列代数式 1 几何 初一上

合集下载

[初中数学]+列代数式表示数量关系+考点梳理及难点突破+课件+人教版(2024)数学七年级上册

[初中数学]+列代数式表示数量关系+考点梳理及难点突破+课件+人教版(2024)数学七年级上册

分 笔 y 元,小红买了 6 支钢笔和 3 支铅笔,共付了(6x+3y)

元钱.(答案不唯一)
返回目录
解题通法
代数式的实际意义就是将代数式中的字母


易 及运算符号赋予具体的含义.代数式要与实际问题中的数量
混 关系保持一致.


返回目录
易 ■题型二 列代数式解决实际问题

例 2
某地居民生活用水收费标准: 若每月用水量不
[错因] 写代数式时,遗漏括号.
返回目录
易错警示 当乘、除、乘方对和或差作用时,要加上括


易 号,避免计算失误.


领悟提能 根据叙述列代数式时,要认真审题,抓关键

词语,如“除”与“除以”“平方的差(或平方差)”与
“差的平方”等词义的区分,再根据题意列出代数式.
返回目录






第二课时 反比例关系

混 0.9x 元;


(3)长方形面积=长×宽,面积为 20,宽为 x,则长为



(4)根据相反数的定义求解,n 的相反数是-n.
[答案](1)mn (2)0.9x(3)


(4)-n
返回目录






■考点二
定义
举例
代 数 式
用运算符号把数或表示数的字母连接起来的式子
称为代数式.单独的一个数或字母也是代数式

混 超过 10 m3,则收费为 a 元/m3;若超过 10 m3,则超过部

析 分收费为(a+1.5)元/m3,该地区某用户上月用水量为 16

3.1 代数式(教案)北师大版(2024)数学七年级上册

3.1 代数式(教案)北师大版(2024)数学七年级上册

第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。

初一数学小报一单元上册

初一数学小报一单元上册

初一数学小报一单元上册以下是对初一数学小报一单元上册知识点的具体举例:1.代数式:例子:x + 2y 是一个代数式,它表示了x和y的和。

2.合并同类项:例子:在多项式3x² + 2x + 1中,x²是同类项,可以合并为(3x² + 2x)。

3.相反数:例子:在数轴上,到原点距离相等的两个点表示的数是互为相反数。

例如,-5和5互为相反数。

4.代数式的值:例子:当x=3时,代数式2x+1的值是7。

5.列代数式:例子:若小明有x本书,小红有y本书,则他们两个人一共有x+y本书。

6.解方程:例子:解方程2x - 7 = 14,解得x = 10.5。

7.几何图形:例子:长方体、正方体、圆柱、圆锥等都是几何图形。

8.线段、射线、直线:例子:线段AB和线段BA是同一条线段;射线OA和射线AO 是同一条射线;直线L和直线L是同一条直线。

9.角:例子:角AOB是一个角,它由射线OA和射线OB组成。

10.角平分线:例子:若射线OC平分角AOB,则OC是角AOB的角平分线。

初一数学小报一单元上册知识点的更多举例:1.整式的加减:例子:在多项式3x² + 2x + 1中,3x²是整式3x²与常数项1的和,2x是整式2x与常数项1的和。

2.幂的运算性质:例子:a³× a² = a³+² = a⁵,(a³)² = a³×2² = a⁶。

3.一次方程:例子:2x - 3 = 5,解得x = 4。

4.绝对值:例子:|3| = 3,|-3| = 3。

5.算术平方根:例子:正数16的算术平方根是4。

6.立方根:例子:正数27的立方根是3。

7.实数:例子:π是一个无理数,属于实数范围内。

8.平面直角坐标系:例子:在平面直角坐标系中,点A(2,3)表示一个点在x轴上的坐标为2,y轴上的坐标为3。

3.1列代数式表示数量关系(1)课件+++2024-2025学年人教版七年级数学上册

3.1列代数式表示数量关系(1)课件+++2024-2025学年人教版七年级数学上册

课堂小结
数量关系
含有字母的式子
列式时应注意:
①数与字母、字母与字母相乘省略乘号;
②数与字母相乘时数字在前;
③式子中出现除法运算时,一般按分数形式来写;
④带分数与字母相乘时,把带分数化成假分数;
⑤带单位时,适当加括号.
例题与练习
1.猕猴桃单价x元/千克,橘子单价y元/千克,买3千克猕猴
桃和5千克橘子共需要( B )
A.(x+y)元
ห้องสมุดไป่ตู้
B.(3x+5y)元
C.(3y+5x)元
D.3x+5y元
例题与练习
2.长方形绿地的长、宽分别是a m,b m,如果长增加x m,新
增绿地面积是多少平方米?________.
bx m2
3.温度由t ℃上升5 ℃后是多少?________.
(t+5)℃
4.两车同时、同地、同向出发,快车行驶速度是x km/h,慢
A.-1x
B.a×7

C.


