八年级下册一次函数例题
初中数学八年级下册-一次函数专项练习题

初中数学八年级下册-一次函数专项练习题一.解答题(共12小题)1.抗战救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食全部转移到具有较强抗震功能的A、B两仓库,已知甲库有粮食80吨,乙库有粮食100吨,而A库的容量为110吨,B库的容量为70吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20 15 13 12B库25 20 10 8(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B 两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?2.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.20 30薄板的边长(cm)出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)40cm的薄板,获得的利润是26元(利润=出厂价﹣成本价).①求一张薄板的利润与边长之间满足的函数关系式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?3.某商店购进A型和B型两种电脑进行销售,已知B型电脑比A型电脑的每台进价贵500元,若商店用3万元购进的A型电脑与用4.5万元购进的B型电脑的数量相等.A型电脑每台的售价为1800元,B型电脑每台的售价为2400元.(1)求A、B两种型号的电脑每台的进价各是多少元?(2)该商店计划用不超过12.5万元购进两种型号的电脑共100台,且A型电脑的进货量不超过B型电脑的.①该商店有哪几种进货方式?②若该商店将购进的电脑全部售出,请你用所学的函数知识求出获得的最大利润.4.在“五•一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.(1)求购进A、B两种品牌服装的单价;(2)该网站拟以不超过1120元的总价购进这种两品牌服装共100件,并全部售出.其中A种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?5.已知A市出租车原收费标准如下:不超过3km的路程按起步价10元收费,超过3km以外的路程按2.4元/km收费.为了减少出租车空车返回的损失,现A市决定实施返空费方案,设出租车行驶的路程为xkm,具体方案如下:当0<x≤20时,按原收费标准收费;当x>20时,在原收费标准基础上,再加收0.01x元/km.例如,当出租车行驶了50km时,收费总额为:2.4×(50﹣3)+10+(0.01×50)×(50﹣20)=137.8(元).(1)A市实施返空费方案后,当x>20时,求收费总额y (元)与x(km)的函数关系式;(2)自4月1日起,南京市实施的返空费方案是:不超过20km的路程,与A市的原收费标准相同;超过20km以外的路程,按原单价2.4元/km的1.5倍收费.若行驶路程x超过20km,分别按两市返空费方案计算,当收费总额相同时,求x的值.6.甲、乙两个工程队共同开凿一条隧道,甲对按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队遇到碎石层,工作效率降低,当乙队完成碎石层时恰好隧道被打通,此时甲对工作了50天.设甲、乙两队各自开凿隧道的长度为y(米),甲对的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率;(2)求乙队在碎石层施工时y与x之间的函数关系式;(3)求这条隧道的总长度.7.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x (h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x 的取值范围.8.小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发xmin后距出发点的距离为ym.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(1)A点所表示的实际意义是;= ;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?9.(扬州)某84消毒液工厂,去年五月份以前,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(五月份以30天计算)(1)该厂月份开始出现供不应求的现象.五月份的平均日销售量为箱;(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:型号 A B价格(万元/台)28 25日产量(箱/台)50 40请设计一种购买设备的方案,使得日产量最大;(3)在(2)的条件下(市场日平均需求量与5月相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存?10.(湖北)在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走.为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高.这样每天生产的服装数量y(套)与时间x(元)的关系如下表:时间x(天) 1 2 3 4 …每天产量y(套)22 24 26 28 …由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.(1)判断每天生产的服装的数量y(套)与生产时间x (元)之间是我们学过的哪种函数关系?并验证.(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?