新坪中学2016年春季学期4月份数学八下月考试题(新人教版)

合集下载

2016年人教版八年级下册第一次月考数学试题含答案

2016年人教版八年级下册第一次月考数学试题含答案

15~16学年下学期八年级第一次月考数 学 试 卷考试时间:120分钟, 满分:100分, 命题人:林源德友情提示:请把选择题和填空题的答案搬到对应的答题卡上.一、选择题(共12题,每题2分,满分24分。

每小题只有一个正确的选项,) 1. 不等式311x x ->+的解集在数轴上表示为( )A .B .C .D .2. 若n m >,下列不等式不一定成立的是( ) A. 22+>+n m B. n m 22> C.22nm > D. 22n m > 3. 如图,在△ABC 中,AB=AC,D 为BC 中点,∠BAD=35°,则∠C 的度数为( )A .35°B .45°C .55°D .60°4.如图,平分∠,,,垂足分别为,下列结论正确的是( )A. B. C.∠∠ D. 5. 如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB,若BE=2,则AE 的长为( )A. B.1 C. D.26.如图,在△ABC 中,AB=AC ,D ,E 两点分别在AC , BC 上,BD 是∠ABC 的平分线,DE//AB ,若BE=5 cm ,CE=3 cm ,则△CDE 的周长是( )A.15 cmB.13 cmC.11 cmD.9 cm7. 不等式组12,12x x +>⎧⎨-≤⎩的解集是( )A. 1<xB. x ≥3C. 1≤x <3D. 1<x ≤38. 下列不等关系中,正确的是( )A.m 与4的差是负数,可表示为04<-mB. x 不大于3可表示为3<xC. a 是负数可表示为0>aD. x 与2的和是非负数可表示为02>+x班级 姓名 班级座号 考室 考号(第4题图)E (第6题图)9. 如图,函数42-=x y 与x 轴、y 轴交于点(2,0),(0,-4),当04<<-y 时,x 的取值范围是( )A.x <-1B.-1<x <0C.0<x <2D.-1<x <2 10. 如图,已知,,下列条件能使△≌△的是( )A. B. C. D.三个答案都是11. 如图,在△ABC 中,∠A=36°,AB =AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个 12. 若不等式组11x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <0二、填空题(共6题,每题3分,共18分。

人教版八年级(下)学期 第一次月考数学试卷

人教版八年级(下)学期 第一次月考数学试卷

人教版八年级(下)学期 第一次月考数学试卷一、选择题1.下列式子为最简二次根式的是( )A B C D 2.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-3.下列计算正确的是( )A =B =C 26 D 4=4.下列二次根式中,是最简二次根式的是( )ABC .D5.( )A .1B .﹣1C .D -6.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-37.下列二次根式是最简二次根式的是( )A BCD 8.下列式子中,属于最简二次根式的是( )A B CD 9.下列各式中,正确的是( )A .B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 210.下列各式计算正确的是( )A +=B .26=(C 4=D =11.是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .212.如果实数x ,y =-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题13.比较实数的大小:(1)5?-______3- ;(2)514-_______12 14.将2(3)(0)3a a a a-<-化简的结果是___________________.15.已知2215x 19x 2+--=,则2219x 215x -++=________. 16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11233第行 13 1541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.11882. 19.4x -x 的取值范围是_____20.12a 1-能合并成一项,则a =______.三、解答题21.计算:(18322(2))((25225382+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.25.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)31=-2÷33==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.26.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.27.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.28.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.29.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D 2=,可以化简,故不是最简二次根式; 故选:A . 【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .3.B解析:B 【解析】解:A ;B ==;C =;D 2===.故选项错误.故选B .4.D解析:D 【分析】根据最简二次根式的特点解答即可. 【详解】A ,故该选项不符合题意;B =C 、=3,故该选项不符合题意;D 不能化简,即为最简二次根式, 故选:D . 【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.5.C解析:C 【解析】解:原式=故选C .6.C解析:C 【解析】分析:根据被开方数大于等于0列式进行计算即可得解. 详解:根据题意得,x+3≥0, 解得x≥-3. 故选C.点睛:本题考查的知识点为:二次根式的被开方数是非负数,这也是解答本题的关键.7.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】解:ABC 0.1,故此选项错误;D 故选:A . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.8.B解析:B 【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【详解】解:A =2,不是最简二次根式,故本选项错误;BC =D =,不是最简二次根式,故本选项错误;故选:B .【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.9.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.11.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<∴1 4< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.15.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为18.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】.22.故答案为2【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.19.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