D.1 xy

2.在下列表述中,不能用式子5a表示的是( D )
A.5的a倍
B.a的5倍
C.5个a的和
D.5个a的积
3.一列火车从甲站出发,5h行驶mkm,则这列火车的平均速

度是____km/h.

例题与练习
4.某商品在国庆节期间,为了提高销售量,在原单价为a元的基
(3)从小亮家到学校的路程是2 km,小亮骑自行车的速度是v
km/h,小亮骑自行车从家到学校需要多长时间?
解:(1)55%m;
(2)x(x+2);

(3) .

例题与练习

华东师大版七年级数学上册教案:3.1列代数式

华东师大版七年级数学上册教案:3.1列代数式

华东师大版七年级数学上册教案:3.1列代数式课题列代数式【学习目标】1.让学生能根据相关的词语与条件把代数式列出来;2.初步培养学生的观察、分析、抽象思维能力;3.有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.【学习重点】根据题意列代数式.【学习难点】从实际问题中找出数量关系并列出代数式.行为提示:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.(可抢答)行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:数的一半还多2人,则男生的人数为__⎝ ⎛⎭⎪⎪⎫m 2+2__人; (4)若两数的和为48,其中一个数为a ,则这两个数的积为__a(48-a)__.自学互研 生成能力知识模块一 列代数式阅读教材P 87~P 88,完成下面的内容.归纳:用含有数、字母、和运算符号的式子把问题中与数量有关的词表示出来,就是列代数式.(1)正确理解题中的数量关系是列代数式的基础.抓住题中的“和、差、积、商、倍、分、多、少”等词语,弄清各量之间的数量关系,把文字叙述的数量用相应的字母表示出来;(2)理清运算顺序是列代数式的关键.运算符号是连接数与字母的纽带,但不注意运算顺序,就易出错,一般书写顺序与语言叙述顺序是一致的可按先读的先写,后读的后写的原则直接列出代数式;(3)熟悉已学过的数学公式及实际问题中常用的数量关系是列代数式的重要保证.范例:列代数式表示:(1)a 与b 两数绝对值的和:__⎪⎪⎪⎪a +⎪⎪⎪⎪b __; (2)某商品打七折后的价格是a 元,则原价为__10a 7__; (3)a 的3倍与b 的0.75倍的和是__3a +0.75b __;(4)双休日小明参加植树活动,栽下一棵1.2米高的树苗,以后每年长0.3米,则n 年后的树高为__(1.2+0.3n )__米.学法指导:有“每升高气温下降”时,一般用除法.学法指导:叙述代数式的意义时,按加号、减号的顺序进行.有括号时,括号优先.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块一展示重点在于让学生能够根据题中表达的数量关系的语句熟练地列出代数式;知识模块二展示重点在于让学生能根据代数式描述代数式的实际意义.仿例:一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算( B )A .甲B .乙C .一样D .无法确定变例:某地区夏高山上的温度从山脚处开始,每升高100m 降低0.6℃,已知山脚的温度为30℃.(1)求山上300m 处的温度;(2)求山上x m 处的温度.解:(1)由题意得:30-(300÷100)×0.6=30-1.8=28.2(℃).答:山上300m 处的温度为28.2℃.(2)由题意得:30-x 100×0.6=(30-0.006x ) ℃. 答:山上x m 处的温度为(30-0.006x ) ℃.知识模块二 代数式的意义范例:某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元销售,则下列说法能正确地表达商店促销方法的是(B)A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元仿例:用文字语言叙述1a-1表示的意义不正确的是(D)A.比a的倒数小1的数B.a的倒数与1的差C.1除以a的商与1的差D.与a的倒数的差是1的数交流展示生成新知1.各小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.知识模块一列代数式知识模块二代数式的意义检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:_____________________________________________ ___________________________2.存在困惑:_____________________________________________ ___________________________。

