优品课件之八年级数学上册《认识无理数》教案
八年级数学上册《无理数》教案、教学设计

5.通过实际案例,让学生将所学知识应用到实际问题中,培养学生的实际操作能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的热情。
2.培养学生勇于探索、善于思考的精神,增强学生面对困难的勇气。
3.培养学生的创新意识,使学生认识到数学知识的无限魅力。
1.学生对无理数定义的理解程度,注意引导他们从具体实例中抽象出无理数的概念。
2.学生在运用无理数进行计算和比较时可能会遇到困难,需要耐心指导,帮助他们掌握方法和技巧。
3.学生在探究无理数过程中可能存在恐惧心理,教师要鼓励学生大胆尝试,培养他们的自信心。
4.针对学生个体差异,教师应关注不同学生的学习需求,提供有针对性的指导,使他们在原有基础上得到提高。
-思考题1:比较π和√3的大小,并说明理由。
-思考题2:证明:如果一个数的平方是无理数,那么这个数也是无理数。
5.个性化作业:根据学生的学习情况,提供不同难度的作业,使每个学生都能在适合自己的层面上得到锻炼。
-挑战题:求证π是无理数。
-基础题:计算下列无理数的近似值:√2、√3、π。
2.无理数的表示:介绍无理数的表示方法,包括无限不循环小数和根号表示,如π、√2等。
3.无理数的性质:讲解无理数的性质,如不可约性、无限不循环性等,并通过实例加以说明。
4.无理数与有理数的区别:对比分析无理数与有理数的区别,强调无理数在数轴上的位置和性质。
(三)学生小组讨论
1.分组讨论:将学生分成小组,讨论无理数的定义、性质以及与有理数的区别。
9.教学评价:采用多元化的评价方式,包括课堂问答、小组表现、作业和测验,全面评估学生的学习效果。
认识无理数教案

认识无理数教案一、教学目标1.了解无理数的概念,能够区分有理数和无理数。
2.掌握无理数的基本性质,包括无理数的无限不循环小数表示、无理数的数轴表示等。
3.培养学生对无理数的理解、应用和推理能力。
二、教学重点无理数的概念和特点。
三、教学难点无理数的无限不循环小数表示。
四、教学准备教学课件、黑板、白板笔、教学用具。
五、教学过程Step 1 引入新知1.教师出示一组有理数(例如:2、3、4)和一组无理数(例如:√2、π),请学生观察并分析它们的特点。
2.引导学生发现有理数和无理数的不同之处。
3.出示定义:无理数是指不能表示为两个整数的比值的实数。
有理数是指可以表示为两个整数的比值的实数。
4.让学生举例区分有理数和无理数。
Step 2 理解无理数1.通过分数、小数和百分数的例子,帮助学生理解有理数的概念。
2.通过根号、π等例子,引导学生理解无理数的概念。
3.让学生总结无理数的特点。
Step 3 无理数的无限不循环小数表示1.举例介绍无理数的无限不循环小数表示。
2.通过几个简单的例子,帮助学生理解无理数的无限不循环小数表示方法。
3.让学生自己尝试将某些无理数表示为无限不循环小数。
4.让学生总结无理数的无限不循环小数表示的特点。
Step 4 无理数的数轴表示1.通过数轴上有理数和无理数的位置关系,帮助学生理解无理数在数轴上的表示方法。
2.通过绘制数轴上的有理数和无理数,让学生直观感受无理数的数轴表示方法。
3.让学生总结无理数的数轴表示的特点。
六、教学拓展1.引导学生了解无理数的一些应用领域,如几何、物理等。
2.组织学生进行讨论,深入探究无理数的其他性质和应用。
七、课堂小结1.复习本节课的重点内容和要点。
2.检查学生对无理数的理解情况,解答学生提出的问题。
八、课后作业1.查资料,了解无理数的发现历史和研究成果。
2.预习下节课的内容。
2.1认识无理数(新教案)-2023-2024学年八年级上册数学(北师大版)

2.教学难点
-难点内容:无理数的概念理解、估算方法掌握、运算规则应用及与有理数的区别。
-难点突破:
a.无理数概念理解:解释无理数为何不能表示为分数形式,引导学生理解无限不循环小数的含义。
2.培养学生的数感和符号意识,深入理解无理数的概念及其与有理数的区别,形成对数学符号的敏感性和运用能力。
-能够理解无理数的定义,识别并运用不同的符号表示无理数。
3.提高学生的推理能力和抽象思维能力,通过无理数的运算规则探讨,使学生掌握逻辑推理和数学证明的基本方法。
-能够运用逻辑推理分析无理数运算的结果,理解其性质和规律。
b.无理数的性质,如与有理数的区别、不可比性等。
c.无理数的估算方法,包括逼近法和夹逼法,并通过实例进行讲解。
d.无理数的分类,介绍代数无理数和超越无理数的特点。
e.无理数的运算规则,强调与有理数运算的异同,以及运算结果的性质判断。
f.无理数在实际问题中的应用,如计算圆的周长和面积、黄金分割点等。
-举例解释:
五、教学反思
在今天的教学中,我们探讨了无理数的概念及其在实际问题中的应用。回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于无理数的定义,我尝试用简单易懂的语言解释,但发现部分学生对无限不循环小数的概念仍然感到困惑。在以后的教学中,我需要寻找更多贴近生活的例子,帮助学生更好地理解无理数的内涵。
其次,在新课讲授环节,我发现学生在理解无理数估算方法时,对逼近法和夹逼法的掌握程度有所不同。针对这个问题,我考虑在后续课程中增加一些实际操作环节,让学生动手实践,以便更深入地掌握这些估算方法。