(3)从第6天起,该厂决定该车间每销售一套服装就捐a 元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?11.(夏津县一模)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)4000 2500售价(元/部)4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.12.(保定一模)小明妈妈,每天需赶头班公交车,驶往终点站.离他家最近的公交站点离终点站15km,一天他妈妈从家步行到公交站点,恰好赶上头班公交车,上车后才发现有重要物品落在家中,急忙通知小明将物品送到终点站,这时妈妈已上车5min,小明马上取了东西,用时6min 赶到妈妈上车的公交站点,乘坐刚好路过的出租车,沿公交车的线路驶往公交车的终点站,结果比公交车早4min到达,出租车与小明一起等候公交车.若公交车,出租车均视为全程匀速行驶,出租车的速度为60km/h(即:1km/min).设妈妈所乘公交车离开她上车的站点的时间为t (min),小明上车后,小明所乘出租车距妈妈上车的公交站点的路程为S1(km),妈妈所乘的公交车与小明所乘出租车之间相距的路程为S(km)(1)求S1与t之间的函数关系式,并写出t的取值范围;(2)写出11≤t≤30,S与t之间的函数关系式;(3)公交车到达终点之前,经多长时间两车相距500m.参考答案:1.解:(1)由题意,得y=20×13x+25×10(80﹣x)+15×12×(110﹣x)+20×8×(x﹣10),y=﹣10x+38200.答:y与x之间的关系式为y=﹣10x+38200;(2)由题意,得,解得:10≤x≤80.∵y=﹣10x+38200.∵k=10<0,∵当x=80时.y最小=37400.∵甲库运往A库粮食80吨,则甲仓库运往B库粮食0吨,乙仓库运往A库30吨,乙仓库运往B库70吨,总运费最省,最省的总运费是37400元.2.解:(1)设一张薄板的边长为xcm,它的出厂价为y 元,基础价为n元,浮动价为kx元,则y=kx+n.由表格中的数据,得,解得k=2,n=10,所以y=2x+10;(2)①设一张薄板的利润为p元,它的成本价为mx2元,由题意,得:p=y﹣mx2=2x+10﹣mx2,将x=40,p=26代入p=2x+10﹣mx2中,得26=2×40+10﹣m×402.解得m=.所以p=﹣x2+2x+10.②因为a=﹣<0,所以,当x=﹣=﹣∵25(在5~50之间)时,p最大值===35.即出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.3.解:(1)设A型电脑每台的进价为a元,则B型电脑每台的进价为(a+500)元,根据题意得:=,解得:a=1000,经检验a=1000是分式方程的解,且满足题意,则A型电脑每台进价为1000元,B型电脑每台进价为1500元;(2)设该商店购进A型电脑x台,则购进B型电脑(100﹣x)台,所获的利润为W元,根据题意得:W=(1800﹣1000)x+(2400﹣1500)(100﹣x)=﹣100x+90000,且,解得:50≤x≤54,①有5种方案:A型5051525354B型5049484746;②∵k=﹣100<0,∵W随x的增大而减小,当x=50时,W有最大值,为85000,则获得最大利润为85000元.4.解:(1)设购进A、B两种品牌服装的单价为x元,y 元,可得:,解得:,答:购进A、B两种品牌服装的单价为100元;120元;(2)设购进A种服装z件,则B种服装是(100﹣z)件,可得:w=(150﹣100)z+(200﹣120)(100﹣z)整理得:w=﹣30z+8000,因为k=﹣30<0,所以w的最大值为8000,因为该网站拟以不超过11200元的总价购进这种两品牌服装,可得:,解得:z=40.答:分别购进A、B两种品牌服装各40,60件,所获取的最大利润是8000元.5.解:(1)A市实施返空费方案后,当x>20时,收费总额y(元)与x(km)的函数关系式为:y=2.4×(x﹣3)+10+0.01x(x﹣20)=0.01x2+2.2x+2.8;(2)当x>20时,南京市收费总额y(元)与x(km)的函数关系式为:y=10+2.4×(20﹣3)+2.4×1.5×(x﹣20)=3.6x﹣21.2,当收费总额相同时,即0.01x2+2.2x+2.8=3.6x﹣21.2,整理得:x2﹣140x+2400=0,即(x﹣120)(x﹣20)=0,解得:x1=120,x2=20,∵x>20,∵x=120,即当收费总额相同时,x=120.6.解:(1)720÷36=20,∵甲队的工作效率为20米/天;(2)设乙队在碎石层施工时y与x之间的函数关系式为y=kx+b,将点A(21,480)、B(36,720)代入,得,解得:,∵乙队在碎石层施工时y与x之间的函数关系式为y=16x+144;(3)20×50+16×50+144=1944;∵这条隧道的总长度为1944米.7.解:(1)由函数图象,得A、B两地之间的距离为:30.故答案为:30;(2)设AB的解析式为y甲=k1x+b,由题意,得,解得:,∵y甲=﹣15x+30;设OC的解析式为y乙=k2x,由题意,得k2=30,∵y乙=30x设CB的解析式为y乙=k3x+b3,由题意,得,解得:y乙=﹣30x+60∵y乙=.当y甲=y乙时,得﹣15x+30=30x,解得,得.∵y甲=y乙=20∵点M的坐标是(,20).∵M的坐标表示:甲、乙经过h第一次相遇,此时离点B的距离是20km;(3)分三种情况讨论:①当y甲﹣y乙≤3或y乙﹣y甲≤3时,,解得:≤x≤;②当(﹣30x+60)﹣(﹣15x+30)≤3时x≥,∵≤x≤2综上可得:≤x≤或≤x≤2时,甲、乙两人能够有无线对讲机保持联系.8.