2.1《代数式的概念和列代数式(2)》课件 2024-—2025学年湘教版(2024)七年级数学上册

2.1《代数式的概念和列代数式(2)》课件 2024-—2025学年湘教版(2024)七年级数学上册
新知探究
观察图2.1-1,你知道构成m个六边形需要多少根火柴吗?
图2.1-1
新知探究
六边形的个数
图案
所需火柴棍数量/根
1
2
3
4
m(m为正整数)
6
6+5=11
6+5×2=16
6+5×_____=_____
6+5×______=_______
新知探究
围4个六边形需火柴棍6+5×(41)= 21(根).
每增加 1 个六边形就增加 5 根火柴棍,因此围m个六边形,需火柴棍[6+ 5(m–1)]根.
新知探究
六边形的个数
图案
所需火柴棍数量/根
1
2
3
4
m(m为正整数)
6
6+5=11
6+5×2=16
6+5×_____=_____
6+5×______=_______
(41)
21
(m1)
5m+1
新知探究
观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+···+83= .
新知导入
填空:(1)长方形的长是a米,宽是3米,则面积是__________平方米,周长是__________米.(2)小明每小时走v千米,1.5小时走__________千米,36分钟走 __________千米,t小时走__________千米.(3)a(a≠0)的倒数是__________,a的相反数是__________.
解: (2)前十个月的水费为2.07×180=372.6(元).由于后两个月用水量不超过80m3,于是全年用水量不超过260m3. 又后两个月用水量为bm3,从而后两个月的水费为4.07b元,因此这样的家庭一年的水费为(372. 6 + 4. 07b)元,其中b不超过80.

初一数学《代数式》知识点精讲

初一数学《代数式》知识点精讲知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。

特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a 米,(2a-b)kg。

六、系数与次数单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

3.1 列代数式表示数量关系(第1课时 代数式)(教学设计)-七年级数学上册(人教版2024)