人教版八年级第二学期第一次月考数学试题及答案

人教版八年级第二学期第一次月考数学试题及答案
人教版八年级第二学期第一次月考数学试题及答案
一、选择题
1.下列各式计算正确的是( )
A. B. C. D.
2.下列计算正确的是()
A. B. C. =4 D.
3. 的倒数是()
A. B. C. D.
4.已知 ,则 的值为()
A. B. C. D.0
5.二次根式 的值是()
A.-3B.3或-3C.9D.3
(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.
【详解】
解:(1)

(2)

【点睛】
本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.
25.计算下列各式:
(1) ;
(2) .
∴原式= = .
【点睛】
本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.
22.先观察下列等式,再回答下列问题:
① ;


(1)请你根据上面三个等式提供的信息,猜想 的结果,并验证;
(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).
【答案】(1) (2) (n为正整数)
【答案】(1) ;(2) .
【分析】
(1)根据二次根式的运算顺序和运算法则计算即可;
(2)利用平方差、完全平方公式进行计算.
【详解】
解:(1)原式 ;
(2)原式

【点睛】
本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.
验证: = = = =
(2) =1+ − =1+ (n为正整数).

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。

人教版八年级(下)学期 第一次 月考检测数学试题含答案

人教版八年级(下)学期 第一次 月考检测数学试题含答案

人教版八年级(下)学期 第一次 月考检测数学试题含答案一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列计算结果正确的是( )A B .3=C =D=4.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-3 5.下列各式中,运算正确的是( )A =﹣2B +C 4D .=26.下列各式是二次根式的是( )A B C D 7.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =8.下列运算正确的是( ) A .52223-=y y B .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =9.已知0xy <,化简二次根式 )A BC .D .10.给出下列化简①(2=2=2=12=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④11.下列运算中正确的是( )A .=B()23===C .3313939===D .155315151÷⨯=÷=12.下列各式计算正确的是( ) A .()233= B .()255-=± C .523-= D .3223-=二、填空题13.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.14.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 15.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.16.化简:321x 17.计算:200820092+323⋅-=_________.18.36,3,2315,,则第100个数是_______.19.化简(32)(322)+-的结果为_________.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.若x ,y 为实数,且y 14x -41x -12.求x y y x ++2-xy y x +-2的值. 2 【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:S ==(2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.23.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。