北师大版数学八年级上册(教案):2.1.2认识无理数

关于小组讨论,我发现学生在围绕“无理数在实际生活中的应用”这一主题展开讨论时,思路较为局限。在今后的教学中,我将尝试提供更多具有启发性的问题,引导学生从多角度思考问题,提高他们的创新思维能力。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.数感:通过探索无理数的概念,提高学生对数的敏感度,理解数的本质,从而增强数感。
2.推理能力:在学习无理数的性质及表示方法过程中,锻炼学生的逻辑推理和数学思维能力。
3.数学建模:让学生运用无理数的知识解决实际问题,培养数学建模能力。
4.数学抽象:通过研究无理数与有理数的区别,提高学生的数学抽象思维能力。
举例:讲解无理数的平方是有理数时,可以以√2为例,计算其平方,得到2,让学生理解无理数平方为有理数的性质。
(2)无理数与有理数的运算:掌握无理数与有理数的四则运算,特别是乘除运算。教师应通过典型例题,指导学生如何进行无理数与有理数的运算。
举例:讲解无理数与有理数的乘除运算时,可以给出如2数的表示:学习无理数的表示方法,如根号表示、无限不循环小数表示等。
3.无理数的性质:探讨无理数的性质,如无理数的平方是有理数,无理数的绝对值等。
4.无理数与有理数的比较:通过实例比较无理数与有理数,加深对两者区别的理解。
5.实数分类:总结实数的分类,包括有理数和无理数,并了解它们在数轴上的分布。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题。
八年级上册数学 认识无理数教案

八年级数学上册教案吧斗 Assistant teacher 为 梦 想 奋2.1 认识无理数1.了解无理数的概念及意义,会判断一个数是有理数还是无理数;(重点) 2.会对一个无理数进行估算.(难点) 一、情境导入 拼图发现新数——无理数 请大家四个人为一组,拿出自己准备好的两个边长为1的正方形纸片和剪刀,按虚线剪开拼成一个大的正方形. 因为两个小正方形面积之和等于大正方形的面积,所以根据正方形面积公式可知a 2=2,那么a 是整数吗?a 是分数吗? 二、合作探究 探究点一:无理数的概念及认识 下列各数中,哪些是有理数?哪些是无理数? 3.14,-53,0.58··,-0.125,-5π,0.35,227,5.3131131113…(相邻两个3之间1的个数逐次加1).解析:准确理解有理数和无理数的概念是解答本题的关键.任何有限小数或无限循环小数都是有理数;无限不循环小数称为无理数,故-5π,5.3131131113…是无理数,其他都是有理数.解:有理数:3.14,-53,0.58··,-0.125,0.35,227;无理数:-5π,5.3131131113…(相邻两个3之间1的个数逐次加1). 方法总结:有理数与无理数的主要区别.(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示. (2)任何一个有理数都可以化为分数形式,而无理数则不能.探究点二:借助计算器用“夹逼法”求无理数的近似值正数x 满足x 2=17,则x 精确到十分位的值是________.解析:已知x 2=17,所以4<x<5,4.12=16.81<17,4.22=17.64>17,所以4.1<x<4.2.又因为 4.122=16.9744<17,4.132=17.0569>17,所以4.12<x<4.13.故x 精确到十分位是4.1.方法总结:估计x 2=a(a>0)中的正数x各位上的数字的方法:(1)估计x 的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x 的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x 的百分位、千分位、…上的数,从而确定x 的值.三、板书设计无理数⎩⎪⎨⎪⎧定义:无限不循环小数识别让学生通过估计、借助计算器进行探索和讨论,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念;同时引导学生回顾旧知、探索新知,形成一定的数学探究能力,进一步培养学生的分类和归纳的思想,为今后的数学学习打下坚实的基础.第二章实数2.1 认识无理数第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:已知22a=,请问:①a可能是整数吗?②a可能是分数吗?【释一释】:释1.满足22a=的a为什么不是整数?释2.满足22a=的a为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】 【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数 3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.。
认识无理数课件北师大版八年级数学上册

C.是有理数
D.不是有理数
(2)如图,在Rt△ABC中,AC=2 cm,BC=2 cm,那么AB 的长是有理数吗?