3.1 列代数式表示数量关系(第1课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“代数式”3.1 列代数式表示数量关系第1课时,内容包括用含有字母的式子表示数量关系即代数式的概念.2.内容解析本节课内容属于“数与代数”领域,是在小学阶段学习了用字母表示数、简单的列式表示实际问题中的数量关系和简易方程的基础上,进一步研究用含有字母的式子(代数式)表示实际问题中的数量关系.整式是初中数学的重要概念,是今后学习分式、二次根式、方程、不等式以及函数等知识的基础.理解字母表示数的意义,正确分析实际问题中的数量关系,并用代数式表示数量关系,是学习一元一次方程的直接基础.用含有字母的式子表示数量关系,体现了由特殊(具体)到一般(抽象)的数学思想,对发展符号意识具有重要意义.本节课的核心内容是进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并列式表示,由于字母表示数,因而字母可以和数一样参与运算,这正是理解用代数式表示数量关系的核心.用含有字母的式子表示数量关系时,需要结合具体情境,分析问题中的数量,寻找数量之间的关系,并依据数量关系用运算符号把数和表示数的字母连接起来.基于以上分析,确定本节课的教学重点为:进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系,感受其中“抽象”的数学思想.二、目标和目标解析1.目标(1)进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系(2)经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.2.目标解析达成目标(1)的标志是:学生会用字母表示数,认识字母和数一样可以参与运算,能正确分析实际问题中的数量关系,将字母看成数参与运算,列出含有字母的式子.目标(2)是“内容所蕴含的思想方法”,学生需要结合大量的具体问题,分析数量关系并用式子表示,从中体会由实际问题抽象出数学问题,用数学符号表示数量关系的思想,感受式子中的字母表示数,含有字母的式子可以表示实际问题中的数量关系,式子更具有一般性.三、教学问题诊断分析在前面的学习中,主要学习的是数的有关概念和运算,学生习惯用数的相关知识解决实际问题.由“数”到“式”的过程,是一个抽象的过程.虽然学生小学学过用字母表示数,对含有字母的数学式子不会感到生疏,但七年级学生符号意识较弱,分析问题能力有待逐步提高,在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难.教学中要通过大量的学生熟悉的实际问题,有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.基于以上分析,确定本节课的教学难点为:正确分析实际问题中的数量关系,用式子表示数量关系.四、教学过程设计(一)创设情境,引入课题教师:在小学,我们学过用字母表示数,知道可以用字母或含有字母的式子表示数和数量关系,这样的式子在数学中有重要作用,并在解决实际问题中有着广泛的应用.思考下面的问题:智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人平均每秒可以完成5 m2范围内苹果的识别,并自动对成熟的苹果进行采摘,它的一个机械手平均8 s可以采摘一个苹果.根据这些数据回答下列问题:(1)该机器人10 s能识别多大范围内的苹果?60 s呢?t s呢?(2)该机器人识别n m2范围内的苹果需要多少秒?(3)若该机器人搭载了m个机械手(m>1),它与采摘工人同时工作1 h,已知工人平均5 s可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?教师:回答上面的问题,要用到含有字母的式子,即本章将要研究的代数式. 通过对本章的学习,你将进一步体会到代数式可以简明地表示数量和数量关系,为后续学习方程、不等式、函数等打下基础.【设计意图】通过本章引言,吸引学生注意力,激发学生兴趣,引出本课内容.问题1(本章引言):智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人平均每秒可以完成5 m2范围内苹果的识别,并自动对成熟的苹果进行采摘,它的一个机械手平均8 s可以采摘一个苹果.根据这些数据回答下列问题:(1)该机器人10 s能识别多大范围内的苹果?60 s呢?t s呢?(2)该机器人识别n m2范围内的苹果需要多少秒?(3)若该机器人搭载了m个机械手(m>1),它与采摘工人同时工作1 h,已知工人平均5 s可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?追问1:怎样分析数量关系并用含有字母的式子表示数量关系呢?追问2:工作量、工作效率、工作时间有什么关系?师生活动:学生独立回答.教师引导学生归纳:工作量=工作效率×工作时间.同时注意:在含有字母的式子中如果出现乘号,通常将数放在字母前,乘号写作“•”或省略不写.例如,5×t 可以写成5 • t 或5t .解:(1)该机器人10 s 能识别的范围(单位:m 2)是5×10=50;60 s 能识别的范围(单位:m 2)是5×60=300;t s 能识别的范围(单位:m 2)是5×t =5t .师生活动:观察上面的式子,可以看出5×10,5×60表示机器人在两个具体时间内完成的工作量.含有字母t 的式子 5t 表示机器人在任意时间t 内完成的工作量.用字母代替数使我们的表达从一个具体问题推广到一类问题,更具有一般性.解:(2)该机器人识别n m 2范围内的苹果需要的时间是5n s. (3)机器人多采摘的苹果个数=机器人采摘的苹果个数-工人采摘的苹果个数=一个机械手的采摘效率×工作时间×机械手的个数-工人的采摘效率×工作时间 =18×3600×m -15×3600 =450m -720.【设计意图】让学生经历由数到式的过程,感受从特殊(具体)到一般(抽象)的认识过程,体会用字母表示数的简洁性和必要性,为下面继续学习用含有字母的式子表示数量关系做好方法上的引导.(二)新知探究问题2:某工程队负责铺设一条长2 km 的地下管道,经过d 天完成,用式子表示这支工程队平均每天铺设的管道长度.师生活动:师带领学生归纳思路:平均每天铺设的管道长度=铺设的管道总长度÷工作天数.因此,这支工程队平均每天铺设的管道长度是2dkm 问题3:一个正方形的边长是a ,这个正方形的周长l 是多少?面积S 呢?师生活动:由正方形的周长及面积公式可得正方形的周长l =4a ,面积S =a 2. 注意:相同字母相乘,可以写成幂的形式. 例如,a • a 可以写成a 2.问题4:上面的问题中,既有已知数,又有用字母表示的未知数,字母表示数有什么意义?用含有字母的式子表示数量关系有什么意义?师生活动:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.【设计意图】进一步让学生体会用字母表示数的简洁性和必要性,感受从特殊(具体)到一般(抽象)的认识过程.(三)新知讲解师生活动:教师:上述问题中列出的式子5t ,5n ,450m -720,2d,4a ,a 2,它们都是用运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression ). 单独的一个数或字母也是代数式,例如5,t 都是代数式.教师提醒:用字母表示数的特殊规定:1. 字母与字母相乘时省略乘号,例如:a ×b 可以写成ab ;2. 数字与字母相乘时,数字在前,字母在后,例如:100×t 可以写成100t 、 0.8×m 可以写成0.8m ;3. 1或-1与字母相乘时,1通常省略不写,例如1×a 可以写成a ,-1×a 可以写成-a ;4. 带分数与字母相乘时,把带分数化成假分数,例如112×y 必须写成32y ; 5. 相同字母相乘时应写成幂的形式,例如a ×a 可以写成a ²;6. 