八年级数学下学期第一次月考(4月)试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

八年级数学下学期第一次月考(4月)试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2015-2016学年某某省保亭中学八年级(下)第一次月考数学试卷(4月份)一、选择题.(每题3分,共42分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥33.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=54.如果a是任意实数,下列式子一定成立的是()A.B.C. D.5.已知一个正方形的面积是5,那么它的边长是()A.5 B.C.D.以上都不对6.下列各式中,不是二次根式的是()A.B.﹣C.D.7.若=3,则a的值是()A.3或﹣3 B.3 C.﹣3 D.98.下列根式化简后,被开方数与的被开方数相同的是()A. B. C.D.9.下列计算正确的是()A.B.C.D.10.计算的结果是()A. B.C.D.11.估算的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间12.三角形三边长分别是3,4,5,则它的最短边上的高为()13.下列说法正确的有()①每个命题都有逆命题;②互逆命题的真假性一致;③每个定理都有逆定理.A.0个B.1个C.2个D.3个14.三角形的三条边长分别为a,b,c,满足等式(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.等边三角形C.直角三角形D.钝角三角形二、填空.(每题4分,共16分)15.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是______m.16.在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是______.17.等腰直角三角形有一边长为8cm,则底边上的高是______,面积是______.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、解答题:(共62分)19.(1)+2﹣(﹣);(2)÷×.20.先化简,再求值:,其中a=1﹣.21.如图,在△ABC中,AB=AC=BC,高AD=.求AB.22.实数a在数轴上的位置如图所示,化简|a﹣2|+.23.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N 岛,求M岛到N岛的距离.24.已知x,y,z满足|x﹣|+.(1)求x,y,z的值;(2)试判断以x,y,z为三边的△ABC的形状,并说明理由.2015-2016学年某某省保亭中学八年级(下)第一次月考数学试卷(4月份)参考答案与试题解析一、选择题.(每题3分,共42分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵2+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.4.如果a是任意实数,下列式子一定成立的是()A.B.C. D.【考点】二次根式有意义的条件.【分析】根据二次根式被开方数大于等于零进行判断即可.【解答】解:A、当a<0时,二次根式无意义,故A错误;B、当a=0时,二次根式无意义,故B错误;C、a是任意实数时,都有意义,故C正确;D、当a≠0时,二次根式无意义,故D错误.故选:C.5.已知一个正方形的面积是5,那么它的边长是()A.5 B.C.D.以上都不对【考点】二次根式的应用.【分析】根据算术平方根的定义解答.【解答】解:∵正方形的面积是5,∴它的边长是.故选B.6.下列各式中,不是二次根式的是()A.B.﹣C.D.【考点】二次根式的定义.【分析】根据二次根式的定义,即可解答.【解答】解:A、,不是二次根式;B、﹣,是二次根式;C、,是二次根式;D、,是二次根式;故选:A.7.若=3,则a的值是()A.3或﹣3 B.3 C.﹣3 D.9【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵=3,∴a2=9,∴a=3或﹣3.故选:A.8.下列根式化简后,被开方数与的被开方数相同的是()A. B. C.D.【考点】同类二次根式.【分析】根据二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式,可得答案.【解答】解:A、=2与的被开方数不同,故A错误;B、=3的被开方数不同,故B错误;C、﹣=﹣2的被开方数相同,故C正确;D、=的被开方数不同,故D错误;故选:C.9.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加减法对A、C进行判断;根据完全平方公式对B、D进行判断.【解答】解:A、2与5不能合并,所以A选项错误;B、原式=3+2+2=5+2,所以B选项错误;C、与不能合并,所以C选项错误;D、原式=3+2﹣2=5﹣2,所以D选项正确.故选D.10.计算的结果是()A. B.C.D.【考点】二次根式的加减法.【分析】按照二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.【解答】解:原式=2﹣1+=3﹣1;故选A.11.估算的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间【考点】估算无理数的大小.【分析】依据被开方数越大对应的算术平方根越大可估算出的大小,然后再确定﹣2的大小即可.【解答】解:∵25<30<36,∴5<<6.∴3<﹣2<4.故选C.12.三角形三边长分别是3,4,5,则它的最短边上的高为()【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得出三角形是直角三角形,即可得出选项.【解答】解:∵三角形三边长分别是3,4,5,∴32+42=52,∴此三角形是直角三角形,它的最短边上的高为4,故选C.13.下列说法正确的有()①每个命题都有逆命题;②互逆命题的真假性一致;③每个定理都有逆定理.A.0个B.1个C.2个D.3个【考点】命题与定理.【分析】根据逆命题的定义可对①③进行判断;根据互为逆命题的两个命题的真假没有关系可对②进行判断;【解答】解:把原命题的题设与结论交换得到它的逆命题,所以①正确;真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;每个定理一定有逆命题,所以③正确;正确的有1个,故选B.14.三角形的三条边长分别为a,b,c,满足等式(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.等边三角形C.直角三角形D.钝角三角形【考点】勾股定理的逆定理.【分析】因为a、b、c为一个三角形的三边长,化简(a+b)2﹣c2=2ab,可得a2+b2=c2,根据勾股定理的逆定理即可得出该三角形为直角三角形.【解答】解:∵(a+b)2﹣c2=2ab,∴a2+b2=c2,∴该三角形为直角三角形.故选C.二、填空.(每题4分,共16分)15.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是16 m.【考点】勾股定理的应用.【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10(米).所以大树的高度是10+6=16(米).故答案为:16.16.在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.【考点】两点间的距离公式.【分析】本题可根据两点之间的距离公式得出方程:,化简即可得出答案.【解答】解:点A(﹣1,0)与点B(0,2)的距离是:=.故答案填:.17.等腰直角三角形有一边长为8cm,则底边上的高是4cm或cm ,面积是16cm2或32cm2.【考点】等腰直角三角形.【分析】分长是8cm的边是腰和底边两种情况进行讨论,利用三角函数以及面积公式即可求解.【解答】解:等腰直角三角形有一边长为8cm,这一边是腰时:底边上的高是:8×=4,面积是:×8×8=32;当长是8cm的这一边是底边时:底边上的高是:8×=4,面积是:×8×4=16.故答案是:4cm或cm;16cm2或32cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.【考点】算术平方根.【分析】根据所给例子,找到规律,即可解答.【解答】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.三、解答题:(共62分)19.(1)+2﹣(﹣);(2)÷×.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=2+2﹣3+=3﹣;(2)原式==.20.先化简,再求值:,其中a=1﹣.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x、y的值代入进行计算即可.【解答】解:原式==,当a=1﹣时,原式==﹣1.21.如图,在△ABC中,AB=AC=BC,高AD=.求AB.【考点】等边三角形的性质.【分析】先判断△ABC为等边三角形,则利用等边三角形的性质得到∠BAC=60°,∠BAD=30°,然后在Rt△ABD中利用含30度的直角三角形三边的关系求AB.【解答】解:∵AB=AC=BC,∴△ABC为等边三角形,∴∠BAC=60°,∵AD为高,∴∠ADB=90°,AD平分∠BAC,∴∠BAD=30°,在Rt△ABD中,∵∠BAD=30°,∴BD=AD=×2=2,∴AB+2BD=4.22.实数a在数轴上的位置如图所示,化简|a﹣2|+.【考点】实数与数轴.【分析】根据数轴先确定a﹣2、a﹣4的正负,然后再去绝对值、根号,合并同类项即可解决问题.【解答】解:根据实数a在数轴上的位置得知:2<a<4,即:a﹣2>0,a﹣4<0,故原式=a﹣2+4﹣a=2.23.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N 岛,求M岛到N岛的距离.【考点】勾股定理的应用;方向角.【分析】根据条件可以证得△BMN是直角三角形,求得BN与BM的长,根据勾股定理即可求得MN的长.【解答】解:根据条件可知:BM=2×8=16(海里),BN=2×6=12(海里).∵∠MBN=180°﹣60°﹣30°=90°,∴△BMN是直角三角形,∴MN===20(海里)答:M岛与N岛之间的距离是20海里.24.已知x,y,z满足|x﹣|+.(1)求x,y,z的值;(2)试判断以x,y,z为三边的△ABC的形状,并说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)直接利用偶次方的性质以及绝对值的性质分别分析得出答案;(2)直接利用勾股定理的逆定理进而分析得出答案.【解答】解:(1)∵|x﹣|+,∴x﹣=0,y﹣5=0,z﹣3=0,解得:x=,y=5,z=3;(2)△ABC为直角三角形,理由:∵()2+(3)2=52,∴以x,y,z为三边的△ABC为直角三角形.。