AB的长不是有理数
3.【例1】边长为2的正方形的对角线长( D )
A.是整数
B.是分数
C.是有理数 D.不是有理数
C
5.【例3】(北师8上P21改编)如图,在Rt△ABC中,两直角边 长分别为a=2,b=3,斜边长为c. (1)c满足什么关系式? (2)c是整数吗? (3)c是有理数吗?
解:(1)根据勾股定理,得c2=a2+b2=22+32=13, ∴c满足c2=13的关系式. (2)c不是整数. (3)c不是有理数.
6.【例4】(新题速递)如图,阴影部分是正方形,求出此正方 形的面积.此正方形的边长是有理数吗?为什么? 解:设正方形的边长为a, 根据勾股定理得 a2=152-82=161. 因为a不是整数也不是分数,所以a不是有理数.
教学反思:这节课的内容是无理数的概念以及判断一个数是有 理数还是无理数.是数的范围的又一次扩充,是很重要的一节.培 养了学生分类归纳的思想.但对概念的理解掌握一些同学还不是 很好,只能在以后的教学过程中不断的完善.
教学重难点
1.无理数的探索过程. 2.了解无理数与有理数的区别,并能正确判断. 3把两个边长为1的正方形拼成一个大正方形的动手操作过程.
1.通过拼图活动,感受无理数产生的实际背景和引入的必要 性. 2.从实际背景中发现“不可比的数”,感受到这样的数的广泛 性.
知识点一:有理数(复习) 整数和分数都可以化成有限小数或无限循环小数.
-5,3,0 -5,3,0
知识点二:无理数的产生 (1)用边长为1的两个小正方形剪拼成一个面积为2的大正方形, 大正方形的边长a应满足的条件是 a2=2 ;a 不是 整数,
八年级数学上册第2章《认识无理数(1)》优质教案(北师大版)

第二章实数1. 认识无理数(1)一、学情与教材分析1.学情分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.2.教材分析《认识无理数》是义务教育课程标准北师大版实验教科书新秋版八年级(上)第二章《实数》的第一节,原标题为“数怎么又不够用了”,但在内容设置上除了个别习题的增删,几乎没有其他改动(习题2.1删掉一题,习题2.2删改一题,新增一题).本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.以及学生亲自动手做拼图活动,培养学生的动手能力和探索精神.二、教学目标1.通过拼图活动,让学生感受客观世界中无理数的存在;2.能判断三角形的某边长是否为无理数;3.能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.三、教学重难点教学重点:①让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数. ②会判断一个数是否为有理数.教学难点:①把两个边长为1的正方形拼成一个大正方形的动手操作过程.②判断一个数是否为有理数.四、教法建议合作探究法五、教学设计(一)课前设计1.预习任务用两张颜色不同的纸做出如图的两个边长为1分米的小正方形,剪一剪,拼一拼,设法得到一个大的正方形,思考下列问题?1)大正方形的面积为 ________________平方分米.2)设大正方形的边长是a分米,则a满足什么条件?3)想一下,a是整数么?a是分数么?2.预习自测一、选择题1.下列说法正确的是()A.非负数包括零和整数 B.正整数包括自然数和零C.零是最小的整数 D.整数和分数统称为有理数答案:D解析:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选D.点拨:根据有理数的分类,利用排除法求解.二、填空题2. 在数+8.5,﹣4,﹣0.8,﹣,0,90,﹣,﹣|﹣24|中,___________________________不是整数.答案:+8.5,﹣0.8,﹣,﹣解析:+8.5,﹣0.8,﹣,﹣不是整数.点拨:根据整数的概念进行判断即可.3. 下列说法正确的有__________.(填序号)①﹣a是负数.②0既不是正数,也不是负数③一个有理数不是整数就是分数.④0是最小的有理数.⑤有理数的绝对值是正数.⑥如果两个数的绝对值相等,则这两个数互为相反数.答案:②③解析:①﹣a可能是负数、零、正数,故①说法错误;②零既不是正数也不是负数,故②说法正确;③有理数包括整数和分数,故③说法正确;④没有最小的有理数,故④说法错误;⑤有理数的绝对值是非负数,故⑤说法错误;⑥两个数的绝对值相等,这两个数相等或互为相反数,故⑥说法错误;故答案为:②③.点拨:根据小于零的数是负数,可判断①;根据零的意义,可判断②;根据有理数的分类,可判断③;根据有理数的意义,可判断④;根据绝对值的意义,可判断⑤;根据相反数的性质,可判断⑥.(二)课堂设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:探究发现;第三环节:知识运用;第四环节:随堂检测;第五环节:课堂小结.第一环节:情境引入问题情景:同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?(在小学我们学过自然数、小数、分数,在初一我们还学过负数.)对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.意图:通过情景引导学生思考学过哪些数,进而进行下一步的探究.第二环节:探究发现活动1:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形.(学生高兴地投入活动中)经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下. 现在我们一起把大家的做法总结一下:活动2:再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知22a=.a=可判断a应是1点几.