出现多个字母时,字母一般按照26个英文字母顺序排列;7. 数与字母相除时,写成分数形式,例如n ÷2可以写成2n ; 8. 含有字母的式子表示数量关系时,若结果是加、减关系,有单位的必须把式子用括号括起来,再写单位,例如(2x +1.5y )元.针对训练:1.下列含有字母的式子,符合书写规范要求的是( C )A .-1aB .5bC .0.5xyD .(x +y )÷z2.下列表述中,不能表示式子“4a ”的意义的是( D )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘3.下列用字母表示数所列的式子中,书写规范的是( B )A .m ×12B .4x 3yz ²C . z ÷3D .273mn 【设计意图】引入代数式概念,让学生熟知用字母表示数的规定写法.(四)典例分析例1:(1)苹果原价是p 元/kg ,现在按九折优惠出售,用代数式表示苹果的售价;(2)一个长方形的长是0.9 m ,宽是p m ,用代数式表示这个长方形的面积;(3)某产品前年的产量是n 件,去年的产量是前年产量的2倍少10件,用代数式表示去年的产量;(4)一个长方体水池底面的长和宽都是a m,高是h m,池内水的体积占水池容积的三分之一,用代数式表示池内水的体积.师生活动:学生先独立列式,然后同桌交流,学生代表板演展示,教师巡视指导.解:(1)苹果的售价是0.9p元/kg;(2)这个长方形的面积是0.9p m2;(3)去年的产量是(2n-10)件;(4)解:池内水的体积为:13a·a·h cm3即13a2h cm3.教师根据学生回答情况进行评价,可以适时追问下面的问题:(1)苹果现价比原价降低了多少元?你能再赋予0.9p一个含义吗?(2)前年与去年产量的和是多少?去年的产量比前年多多少?你能再赋予(2n-10)一个含义吗?【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为形成单项式的概念进行铺垫,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.例2:说出下列代数式的意义:(1)2a+3;(2)2(a+3 );(3)cab;(4)x2+2x+8.师生活动:学生先独立列式,然后同桌交流,学生代表板演展示,教师巡视指导. 解:(1)2a+3的意义是a的2倍与3的和;(2)2(a+3 )的意义是a与3的和的2倍;(3)cab的意义是c除以a,b的积的商;(4)x2+2x+8的意义是x的平方,x的2倍,与8的和.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.针对训练:1. 某种商品每袋4.8元,在一个月内的销售量是m 袋,用式子表示在这个月内销售这种商品的收入.2. 圆柱体的底面半径、高分别是r,h,用式子表示圆柱体的体积.3. 有两片棉田,一片有p hm2 (公顷,1 hm2 =104 m2 ),平均每公顷产棉花a kg;另一片有q hm2 ,平均每公顷产棉花b kg,用式子表示两片棉田上棉花的总产量.1. 4.8m元;2.πr2h;3.ap+bq(kg).【设计意图】进一步理解字母表示数的意义,理解用含有字母的数学式子表示实际问题中数量关系的简洁性、必要性和一般性.(五)当堂巩固1. 用式子表示下列数量(1)5箱苹果重m kg ,每箱重 kg ;(2)一个数比a 的2倍小5,则这个数为 ;(3)全校学生总数是x ,其中女生占总数52%,则女生人数是 ,男生人数是 ;(4)某班有a 名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;(5)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm ,小正方形的边长是b mm ,则剩余部分的面积为 ;(6)一辆长途汽车从杨柳村出发,3h 后到达距出发地 s km 的溪河镇,这辆长途汽车的平均速度是_____km/h ;(7)产量由 m kg 增长 10%,就达到_________kg.1. (1)5m ;(2)2a -5;(3)0.52x ;0.48x ;(4)(4a -25);(5)(a 2-b 2)mm 2;(6)3s ;(7)(m +0.1m ). 【设计意图】进一步提高用含有字母的式子表示实际问题中的数量关系的能力.(六)感受中考1.(2024•广安)下列对代数式-3x 的意义表述正确的是( )A .-3与x 的和B .-3与x 的差C .-3与x 的积D .-3与x 的商【解答】选项A 、-3与x 的和应为:-3+x ,不合题意;选项B 、-3与x 的差应为:-3-x ,不合题意;选项C 、符合题意;选项D 、-3与x 的商应为:3x,不合题意. 故选:C .2.(2023•河北)代数式-7x 的意义可以是( )A .-7与x 的和B .-7与x 的差C .-7与x 的积D .-7与x 的商 【分析】直接利用代数式的意义分析得出答案.【解答】解:代数式-7x 的意义可以是-7与x 的积.故选:C .【点评】此题主要考查了代数式,掌握代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子是解题关键.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(七)课堂小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:1. 本节课学了哪些主要内容?2. 用字母表示数有什么意义?用含有字母的式子表示数量关系有什么意义?3. 用含有字母的式子表示数量关系时要注意什么?列式时:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤带单位时,适当加括号.【设计意图】通过小结,进一步巩固、梳理本节课所学用字母表示数的知识,使学生所学知识系统化,形成一个完整的知识体系.(八)布置作业P75:习题3.1:第1题,第2题;P77:习题3.1:第7题.五、教学反思“用字母表示数”这节课,是人教版2024版七年级上册第三章代数式的章节起始课,知识看似浅显,平淡,却在小学数学与初中代数之间起着承上启下的过渡作用.从具体的数到用字母表示数,是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃,将为后继学习代数式、方程、函数等相关知识起到铺垫作用,将使学生进一步感受到符号化的数学思想.英国著名哲学家、数学家罗素说过,什么是数学?数学就是符号加逻辑.在教学设计中也注重了符号化思想的渗透,本着由简单到复杂,由具体到抽象的原则,采用了观察思考,合作探究,动手操作等不同的学习方式,同时注重区分“用字母表示数”与“代数式”的不同要求,重点使学生认识到用字母表示数的优越性,感受到字母以它浓缩的形式,表达大量信息的优点.通过实例了解简单的用字母表示数的方法. 同时关注学生发展,激发学习兴趣,在感受知识价值的同时.融合师生关系,以新的教学理念指导教学行为,做学生学习的引导者,合作者,促进者,坚持“授人以鱼,不如授人以渔”的方针,适时鼓励学生,达到了预期的课堂教学效果.体会用字母能代表一大批具体的数,含有字母的式子能概括地表示数量关系.在提出的问题以后,提示学生想一想,比如题目里的a、b可以表示哪些数.学生最先想到的是如果继续,a、b可以表示任何数,让学生想一想、说一说.多次进行这样的从部分到全体的联想,学生就能体会到字母表示数具有概括性的特征.在学习用字母表示数的书写格式时,先让学生自己写出例题的答案,再与正确答案对照,在认知差异与冲突中形成了新知识,建立了一种符号意识;在规律题的解答中,教师结合多媒体的演示较直观地使学生形成了“一看二猜三验证”的模型思想. 对于规律题的探究是七年级学生的难点,借助多媒体的演示非常直观,适合学生抽象思维较弱的特点,浸润式的详细点拨讲解,使学生慢慢形成了一个解决规律题的模型,在设计时突出“模型思想”的渗透,同时也让学生体会到了从特殊到一般的数学思想.。