解:(1)根据M点的坐标为(2,0),则小亮上坡速度为:=240(m/min),则下坡速度为:240×1.5=360(m/min),故下坡所用时间为:=(分钟),故A点横坐标为:2+=,纵坐标为0,得出实际意义:小亮出发分钟回到了出发点;==.故答案为:小亮出发分钟回到了出发点;.(2)由(1)可得A点坐标为(,0),设y=kx+b,将B(2,480)与A(,0)代入,得:,解得.所以y=﹣360x+1200.(3)小刚上坡的平均速度为240×0.5=120(m/min),小亮的下坡平均速度为240×1.5=360(m/min),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).(或求出小刚的函数关系式y=120x,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.)9.解:(1)该厂6月份开始出现供不应求的现象;五月份的平均日销售量==830箱;(2)设A型x台,则B型为(8﹣x)台,由题意得:,解得,∵x为整数,∵x=1,2,3,4,5,6,日产量w=500+50x+40(8﹣x)=10x+820,∵10>0,∵w随x的增大而增大,当x=6时,w最大为880箱,(3)设6月6日开始的x天后该厂开始有库存,由题意得:880x﹣830x﹣5×330>0,解得x>33,故7月9日开始该厂有库存.10.解:(1)由表格知,y是x的一次函数设y=kx+b则,∵;∵y=2x+20;检验:当x=3时,y=2×3+20=26,当x=4时,y=2×4+20=28,∵(3,26),(4,28)均满足y=2x+20;(2)由题意得:z=400(1≤x≤5的整数),当6≤x≤12的整数时,设z=k′x+b′,∵.∵,∵z1=40x+200;当1≤x≤5时.W1=(2x+20)(1570﹣400),即W1=2340x+23400,∵2340>0,∵W1随x的增大而增大.∵x=5时,W1最大=2340×5+23400=35100(元),当6≤x≤12时,W2=(2x+20)(1570﹣40x﹣200)=(2x+20)(1370﹣40x),即W2=﹣80x2+1940x+27400,∵﹣80<0,∵开口向下对称轴x=﹣=12,在对称轴的左侧,W2随x的增大而增大.∵当x=12时,W2最大=39160(元)∵39160>35100,∵第12天获得最大利润为39160元;(3)设捐款a元后的利润为Q(元)∵6≤x≤12,∵Q=(2x+20)(1570﹣40x﹣200﹣a)=(2x+20)(1370﹣2a)x+27400﹣20a,∵﹣80<0,开口向下,对称轴x=,在对称轴的左侧,Q随x的增大而增大.∵≥12,∵a≤10,∵a的最大值是10,共得到基金(32+34+36+38+40+42+44)×10=2660(元).11.解:(1)设该商场计划购进甲种手机x部,乙种手机y 部,由题意得,解得.答:该商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加3a部,由题意得4000(20﹣a)+2500(30+3a)≤172500解得a≤5设全部销售后的毛利润为w元.则w=300(20﹣a)+500(30+3a)=1200a+21000.∵1200>0,∵w随着a的增大而增大,∵当a=5时,w有最大值,w最大=1200×5+21000=27000答:当商场购进甲种手机15部,乙种手机45部时,全部销售后毛利润最大,最大毛利润是2.7万元.12.解:(1)∵小明上车时妈妈的公交车已经行驶(5+6)min,妈妈所乘公交车离开她上车的站点的时间为t (min),∵出租车的速度为1km/min,离他家最近的公交站点离终点站15km,∵出租车到达终点时的时间t=15min,此时t=15+11=26min,∵S1=1×(t﹣5﹣6)=t﹣11,即S1=t﹣11(11≤t≤26);(2)∵出租车到达终点时的时间t=15min,并比公交车早4min到达,∵公交车用的时间为:15+6+4+5=30min,∵公交车的速度==0.5km/s,用S2(km)表示公交车距妈妈上车的公交站点的路程,则S2=0.5t(0≤t≤30),当出租车追上公交车时,由S1=S2解得:所用时间t1=22s,∵当t≤22s时,S2≥S1,S=S2﹣S1=11﹣0.5t,当22<t≤26s时,S2<S1,S=S1﹣S2=0.5t﹣11,当26<t≤30s时,出租车停在终点,S=15﹣S2=15﹣0.5t.(3)∵S=500m=0.5km,当t≤22s时,由S=11﹣0.5t=0.5解得t=21s,符合条件,当22<t≤26s时,由S=0.5t﹣11=0.5解得t=23s,符合条件,当26<t≤30s时,由S=15﹣0.5t=0.5解得t=29s,符合条件,综上所述,公交车到达终点之前,经21秒或29秒或23秒两车相距500m.。
八年级下册数学一次函数练习题及答案

八年级下册数学一次函数练习题及答案一、选择题1.若实数a,b,c满足a+b+c=0,且 a2.把函数y=-2x+3的图象向下平移4个单位后的函数图象的解析式为A.y=-2x+7B.y=-6x+3C.y=-2x-1D.y=-2x-5.A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A,B,下列结论正确的是A.a>0B.a 二、填空题4.已知一次函数y=kx+b的图象经过点A,B两点,则k 0.5.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.6.若一次函数y=x+3-2m的图象经过第一、二、四象限,则m的取值范围是 .三、解答题7.如图,一次函数y=x-m+1的图象分别与x轴,y轴的负半轴相交于点A,B.求m的取值范围.若该一次函数向上平移2个单位就过原点,求m的值.8.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=240.求△ABP的面积.9.