人教版八年级(下)学期 第一次月考数学试题含答案

人教版八年级(下)学期 第一次月考数学试题含答案一、选择题1.下列运算中,正确的是 ( ) A .53-23=3 B .22×32=6 C .33÷3=3D .23+32=552.下列计算正确的是( ) A .325+= B .1233-=C .326 D .1234÷=3.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .84.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 20205.下列二次根式是最简二次根式的是( ) A .21a +B .15C .4xD .276.下列计算正确的是( ) A .822-=B .321-=C .325+=D .(4)(9)496-⨯-=-⨯-=7.已知226a b ab +=,且a>b>0,则a ba b+-的值为( ) A .2B .±2C .2D .±2 8.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a 9.1x -x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <110.下列计算正确的是( ) A 235=B .332-= C .222= D 393=11.下面计算正确的是( ) A .3+3=33B 273=3C 2?3=5D ()222--12.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题13.已知a ,b 是正整数,且满足15152()a b是整数,则这样的有序数对(a ,b )共有____对. 14.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式) 15.已知函数1x f xx,那么21f _____.16.4102541025-+++=_______. 17.函数y =42xx --中,自变量x 的取值范围是____________. 18.2m 1-1343m --mn =________. 19.已知23x =243x x --的值为_______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.计算: (112﹣133(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可. 试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222224.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn、的式子分别表示a b、,得:a = ,b = ; (2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可; (2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==2(2)-=22=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=233÷3==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).28.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.29.计算:(1;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断. 【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误; 故选:C . 【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.2.B解析:B 【解析】解:A ;B ==;C =;D 2===.故选项错误.故选B.3.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=x<C、当0D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.6.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】 A. 82222=2-=-,正确; B. 32,,不是同类二次根式,不能加减,故本项错误;C. 32,,不是同类二次根式,不能加减,故本项错误;D. (4)(9)49366-⨯-=⨯==,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.7.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴a+b=8ab ,a-b=4ab ,∴a b a b +-=824ab ab=, 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.8.A解析:A【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.9.A解析:A【分析】根据二次根式有意义的条件:被开方数x -1≥0,解不等式即可.解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.11.B解析:B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A A选项错误;B===3,故B选项正确;C==C选项错误;D.2(2)2-==,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.12.A解析:A利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题13.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a =540,b =135时,即2=1; 故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a ,b )共有 7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a 、b 可能的取值.14.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观解析:220400x x x - 【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式===故答案为220400x x x -. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.17.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343n m m -=⎧⎨-=-⎩, 解得,73m n =⎧⎨=⎩, ∴7321.mn =⨯=故答案为21.19.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2016年八年级4月月考数学测试卷及答案

