 1m 2L 2=m 2r 24π2T2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时 T ′=2πn 3L 3Gk (m 1+m2)=n 3k·T11.(多选)(2019·雅安中学高一下学期期中)国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如下图所示,此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,被吸食星体的质量远大于吸食星体的质量.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )A.它们做圆周运动的万有引力保持不变B.它们做圆周运动的角速度不断变大C.体积较大星体圆周运动轨迹半径变大D.体积较大星体圆周运动的线速度变大答案 CD 解析 由F =Gm 1m 2L 2知F 增大,A 错误;设体积较小者质量为m 1,轨迹半径为r 1,体积较大者质量为m 2,轨迹半径为r 2,Gm 1m 2L 2=m 1ω2r 1,Gm 1m 2L 2=m 2ω2r 2得:ω=G (m 1+m 2)L 3,因m 1+m 2及L 不变,故ω不变,B 错误;半径r 2=Gm 1ω2L2,因m 1增大,故r 2变大,C 正确;线速度v 2=ωr 2,变大,D 正确.12.(2019·扬州中学模拟)进行科学研究有时需要大胆的想象,假设宇宙中存在一些离其他恒星较远的、由质量相等的四颗星组成的四星系统(忽略其他星体对它们的引力作用),这四颗星恰好位于正方形的四个顶点上,并沿外接于正方形的圆形轨道运行,若此正方形边长变为原来的一半,要使此系统依然稳定存在,星体的角速度应变为原来的( ) A.1倍 B.2倍 C.12倍 D.22倍答案 D 解析 设正方形边长为L ,每颗星的轨道半径为r =22L ,对其中一颗星受力分析,如图所示,由合力提供向心力:2×Gm 2L 2cos 45°+Gm 22L 2=mω2r得:ω=(2+22)Gm L L,所以当边长变为原来的一半,星体的角速度变为原来的22倍,故D 项正确.二、非选择题13.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如下图所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求:(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2. 答案 (1)加速 (2)gR 2(R +h 1)2(3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn④ 由①③④式联立解得h 2=3gR 2t 24n 2π2-R . 14.(2019·厦门一中模拟)如下图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知星球A 、B 的中心和O 三点始终共线,星球A 和B 分别在O 的两侧.引力常量为G .(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024 kg 和7.35×1022 kg.求T 2与T 1两者平方之比.(计算结果保留四位有效数字) 答案 (1)2πL 3G (M +m )(2)1.012 解析 (1)两星球围绕同一点O 做匀速圆周运动,其角速度大小相同,周期也相同,其所需向心力由两者间的万有引力提供,设A 、B 的轨道半径分别为r 2、r 1,由牛顿第二定律知: 对于B 有G Mm L 2=M 4π2T 2r 1 对于A 有G Mm L 2=m 4π2T2r 2 又r 1+r 2=L 联立解得T =2πL 3G (M +m )(2)若认为地球和月球都围绕中心连线某点O 做匀速圆周运动,根据题意可知M 地=5.98×1024 kg ,m 月=7.35×1022 kg ,地月距离设为L ′,由(1)可知地球和月球绕其轨道中心的运行周期为T 1=2πL ′3G (M 地+m 月)若认为月球围绕地心做匀速圆周运动,由万有引力定律和牛顿第二定律得 GM 地m 月L ′2=m 月4π2T 22L ′,解得T 2=2πL ′3GM 地 则T 2T 1=M 地+m 月M 地 故T 22T 12=M 地+m 月M 地≈1.012.。
高中物理双星问题和卫星变轨考点归纳
高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 12 2线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。