已知一次函数y=x-+1,问:m为何值时,函数图象过原点?m为何值时,函数图象过点?m为何值时,函数图象平行于直线y=2x?1234一次函数练习--1一、填空题1、已知m是整数,且一次函数y?x?m?2的图象不过第二象限,则m为2、若直线y??x?a和直线y?x?b的交点坐标为,则a?b?3、在同一直角坐标系内,直线y=x+3与直线y=-2x+3都经过点4、当m满足时,一次函数y=-2x+2m-5的图象与y轴交于负半轴.n5、若y=x2?n?1是正比例函数,则n的值是6、函数y=x+4中,若自变量x的取值范围是-37、当a= 时,函数y=x2+ax-2是一次函数.8、长方形的长为3cm,宽为2cm,若长增加xcm,则它的面积S与x 之间的函数关系式是,它是函数m?m?1?m2?1,当m= 时, 它是正比例函数,、已知函数y=mx2这个正比例函数的关系式为;当m= 时,它是一次函数,这个一次函数的关系式为10、把函数y=2x的图象沿着y轴向下平移3个单位,得到的直线的解析式为11、两条直线L1∥L2.l1:y?a13x?b,l2:y?x?425中,当a ,b 时,12、函数y?3x?12,如果y?0,那么x的取值范围是13、一个长120m,宽100m的矩形场地要扩建成一个正方形场地,设长增加xm,宽增加ym,则y与x的函数关系是.自变量的取值范围是.且y是x的函数.1y??x?5214、如图1是函数的一部分图像,自变量x的取值范围是当x取时,y的最小值为在中x的取值范围内,y随x的增大而15、已知函数y=x+k2-1,当k时,它是一次函数,当k=时,它是正比例函数.16、已知一次函数y?kx?b的图象经过点,且它与y轴的交点和xy32直线与y轴的交点关于x轴对称,那么这个一次函数的解析式为17、一次函数y?kx?b的图象过点和两点,且m?1,则 k?,b的取值范围是18、b为时,直线y?2x?b与直线y?3x?4的交点在x 轴上.19、已知直线y?4x?2与直线y?3m?x的交点在第三象限内,则m的取值范围是二、选择题1、下列函数中,y是x的一次函数的是………………………….A、y=2x2+1B、y=x-1+1C、y=-2D、y=22、下列关于函数的说法中,正确的是……………………………A、一次函数是正比例函数B、正比例函数是一次函数C、正比例函数不是一次函数D、不是正比例函数的就不是一次函数3、若函数y=x2+x是正比例函数,则…2121A、m=B、m=C、m>D、m 84、下列函数:①y=-8x;②y=x;③y=8x2;④y=8x+1;⑤y= .其中是一次函数的有………………………………………………………A、1个B、2个C、3个D、4个m?1x5、若函数y=+x+3是一次函数,则m的值为….A、3B、1C、D、3或16、过点A,且与直线y=5x平行的直线是………………..A、y=5x+B、y=5x-C、y=-5x+D、y=-5x-27、将直线y=3x-2平移后,得到直线y=3x+6,则原直线……..A、沿y轴向上平移了8个单位B、沿y轴向下平移了8个单位C、沿x轴向左平移了8个单位D、沿x轴向右平移了8个单位8、汽车由天津开往相距120km的北京,若它的平均速度是60km/h, 则汽车距北京的路程s与行驶时间t之间的函数关系式是…………………………………………………………….A、s=60tB、s=120-60tC、s=tD、s=120+60t9、图3中,表示一次函数y?mx?n与正比例函数y?mx 的图象的是……………………………………..10、直线y?kx?b经过一、二、四象限,则直线y?bx?k 的图象只能是图4中的…………………………………………………….k111、若直线y?k1x?1与y?k2x?4的交点在x轴上,那么k2等于…A.B.? C.11D.?12、直线px?qy?r?0如图5,则下列条件正确的是…..A.p?q,r?1B.p?q,r?0C.p??q,r?1D.p??q,r?013、直线y?kx?b经过点A,B,则必有………………………………….A. k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?0aac?0y??x?bb不通过……………..14、如果ab?0,c,则直线A、第一象限B、第二象限C、第三象限D、第四象限15、已知关于x的一次函数y?mx?2m?7在?1?x?5上的函数值总是正数,则m的取值范围是………………………………………A、m?B、m?1C、1?m?D、都不对16、如图,两直线y1?kx?b和y2?bx?k在同一坐标系内图象的位置可能是……………………………………………………………17、已知一次函数y?2x?a与y??x?b的图像都经过A,且与y轴分别交于点B,c,则?ABC的面积为………………………A、 B、5C、D、718、已知直线y?kx?b与x轴的交点在x轴的正半轴,下列结论:① k?0,b?0;②k?0,b?0;③k?0,b?0;④k?0,b?0,其中正确的个数是……………………………………………………..A、1个B、2个C、3个D、4个b?ca?ca?bkabc19、已知,那么y?kx?b的图象一定不经过……………………………………………………….A、第一象限B、第二象限C、第三象限D、第四象限20、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发x小时,距A站y千米,则y与x 之间的关系可用图象表示为。
八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
初二一次函数经典例题

初二一次函数经典例题
1. 题目描述
小明是初二学生,最近在学习一次函数的知识。
他遇到了下面这个经典的一次
函数例题:
已知函数关系式y=2x+3,求当x=4时,所对应的y的值。
2. 解题思路
要解决这个问题,我们需要使用一次函数的关系式y=kx+b求解。
对于已知
的函数关系式y=2x+3,我们可以得到k=2和b=3。
要求当x=4时,所对
应的y的值,我们只需要将x的值代入函数关系式中即可。