2015-2016学年第二学期第一次月考试卷八 年 级 数 学(满分:100分)一、精心选一选,慧眼识金 (每小题3分,共24分)1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2、x 为何值时,1-x x在实数范围内有意义 ( )A 、x > 1B 、x ≥ 1C 、x < 1D 、x ≤ 1.3、下列计算中正确的是( )A :2222m n m n +=+B :2222a b a b a b -=-=-C :3232⨯=⨯D :()233-=-4、如果最简二次根式38a -与172a -能够合并,那么a 的值为( )A.2B.3C.4D.55、下列各组数不能作为直角三角形的三边长的是( ).A .1.5,2,3B .7,24,25C .6,8,10D .9,12,156、若一个三角形的三边长为3、4、x ,则使此三角形是直角三角形的x 的值是()A 、5B 、 6C 、7D 、5或77.下列给出的条件中,能判定四边形ABCD 是平行四边形的是 ( ).A.AB ∥CD ,AD=BCB.AB=AD ,CB=CDC.AB=CD ,AD=BCD.∠B=∠C ,∠A=∠D 8.如图,在平面直角坐标系中,□ABCD 的顶点,A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A (3,7) B(5,3) C(7,3) D (8,2)二、耐心填一填,一锤定音(每小题2分,共8小题,共16分)9、计算: 2( 3.14)π- = .10、比较大小:(1) 3 5 2 6xA yB C D11、若a 、b 为实数,且011=-++b a ,则2014)(ab 的值为( )12、已知a ,b 为两个连续的整数,且28a b <<,则a b += .13、如图,为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.14、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C,D 的面积之和为___________cm 215、如图,等腰三角形ABC 的一腰AB=4cm ,过底边BC 上的任一点D 作两腰的平行线,分别交两腰与E 、F ,则平行四边形AEDF 的周长是 .16、如图,在 ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF= .三、解答题(共60分)17、计算题(每小题4分,共8分)(1)2484554+-+ (2)2)23()12)(12(-+-+18、(6 分)在Rt △ABC 中,∠C =90°.(1) 已知c =25,b =15,求a;(2) 已知a =6,∠A =60°,求b ,c .19、(6分)已知23,23x y =-=+,求下列代数式的值:(1)222x xy y ++ ;(2)22x y -.5米 3米 13题 图 第14题 第15题第16题20(6)、如图18—18所示,有一个圆柱体,高为12 cm ,底面半径为3 cm ,在圆柱下底面A 处有一只蜘蛛.它想到上底面B 处捉住一只苍蝇,则蜘蛛所走的最短路线长应为多少cm (π取3.0).22、(6分) 如图所示,平行四边形ABCD 中,点E 、F 分别为边AD 与CB 的三等分点,试证明:(1)四边形AFCE 为平行四边形;(2)△ABF ≌△CDE.A BCDE F21、(8分)如图,四边形ABCD 中,AB =3cm ,BC =4cm ,CD =12cm ,DA =13cm ,且∠ABC =90度,求四边形ABCD 的面积。