华东师范大学出版社七年级上册数学练习册3.1列代数式(1)详细答案

3.1列代数式(1)基本训练1.他一共花的钱=贺卡的价格×所买张数=2×m=2m。

2. a和b=a+b,它们的倒数和=1a+1b(a,b≠0),它们和的倒数=1a+b (a+b≠0),它们绝对值的差=|a|-|b|,它们差的绝对值=|a-b|。

3.应找的钱=所付的钱-球拍金额=所付的钱-单价*数量=450-c×n=450-cn。

4.(1)甲、乙两数的平方差=x2-y2;(2)甲、乙两数的平方和=x2+y2;(3)甲、乙两数和的平方=(x+y)2;(4)甲、乙两数差的平方=(x-y)2。

5.这个偶数=a+2。

——a是偶数6.选(A),即(n-1)2+n2+(n+1)2设中间那个数为n,则前一个数为=n-1,后一个数=n+1。

7.选(D),即X(20-X)设另一未知数为Y,则两数之积=XY=X(20-X)——由X+Y=20,得Y=20-X8. (1)三个连续的自然数;设第一个自然数为n,则第二个自然数=n+1,第三个自然数=n+2;设中间那个自然数为n,则前一个自然数为n-1,后一个自然数为n+1;设最后那个自然数为n,则第二个自然数为n-1,第一个自然数为n-2。