将x=4代入y=2x+3中:
$y = 2 \\times 4 +3 = 8 + 3 = 11$
所以,在x=4时,y的值为 11。
3. 答案验证
为了验证我们的解答是否正确,我们可以直接将x=4和y=11代入原始的函数关系式y=2x+3中进行检验。
将x=4和y=11代入y=2x+3中:
$11 = 2 \\times 4 + 3 = 8 + 3 = 11$
因此,我们的解答是正确的。
4. 结论
根据题目中的已知条件,我们成功求得了当x=4时,所对应的y的值为 11。
通过验证,我们确认了解答的正确性。
这个例题是一次函数的经典例题,通过解答这个例题,我们巩固了一次函数的
知识,并学会了如何求解一次函数中的未知数。
在学习数学的过程中,经典例题的练习对提高我们的解题能力和思考能力至关重要。
希望通过这个例题的解答,能够对初二学生理解一次函数的概念和运用有所帮助。
以上是本文档对初二一次函数经典例题的解答与分析。
希望能对读者有所帮助!。
八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
人教版初中八年级数学下册第十九章《一次函数》经典题(含答案解析)

一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟3.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.4.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<32B.32<x<6 C.32<x<4 D.0<x<35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C.20210x yy x-+=⎧⎨--=⎩D.2010x yy x++=⎧⎨+-=⎩6.如图,A、M、N三点坐标分别为A(0,1),M(3,4),N(5,6),动点P从点A 出发,沿y轴以每秒一个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒,若点M、N分别位于l的异侧,则t的取值范围是()A .611t <<B .510t <<C .610t <<D .511t <<7.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-11.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .12.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④13.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量14.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题16.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.17.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.18.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.19.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.20.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.21.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.22.如表,y 是x 的一次函数,则m 的值为_____________.x 1-0 1 y 3m23.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.26.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题27.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.28.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.29.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )生长年数n/年12345青甘杨树苗高度/cmh125160195230(1)第5年树苗可能达到的高度为_______cm.(2)请用含n的代数式表示高度h.(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度.30.综合与探究如图1,一次函数162y x=-+的图象交x轴、y轴于点A,B,正比例函数12y x=的图象与直线AB交于点(),3C m.(1)求m的值并直接写出线段OC的长;(2)如图2,点D在线段OC上,且与O,C不重合,过点D作DE x⊥轴于点E,交线段CB于点F.请从A,B两题中任选一题作答.我选择题____题.A.若点D的横坐标为4,解答下列问题:①求线段DF的长;②点P是x轴上的一点,若PDF的面积为CDF面积的2倍,直接写出点P的坐标;B.设点D的横坐标为a,解答下列问题:①求线段DF的长,用含a的代数式表示;②连接CE,当线段CD把CEF△的面积分成1:2的两部分时,直接写出a的值.。
2024八年级数学下册第十九章一次函数19