2016年春季学期八年级下册数学第二次月考

2015-2016学年度第二学期学生学业水平检测数学试卷班级: 姓名: 家长签字: 得分:(本试卷满分:150分,时间:120分钟)一、选择题(每小题3分,共36分)1.(2015•四川南充中考)若m >n ,下列不等式不一定成立的是( )A.m +2>n +2B.2m >2nC.22mn> D.22m n >2. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是( )A .15cmB .16cmC .17cmD .16cm 或17cm3.若三个连续正奇数的和不大于27,则这样的奇数组有 ( )A.3组B.4组C.5组D.6组4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( )A.9>xB.9≥xC.9<xD.9≤x5.给出下列命题,正确的有( )①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个B.2个C.3个D.4个6.满足下列条件的两个三角形一定全等的( )A .腰相等的两个等腰三角形 B.一个角对应相等的两个等腰三角形C .斜边对应相等的两个直角三角形 D.底相等的两个等腰直角三角形7.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y <0时,x 的取值范围是( )A.x <-1B.-1<x <0C.0<x <2D.-1<x <2 8、不等式组的解集在数轴上表示为( )9、若a<b,则下列各式中一定正确的是()A.ab<0 B.ab>0 C.a-b>0 D.-a>-b 10、已知点P()在第一象限,则a的取值范围在数轴上表示正确的是A.B.C.D.11.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆12.如图,在△ABC中,AB=AC,EF∥BC,∠A=40°,则∠AEFA. 4013“x与314、如果>”或“<”号)15的取值范围是.16、“等边对等角”的逆命题是______________________________.“等腰三角形的两腰上的高相等”的逆命题是______________________________17、不等式x<1的正整数解是18、不等式组的解集是X k B 1 . c o m19、等腰三角形的周长为14,其一边长为4,那么,它的底边为20、边长为6cm 的等边三角形中,其一边上高的长度为__________________..21、如图,△ABC 是等边三角形,AD 为BC 边的中线,AD=AE ,求∠EDC 的度数22、 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.23.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,则)3)(3(+-b a 的值等于_______. 24.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 25.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了_______支.三、解答题(共72分)26.((本小题5分))解不等式并将结果表示在数轴上。