[生丙]由22大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a是分数吗?请大家分组讨论后回答.=,…整数的平方越来[生甲]我们组的结论是:因为211=,224=,239越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为111224339,,224339224⨯=⨯=⨯=,…两个相同因数的乘积都为分数,所以a不可能是分数.经过大家的讨论可知,在等式22a=中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.做一做:(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?(3)b是有理数吗?请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数---无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.第三环节:知识运用1.如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3,h 不可能是整数,也不可能是分数.2.下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2=1+1=2.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数.第四环节:随堂检测一、选择题1. 在数下列各数:+3、+(﹣2.1)、﹣、﹣π、0、﹣0.1010010001…、﹣|﹣9|中,负有理数有()个.A.1个 B.2 个 C.3个 D.4个答案:C解析:在+3、+(﹣2.1)、﹣、﹣π、0、﹣0.1010010001…、﹣|﹣9|中,负有理数有+(﹣2.1)、﹣、﹣|﹣9|,只有3个.故选C.点拨:根据有理数的定义,在给定的数中找出负有理数,查出其个数,此题得解.二、填空题2. 在,0,﹣30,,+20,π,﹣2.6这7个数中,整数有________________,负分数有________________.答案:0,﹣30,+20;,﹣2.6.解析:在,0,﹣30,,+20,π,﹣2.6这7个数中,整数有0,﹣30,+20,负分数有,﹣2.6.点拨:有理数分为整数和分数,据此填空.3. 将下列各数填在相应的集合里﹣3.8,﹣10,10π,﹣|﹣|,4,0,﹣(﹣)整数集合:____________________;分数集合:____________________;正数集合:____________________;有理数集合:________________________________.答案:见解析解析:整数集合:﹣10,4,0;分数集合,﹣|﹣|,﹣(﹣);正数集合:10π,4,﹣(﹣);有理数集合:﹣3.8,﹣10,﹣|﹣|,4,0,﹣(﹣); 点拨:可按照有理数的分类填写:有理数; 有理数. 第五环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.师生相互交流总结:1.通过拼图活动,感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断一个数是否为有理数.布置作业:1.课本习题2.1 T22.边长分别为2、3的长方形,它的对角线长可能是整数吗?可能是分数吗?若边长分别为1.5、2呢?解:①设长、宽分别为3、2的长方形的对角线长为a ,得2223213a =+=,a不可能是整数,也不可能是分数;②边长分别为1.5、2时,根据勾股定理可知,对角线长为2.5,是分数,也是有理数.。
北师大版八年级数学上册2.1.认识无理数(教案)

今天的学习,我们了解了无理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对无理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了无理数的概念及其性质,我发现学生们对这个新知识充满了好奇。一开始,通过日常生活中的例子引入无理数的概念,学生们表现出了很大的兴趣。但在讲解过程中,我也注意到有些学生对无理数的抽象定义理解起来有些困难,这让我意识到需要在教学过程中加强对这部分内容的讲解和引导。
5.在小组合作学习中,培养学生的团队合作意识和交流表达能力,提高其数学交流能力。
本节课的核心素养目标旨在帮助学生全面理解无理数的内涵与外延,提升他们的数学综合素养,为后续学习打下坚实基础。
三、教学难点与重点
1.教学重点
(1)无理数的定义:理解无理数是不能表示为两个整数比的数,这是本节课的核心概念。例如,边长为1的等腰直角三角形的斜边长度就是一个无理数。
二、核心素养目标
1.理解无理数的概念,培养学生的数学抽象能力,使其能够把握数学对象的本质属性。
2.通过探索无理数的性质和运算规律,提升学生的逻辑推理能力和数学运算能力。
3.学会运用计算器求无理数的近似值,培养学生数学建模和数据分析的能力,使其能够解决实际问题。
4.引导学生发现无理数在生活中的应用,提高学生的数学应用意识,增强数学与现实生活的联系。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用计算器求π的近似值,演示无理数近似值的基本原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册《认识无理数》教案
八年级数学上册《认识无理数》教案
一、教学目标
1.通过拼图活动,感受无理数产生的实际背景和引入的必要性,在探究过程中培养动手实践的能力和独立思考、合作交流的习惯.