19.2.3 一次函数与方程、不等式01基础题学问点1一次函数与一元一次方程一元一次方程kx+b=0(k≠0,k,b为常数)的解即为函数y=kx+b的图象与x轴的交点的横坐标;反之,函数y=kx+b的图象与x轴的交点的横坐标即为方程kx+b=0的解.1.若直线y=kx+b的图象经过点(1,3),则方程kx+b=3的解是x=(A)A.1 B.2 C.3 D.42.若方程ax+b=0的解是x=-2,则图中肯定不是直线y=ax+b的是(B)A B C D3.(2024·邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4).结合图象可知,关于x的方程ax+b=0的解是x=2.学问点2一次函数与一元一次不等式一元一次不等式kx+b>0(或kx+b<0)的解集,从“数”的角度看,就是一次函数y=kx+b的函数值大于0(或小于0)时相应的自变量x的取值范围;从“形”的角度看,就是一次函数的图象在x轴上方(或下方)时,相应的自变量x的取值范围.4.(2024·遵义)如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是(B )A .x >2B .x <2C .x ≥2D .x ≤25.一次函数y =kx +b 的图象如图所示,则不等式kx +b <0的解集为x <1.第5题图 第6题图6.如图,函数y =ax -1的图象过点(1,2),则不等式ax -1>2的解集是x >1.学问点3 一次函数与二元一次方程(组)一般地,每个含有未知数x 和y 的二元一次方程,都可以改写成y =kx +b(k ,b 是常数且k ≠0)的形式,所以它都对应一个一次函数,也就是一条直线.这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.方程组⎩⎪⎨⎪⎧y =ax +b ,y =mx +n 的解是函数y =ax +b 与函数y =mx+n 的图象的交点坐标,画出这两个一次函数的图象,找出它们的交点,即可得到相应的二元一次方程组的解.7.如图,一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎪⎨⎪⎧y =k 1x +b 1,y =k 2x +b 2的解是(A )A.⎩⎪⎨⎪⎧x =-2y =3B.⎩⎪⎨⎪⎧x =3y =-2 C.⎩⎪⎨⎪⎧x =2y =3D.⎩⎪⎨⎪⎧x =-2y =-38.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请你干脆写出它的解;(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.解:(1)b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)直线y =nx +m 也经过点P.理由: ∵点P (1,2)在直线y =mx +n 上, ∴m +n =2,即2=n ×1+m.∴这说明直线y=nx+m也经过点P.02中档题9.如图是直线y=x-5的图象,点P(2,m)在该直线的下方,则m的取值范围是(D)A.m>-3B.m>-1C.m>0D.m<-310.已知一次函数y=kx+b的图象如图所示,则下列推断中不正确的是(A) A.方程kx+b=0的解是x=0B.k>0,b>0C.当x<-3时,y<0D.y随x的增大而增大第10题图第12题图11.(2024·遵义期末)函数y=2x和y=ax+4的图象相交于点A(m,3),则依据图象可得关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =0,ax -y +4=0的解是⎩⎪⎨⎪⎧x =32y =3.12.(2024·白银)如图,一次函数y =-x -2与y =2x +m 的图象相交于点P(n ,-4),则关于x 的不等式组⎩⎪⎨⎪⎧2x +m<-x -2,-x -2<0的解集为-2<x <2.13.在同一平面直角坐标系内画一次函数y 1=-x +4和y 2=2x -5的图象,依据图象求:(1)方程-x +4=2x -5的解;(2)当x 取何值时,y 1>y 2?当x 取何值时,y 1>0且y 2<0?解:如图.(1)由图可知,一次函数y 1=-x +4和y 2=2x -5的图象相交于点(3,1), ∴方程-x +4=2x -5的解为x =3. (2)当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.14.如图,已知直线y =kx +b 经过点A(5,0),B(1,4).(1)求直线AB 的解析式;(2)若直线y =2x -4与直线AB 相交于点C ,求点C 的坐标; (3)依据图象,写出关于x 的不等式2x -4>kx +b 的解集.解:(1)∵直线y =kx +b 经过点A (5,0),B (1,4),∴⎩⎪⎨⎪⎧5k +b =0,k +b =4,解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AB 的解析式为y =-x +5.(2)联立⎩⎪⎨⎪⎧y =-x +5,y =2x -4,解得⎩⎪⎨⎪⎧x =3,y =2. ∴C (3,2).(3)依据图象可得x >3. 03 综合题15.甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设y 2=kx +b (k ≠0),依据题意,得⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10. ∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5. ∴甲追上乙用了5 s.。
八年级数学下册一次函数经典题型