数学新人教版八年级下学期第一次月考试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(请选出一个正确的答案填在相应的答题框里,每小“题3分,共30分)1.计算×的结果是()A.B.4C.D.22.下列二次根式中的最简二次根式是()A.B.C.D.3.若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠14.下列各式:①+3=;②=1;③+==2;④=2,其中错误的有()A.3个B.2个C.1个D.0个5.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1B.1C.2a﹣3D.3﹣2a6.下列根式中,不能与合并的是()A.B.C.D.7.估计的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间8.如图,正方形小方格边长为1,则网格中的△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8D.2,3,410.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.B.3C.+2D.二、填空题(把正确的答案填在横线上,每小题3分,共30分)11.计算﹣3=.12.若实数a、b满足|a+2|,则=.13.若一个长方体的长为,宽为,高为,则它的体积为cm3.14.若的整数部分是a,小数部分是b,则=.15.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.16.等腰三角形腰长13cm,底边长10cm,则底边上的高为cm.17.一直角三角形的两边长分别为4和5,那么另一条边长的平方等于.18.直角三角形两直角边长分别为5和12,则它斜边上的高为.20.在△ABC中,AB=8cm,BC=15cm,要使△B=90°,则AC的长必为cm.三、解答题(21、22、23每题6分,24-27每题8分,共50分)21.作图题:在数轴上作出表示的点.(保留作图痕迹,不写作法,但要作答)22.计算:23.计算:×﹣×(1﹣)0.24.先化简,再求值:,其中,a=1+,b=1﹣.25.从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?26.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且△ABC=90°,试求△A的度数.27.如图,在△ABC中,AB=26,BC=20,边BC上的中线AD=24.求AC.四、综合题28.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.-学年甘肃省定西市安定区公园路中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(请选出一个正确的答案填在相应的答题框里,每小“题3分,共30分)1.计算×的结果是()A.B.4C.D.2【考点】二次根式的乘除法.【分析】直接利用二次根式的乘法运算法则求出即可.【解答】解:×==4.故选:B.2.下列二次根式中的最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A3.若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:△代数式+有意义,△,解得x≥0且x≠1.故选D.4.下列各式:①+3=;②=1;③+==2;④=2,其中错误的有()A.3个B.2个C.1个D.0个【考点】二次根式的混合运算.【分析】根据二次根式的加减法对①②进行判断;根据最简二次根式的定义对③进行判断;根据二次根式的除法对④进行判断.【解答】解:3与3不能合并,所以①错误;是最简二次根式,所以②错误;与不能合并,所以③错误;==2,所以④正确.故选A.5.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1B.1C.2a﹣3D.3﹣2a【考点】二次根式的性质与化简.【分析】利用a的取值范围,进而去绝对值以及开平方得出即可.【解答】解:△1<a<2,△+|1﹣a|=2﹣a+a﹣1=1.故选:B.6.下列根式中,不能与合并的是()A.B.C.D.【考点】同类二次根式.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.7.估计的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【考点】估算无理数的大小.【分析】应先化简求值,再进行估算即可解决问题.【解答】解:=,的数值在1﹣2之间,所以的数值在3﹣4之间.故选C.8.如图,正方形小方格边长为1,则网格中的△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:△正方形小方格边长为1△BC==,AC==,AB==2△在△ABC中AB2+AC2=52+13=65,BC2=65△AB2+AC2=BC2△网格中的△ABC是直角三角形.故选A.9.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.10.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.B.3C.+2D.【考点】勾股定理;含30度角的直角三角形.【分析】根据直角三角形的性质及勾股定理即可解答.【解答】解:如图所示,Rt△ABC中,△B=60°,AB=1,则△A=90°﹣60°=30°,故BC=AB=×1=,AC===,故此三角形的周长是.故选D.二、填空题(把正确的答案填在横线上,每小题3分,共30分)11.计算﹣3=.【考点】二次根式的加减法.【分析】原式各项化为最简二次根式,合并即可得到结果.【解答】解:原式=2﹣3×=2﹣=.故答案为:.12.若实数a、b满足|a+2|,则=1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.13.若一个长方体的长为,宽为,高为,则它的体积为12cm3.【考点】二次根式的乘除法.【分析】首先根据正方体的体积列出计算式,然后利用二次根式的乘除法法则计算即可求解.【解答】解:依题意得,正方体的体积为:2××=12cm3.故答案为:12.14.若的整数部分是a,小数部分是b,则=1.【考点】估算无理数的大小.【分析】因为,由此得到的整数部分a,再进一步表示出其小数部分b.【解答】解:因为,所以a=1,b=.故===1.故答案为:1.15.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有24米.【考点】勾股定理的应用.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.故答案为:24.16.等腰三角形腰长13cm,底边长10cm,则底边上的高为12cm.【考点】勾股定理;等腰三角形的性质.【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解答】解:如图:AB=AC=13cm,BC=10cm.△ABC中,AB=AC,AD△BC;△BD=DC=BC=5cm;Rt△ABD中,AB=13cm,BD=5cm;由勾股定理,得:AD==12cm.17.一直角三角形的两边长分别为4和5,那么另一条边长的平方等于41或9.【考点】勾股定理.【分析】分两种情况:①当5和4为直角边长时;②5为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当5和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=52+42=41;②5为斜边长时,由勾股定理得:第三边长的平方=52﹣42=9;综上所述:第三边长的平方是41或9;故答案为:41或9.18.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.20.在△ABC中,AB=8cm,BC=15cm,要使△B=90°,则AC的长必为17cm.【考点】勾股定理.【分析】根据勾股定理即可解答.【解答】解:AC==17cm.三、解答题(21、22、23每题6分,24-27每题8分,共50分)21.作图题:在数轴上作出表示的点.(保留作图痕迹,不写作法,但要作答)【考点】作图—代数计算作图;实数与数轴.【分析】因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.【解答】解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.22.计算:【考点】二次根式的加减法.【分析】在二次根式的加减运算中,先对各个二次根式化成最简二次根式,再把同类二次根式合并.【解答】解:原式===14.23.计算:×﹣×(1﹣)0.【考点】二次根式的混合运算;零指数幂.【分析】根据零指数的定义以及二次根式化简的法则进行化简即可.【解答】解:原式=﹣×1=2﹣=.24.先化简,再求值:,其中,a=1+,b=1﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可【解答】解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.25.从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?【考点】勾股定理的应用.【分析】仔细分析该题,可画出草图,关键是旗杆高度、绳子长及绳子下端距离旗杆底部8米这三线段长可构成一直角三角形,解此直角三角形即可.【解答】解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.26.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且△ABC=90°,试求△A的度数.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出A的C,再△ADC中利用勾股定理逆定理得到△CAD=90°,进而求出△A的度数.【解答】解:连接AC,△AB=BC=2,且△ABC=90°,△且△CAB=45°,又△AD=1,CD=3,△AD2+AC2=CD2△△CAD=90°,△△A=△CAD+△CAB=135°.27.如图,在△ABC中,AB=26,BC=20,边BC上的中线AD=24.求AC.【考点】勾股定理的逆定理;等腰三角形的性质.【分析】在△ABD中,已知AB,AD,BD的长可以判定△ABD为直角三角形,根据高线与中线重合可判定△ABC为等腰三角形,即AC=AB.【解答】解:在△ABD中,△AB=26,AD=24,△BD=CD=BC=10,△满足AB2=AD2+BD2△△ABD为直角三角形,即AD△BC,又△BD=DC,D为BC的中点,△△ABC为等腰三角形,即AC=AB=26.答:AC的长为26.四、综合题28.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.【考点】分母有理化.【分析】观察问题中的三个式子,不难发现规律:用平方差公式完成分母有理化.【解答】解:(1)原式==;(2)原式==;(3)原式==.2016年4月18日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
新坪中学2016年春季学期4月份月考试题
八年级数学
一、选择题(每小题3分,共36分) 1、 使
1-x 有意义的x 的取值范围是( )
A. x ≥ 1
B. x ≠1
C. x >0
D. x ≥0且x ≠1 2、下列式子中,属于最简二次根式的是( ) A.
9 B.
7 C. 20 D.
3
1 3、以下列各组数为边长的三角形是直角三角形的是( ) A. 1、2、3 D. 6、7、8 C. 1、1、3 D. 9、12、15 4、若n 24是正整数,最小的整数n 是( )
A. 6
B. 3
C. 4
D.2
5、在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ) A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2
6、菱形具有而平行四边形不一定具有的性质是( ) A.两组对边分别平行 B. 对角线互相垂直 C. 两组对角分别相等 D.对角线互相平分
7、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :5 B :4 C :3 D :7
8、 已知AC ,BD 是平行四边形ABCD 的对角线,若增加一个条件事使四形ABCD 是矩形,则增加的条件是 ( )
A. AC ⊥BD B .AB=BC C. AD=2CD9、如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则A.10
B.12
C.13
D.15
10、如图,已知一根长8m 的竹杆在离地3m 抵着地面,此时,顶部距底部有 m
A.8
B.4
C.3
D.11
11、如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线EF 交对角线A C 于点F 、E 为垂足,连结DF ,则∠CFD 等
于( )A .80° B .70° C .65° D .60° 12、 如图四边形ABCD 是正方形,以CD 为边作等边三角形
CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( ) A 、75° B 、60° C 、54° D 、67.5° 二、填空题:(每小题3分,共18分) 13、化简:=-2)4(_= .
14、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 (填“合格”或“不合格”).;
15、 若正方形的面积为4cm 2,则正方形对角线长为________cm 。