2.会判断一个数是否为有理数,并能说明理由.
二、学情分析
学生在七年级通过生活中的事例已经经历了数系的第一次扩充,从非负有理数到负有理数的扩充,从而扩充到整个有理数范围,本节从有理数扩充无理数,学生理解起来有一定的难度,可以从实例出发,引入无理数。
而且通过第一章《勾股定理》的学习,学生已经掌握勾股定理及其逆定理,并能运用它们解决简单的问题,为引入“新数”奠定了基础.同时学生对于剪切这样的活动已经具备基本的能力,并且比较感兴趣,也开阔了学生的发散思维能力。
三、教学重点
1.通过拼图活动,经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.
2.会判断一个数是否为有理数,并能说明理由.
三、教学难点
1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2.判断一个数是否为有理数.
四、教学方法
教师引导,主要由学生分组讨论得出结果.
认识无理数教学设计五、教学过程
(一)激情导课
工人师傅要加固一个高2米、宽1米的大门,需要在对角线位置加固一条钢板,设钢板长为a米,则a2的值是多少?
(二)民主导学
1.拼一拼
如图是两个边长为1的小正方形,请你通过剪一剪、拼一拼,设法得到一个大正方形.
问题1:设大正方形的边长为a,a满足什么条件?
问题2:a可能是整数吗?说说你的理由.
问题3:a可能是分数吗?说说你的理由,并与同伴进行交流.
问题4:a可能是有理数吗?尝试说明理由.
认识无理数教学设计2.做一做
(1)如图,以直角三角形的斜边为正方形的面积是多少?
(2)设该正方形的边长为b,b满足什么条件?
(3)b是有理数吗?
3.读一读:无理数的发现
4.巩固应用
(1)长、宽分别为3,2的长方形,它的对角线的长()
A.是分数 B.是小数 C.是整数 D.不是有理数
(2)下列各数中,是有理数的是()
A.面积为3的正方形的边长 B.体积为8的正方体的棱长
C.两直角边长分别为2和3的直角三角形的斜边长 D.圆周率π(3)如图,在4×4的正方形网格中,每个小正方形的边长均为1,则△ABC中三边边长不是有
理数的有()
A.0条 B.1条 C.2条 D.3条
5.拓展提高
(1)在4×4的正方形网格中,每个小正方形的边长均为1,任意连接这些小正方形的若干个顶点,可得到一些线段.试分别找出两条长度是有理数的线段和两条长度不是有理数的线段.
(2)如图是小明以他画的线段为边长设计出的一个正方形,请解决下列问题:
①阴影正方形的面积是多少?
认识无理数教学设计②阴影正方形的边长介于哪两个整数之间?
认识无理数教学设计认识无理数教学设计认识无理数教学设计(3)在4×4的正方形网格中,每个小正方形的边长均为1,请按要求设计如下图形:
①三边边长均是有理数的三角形;
②三边边长均不是有理数的三角形;
③两边边长是有理数,另一边长不是有理数的直角三角形;
④一边边长是有理数,另两边长不是有理数的钝角三角形.
(4)如图,等边三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?
三、检测导结
1.当堂检测
在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.
认识无理数教学设计认识无理数教学设计
2.一养鱼专业户欲将面积为288m2的长方形鱼塘改为等面积的边长为l m的正方形鱼塘,则l满足什么条件?l是有理数吗?请说明理由.
2.课堂小结
请你谈谈学习本节课的收获
(1)通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.
(2)能判断一个数是否为有理数.
四、布置作业
1.必做题:课本习题
2.1(2)
2.选做题:课堂精炼P13(11、12)
3.思考题:
无理数像一篇读不完的长诗,既不循环,也不枯竭,无穷无尽,数学家称之为一种特殊的数.设面积为10π的圆的半径为x,回答下列问题:
(1)x是有理数吗?请说明理由;
(2)试着估计x的整数部分是多少;
(3)将x精确到十分位是多少?
优品课件,意犹未尽,知识共享,共创未来!!!。