八年级数学下册一次函数经典题型Revised on July 13, 2021 at 16:25 pm函数的定义1.下列各图给出了变量x与y之间的函数是:1x2+7;321+=xy;42-=xy.2.求下列函数中自变量x的取值范围:1y=-2x-5x2;3y=xx+3;336+=xxy;412-=xy.10.2009 黑龙江大兴安岭函数1-=xxy中;自变量x的取值范围是.1.下列函数中;自变量x的取值范围是x≥2的是A... D.求值求下列函数当x = 2时的函数值:1y = 2x-5 ;2y =-3x2;312-=xy;4xy-=2.22.12分一次函数y=kx+b的图象如图所示:1求出该一次函数的表达式;2当x=10时;y的值是多少3当y=12时;•x的值是多少3.一架雪橇沿一斜坡滑下;它在时间t秒滑下的距离s米由下式给出:s=10t+2t2.假如滑到坡底的时间为8秒;试问坡长为多少作图象例1画出函数y=x+1的图象.分析要画出一个函数的图象;关键是要画出图象上的一些点;为此;首先要取一些自变量的值;并求出对应的函数值.解取自变量x的一些值;例如x=-3;-2;-1;0;1;2;3 …;计算出对应的函数值.为表达方便;可列表如下:由这一系列的对应值;可以得到一系列的有序实数对:A B D…;-3;-2;-2;-1;-1;0;0;1;1;2;2;3;3;4;…在直角坐标系中;描出这些有序实数对坐标的对应点;如图所示.通常;用光滑曲线依次把这些点连起来;便可得到这个函数的图象;如图所示.这里画函数图象的方法;可以概括为列表、描点、连线三步;通常称为描点法.例2 画出函数x y 21=的图象. 分析 用描点法画函数图象的步骤:分为列表、描点、连线三步.解 列表:描点:用光滑曲线连线:1.在所给的直角坐标系中画出函数x y 21=的图象先填写下表;再描点、连线. 利用图像解决实际问题问题 王教授和孙子小强经常一起进行早锻炼;主要活动是爬山.有一天;小强让爷爷先上;然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离米与爬山所用时间分的关系从小强开始爬山时计时.问 图中有一个直角坐标系;它的横轴x 轴和纵轴y 轴各表示什么问 如图;线段上有一点P ;则P 的坐标是多少 表示的实际意义是什么看上面问题的图;回答下列问题:1小强让爷爷先上多少米2山顶离山脚的距离有多少米 谁先爬上山顶三、实践应用例1 王强在电脑上进行高尔夫球的模拟练习;在某处按函数关系式x x y 58512+-=击球;球正好进洞.其中;y m 是球的飞行高度;x m 是球飞出的水平距离.1试画出高尔夫球飞行的路线;2从图象上看;高尔夫球的最大飞行高度是多少 球的起点与洞之间的距离是多少 解 1列表如下:在直角坐标系中;描点、连线;便可得到这个函数的大致图象.2高尔夫球的最大飞行高度是3.2 m;球的起点与洞之间的距离是8 m .例2 小明从家里出发;外出散步;到一个公共阅报栏前看了一会报后;继续散步了一段时间;然后回家.下面的图描述了小明在散步过程中离家的距离s 米与散步所用时间t 分之间的函数关系.请你由图具体说明小明散步的情况.解 小明先走了约3分钟;到达离家250米处的一个阅报栏前看了5分钟报;又向前走了2分钟;到达离家450米处返回;走了6分钟到家.2.一枝蜡烛长20厘米;点燃后每小时燃烧掉5厘米;则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h 厘米与点燃时间t 之间的函数关系的是 .正比例函数和待定系数法特别地;当b =0时;一次函数y =kx 常数k ≠0出叫正比例函数正比例函数也是一次函数;它是一次函数的特例.一次函数y=kx+bk ≠0三、实践应用例1 下列函数关系中;哪些属于一次函数;其中哪些又属于正比例函数1面积为10cm 2的三角形的底a cm 与这边上的高h cm ;2长为8cm 的平行四边形的周长L cm 与宽b cm ;3食堂原有煤120吨;每天要用去5吨;x 天后还剩下煤y 吨;4汽车每小时行40千米;行驶的路程s 千米和时间t 小时.例2 已知函数y =k -2x +2k +1;若它是正比例函数;求k 的值.若它是一次函数;求k 的值.例3 已知y+2与x -3成正比例;当x =4时;y =3.1写出y 与x 之间的函数关系式;2y 与x 之间是什么函数关系;3求x =2.5时;y 的值.22. 8分 已知y=y 1+y 2;y 1与x 成正比例;y 2与x-1成正比例;且x=3时y=4;x=•1时y=2;求y 与x 之间的函数关系式;并在直角坐标系中画出这个函数的图象.一次函数、正比例函数以及它们的关系:函数的解析式都是用自变量的一次整式表示的;我们称它们为一次函数一次函数通常可以表示为y =kx +b 的形式;其中k 、b 是常数;k ≠0.特别地;当b =0时;一次函数y =kx 常数k ≠0出叫正比例函数direct proportional function .正比例函数也是一次函数;它是一次函数的特例.正比例图象快速作图直线的平移请同学们在同一平面直角坐标系中画出下列函数的图象.1y =-x 、y =-x +1与y =-x -2;2y =2x 、y =2x +1与y =2x -2.例2 直线521,321--=+-=x y x y 分别是由直线x y 21-=经过怎样的移动得到的. 例3 说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 五、检测反馈2.1将直线y =3x 向下平移2个单位;得到直线 ;2将直线y =-x -5向上平移5个单位;得到直线 ;3将直线y =-2x +3向下平移5个单位;得到直线 .3.函数y =kx -4的图象平行于直线y =-2x ;求函数的表达式.4.一次函数y =kx +b 的图象与y 轴交于点0;-2;且与直线213-=x y 平行;求它的函数表达式.1.一次函数y =kx +b ;当x =0时;y =b ;当y =0时;kb x -=.所以直线y =kx +b 与y 轴的交点坐标是0;b ;与x 轴的交点坐标是⎪⎭⎫ ⎝⎛-0,k b ; 3.已知函数y =2x -4.1作出它的图象;2标出图象与x 轴、y 轴的交点坐标;3由图象观察;当-2≤x ≤4时;函数值y 的变化范围.4.一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24;求b .图像位置与k;b 的关系和单调性2.在同一直角坐标系中;画出函数132+=x y 和y =3x -2的图象. 