16、若x,y 满足|x-2|+6+y =0,则x+y 值为 .
17、如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 . 18、如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2016的直角顶点的坐标为 .
三、解答题(共66分)
19、计算:(每小题4分)(1)3188-+ (2) 24122
1
348+⨯-
÷
20、(8分)已知:a=15+,b=15-求下列各式的值;
(1)(a+b)(a –b) ; (2)2
211b a +
18题图 17题图
C
B
A
D
21、(6分)如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积。

22、(6分) 如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,经过点O 的直
线交AB 于E ,交CD 于F. 求证:OE=OF.
23、(8分)如图,将矩形纸片折叠,先折出折痕(对角线)BD ,再折使AD 边与对角线BD 重合,A 点落到A ’处,得折痕DG ,若AB=2,BC=1,求AG 的长.
24、 (8分)如图所示,在海上观察所A,我边防海警发现正北6km 的B 处有一可疑船
只正在向东方向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?
25、(10分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=2
1
BC ,
连结DE ,CF 。

(1)求证:四边形CEDF 是平行四边形; (2)若AB=4,AD=6,∠B=60°,求DE 的长。

26、 (12分)已知:如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F
分别是线段BM ,CM 的中点. (1)求证:△ABM ≌△DCM ;
(2)判断四边形MENF 是什么特殊四边形,并证明你的结论; (3)当AD ∶AB = 时,四边形MENF 是正方形
O F E
D C B
A
8km
C
A
B
6km。

相关文档
最新文档