(2)被7除余1的自然数。

设商是a(a≥0),则所求数(被除数)=7a+1。

9.三位数=百位数字×100+十位数字×10+个位数字=十位数字×2×100+十位数字×10+十位数字-2 ——代入已知=a×2×100+a×10+a-2 ——十位数字是a=211a-210.四个圆孔的直径之和=2×4=8cm除去圆孔的木条总长=a-8圆孔间距x =a−8511.n=1,则a1=4=1×3+1n=2,则a2=7=2×3+1n=3,则a3=10=3×3+1n=4,则a4=13=4×3+1所以a n=3n+1,选(A)12.1个梯形时,周长=5;2个梯形时,周长=1个梯形周长+3=5+3=8;3个梯形时,周长=2个梯形周长+3=1个梯形周长+3+3=5+3×2=11;依此,4个梯形时,周长=5+3×3=14;5个梯形时,周长=5+3×4=17;6个梯形时,周长=5 +3×5=20;n个梯形时,周长=5+3×(n-1) =3n+2;13.n=1时,11×2=11×(1+1)=11−12n=1时,12×3=12×(2+1)=12−13n=1时,13×4=13×(3+1)=13−14n=1时,14×5=14×(4+1)=14−15依此规律,有:1=1−1。

3.1.1 代数式及列代数式-人教版(2024)数学七年级上册


分析:机器人多分类的商品个数 =机器人分类的商品个数 - 工人分类的商品个数 =机器人的分类效率×工作时间 - 工人的分类时间×工作时间
解:机器人比工人多分类的商品个数
1 10 3600- 1 3600
8
m
= 4500- 3600 m
我们再来看两个用含有字母的式子 表示数量和数量关系的问题.
s
步行上学需要的时间为_5_______ h;
3.1500 米跑步测试,如果某同学跑完全程的成绩是 t 秒,那么他跑步的
平均速度为
1500
____t____
米/秒;
4.一个正方形的边长为a cm,它的面积为___a_2 ____ cm2;
5.比a的2倍多5的数是_2_a_+_5____ .
像3x、1500、 s 、a2、2a+5这样用字母表示的式子,
(2) 该机器人识别 n m2范围内的商品需要多少秒?
分析:工作量=工作效率×工作时间
本题求工作时间,则工作时间=
工作总量 工作效率
解: 本题中工作量为 n m2,工作效率为5m2/s
所以该机器人识别n
m2的范围内的商品需要的时间是
n 5
s
(3)若该机器人搭载了10个机械手,它与工人同时工作1h,假设工人m s 可以分类一个商品,则机器可比工人多分类多少商品?
(1)该机器人10s能识别多大范围内的商品?60s呢?t s呢?
分析:本题包括三个量:工作总量、工作效率和工作时间.它 们之间的关系为:
工作总量=工作效率×工作时间
解:(1)该机器人10 s能识别的范围(单位:m2)是 5×10=50;
60s能识别的范围(单位:m2) 是 5×60=300;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列代数式1
1( 4n )操作与思考:将长为1,宽为的长方形纸片(),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作).(1)第一次操作后,剩下的长方形的边长与宽分别为、.(含的式子表示)
(2)求第二次操作后,剩下的长方形为周长是多少?(列式表示)
(3)假如第二次操作后,剩下的长方形恰好是正方形,则的值是.
2()
把四张形状大小完全相同的小长方形不重叠的放在一个底面为长方形(长为m,宽为n)的盒子底部,盒子底面未被卡片覆盖的部分用阴影表示,求图中两块阴影部分的周长和。

3( 48 )如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD、宽AB;(2)用含a、b的代数式表示阴影部分的面积.
4()
如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.
5()把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在长为m cm,宽为n cm 的大长方形上面(如图2),大长方形中未被卡片覆盖的部分用阴影表示,请你求出图2中两块阴影部分的周长的和是多少?(写出详细解题过程,结果用含m、n的代数式表示)
6(4n )如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形,其中,,
,设.用含的代数式表示________,________.求长方形
的面积.。

相关文档
最新文档