问 在你所画的一次函数图象中;直线经过几个象限.一次函数y =kx +b 有下列性质:1当k >0时;y 随x 的增大而增大;这时函数的图象从左到右上升;2当k <0时;y 随x 的增大而减小;这时函数的图象从左到右下降.特别地;当b =0时;正比例函数也有上述性质.当b >0;直线与y 轴交于正半轴;当b <0时;直线与y 轴交于正半轴.下面;我们把一次函数中k 与b 的正、负与它的图象经过的象限归纳列表为: 三、实践应用例1 已知一次函数y =2m -1x +m +5;当m 是什么数时;函数值y 随x 的增大而减小 例2 已知一次函数y =1-2mx +m -1;若函数y 随x 的增大而减小;并且函数的图象经过二、三、四象限;求m 的取值范围. 例3 已知一次函数y =3m -8x +1-m 图象与y 轴交点在x 轴下方;且y 随x 的增大而减小;其中m 为整数.1求m 的值;2当x 取何值时;0<y <41.已知点M1;a 和点N2;b 是一次函数y=﹣2x+1图象上的两点;则a 与b 的大小关系是A .a >bB .a=bC .a <bD .以上都不对6.已知正比例函数y=kxk <0的图象上两点Ax 1;y 1、Bx 2;y 2;且x 1<x 2;则下列不等式中恒成立的是A .y 1+y 2>0B .y 1+y 2<0C .y 1﹣y 2>0D .y 1﹣y 2<0 9.已知直线y=kx+b 不经过第三象限则下列结论正确的是A .k >0; b >0;B .k <0; b >0;C .k <0; b <0;D .k <0; b ≥0;10. 已知一次函数y=kx+b;y 随着x 的增大而减小;且kb<0;则在直角坐标系内它的大致图象是A B CA .B .C .D .一次函数快速作图待定系数法k 、b 的符号 k >0b >0 k >0 b <0 k <0 b >0 k <0b <0图像的大致位置 经过象限 第 象限 第 象限 第 象限 第 象限 性质 y 随x 的增大 而 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而问题1 已知一个一次函数当自变量x =-2时;函数值y =-1;当x =3时;y =-3.能否写出这个一次函数的解析式呢问题2 已知弹簧的长度y 厘米在一定的限度内是所挂物质量x 千克的一次函数.现已测得不挂重物时弹簧的长度是6厘米;挂4千克质量的重物时;弹簧的长度是7.2厘米;求这个一次函数的关系式.考虑 这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时;弹簧的长度7.2厘米;与一次函数关系式中的两个x 、y 有什么关系问题3 若一次函数y =mx -m -2过点0;3;求m 的值三、实践应用例1 已知一次函数y =kx +b 的图象经过点-1;1和点1;-5;求当x =5时;函数y 的值. 例2 已知一次函数的图象如下图;写出它的关系式.求交点坐标例3 求直线y =2x 和y =x +3的交点坐标.例4 已知两条直线y 1=2x -3和y 2=5-x .1在同一坐标系内作出它们的图象;2求出它们的交点A 坐标;3求出这两条直线与x 轴围成的三角形ABC 的面积;4k 为何值时;直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限.解 12⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭⎫ ⎝⎛37,38. 3当y 1=0时;x =23所以直线y 1=2x -3与x 轴的交点坐标为B 23;0;当y 2=0时;x =5;所以直线y 2=5-x 与x 轴的交点坐标为C 5;0.过点A 作AE ⊥x 轴于点E ;则124937272121=⨯⨯=⨯=∆AE BC S ABC . 4两个解析式组成的方程组为⎩⎨⎧+=+=+.32,4512y x k y x k 解这个关于x 、y 的方程组;得⎪⎪⎩⎪⎪⎨⎧-=+=.72,732k y k x 由于交点在第四象限;所以x >0;y <0.即⎪⎪⎩⎪⎪⎨⎧<->+.072,0732k k 解得223<<-k . 14.若解方程x+2=3x-2得x=2;则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点m;8;则a+b=_________.1、已知直线m 经过两点1;6、-3;-2;它和x 轴、y 轴的交点式B 、A;直线n 过点2;-2;且与y 轴交点的纵坐标是-3;它和x 轴、y 轴的交点是D 、C ;(1) 分别写出两条直线解析式;并画草图;(2) 计算四边形ABCD 的面积; (3) 若直线AB 与DC 交于点E;求△BCE 的面积..2.直线232-=x y 分别交x 轴、y 轴于A 、B 两点;O 是原点.1求△AOB 的面积; 2过△AOB 的顶点能不能画出直线把△AOB 分成面积相等的两部分 如能;可以画出几条 写出这样的直线所对应的函数关系式.2、如图;A 、B 分别是x 轴上位于原点左右两侧的点;点P2;p 在第一象限;直线PA 交y 轴于点C0;2;直线PB 交y 轴于点D;△AOP 的面积为6; (1) 求△COP 的面积; (2) 求点A 的坐标及p 的值;(3) 若△BOP 与△DOP 的面积相等;求直线BD 的函数解析式..4.一次函数y =kx +bk ≠0的图象经过点3;3和1;-1.求它的函数关系式;并画出图象.5.陈华暑假去某地旅游;导游要大家上山时多带一件衣服;并介绍当地山区海拔每增加100米;气温下降0.6℃.陈华在山脚下看了一下随带的温度计;气温为34℃;乘缆车到山顶发现温度为32.2℃.求山高. 一次函数与方程、方程组和不等式问题 画出函数y =323+x 的图象;根据图象;指出: 1 x 取什么值时;函数值 y 等于零2 x 取什么值时;函数值 y 始终大于零例1 画出函数y =-x -2的图象;根据图象;指出:1 x 取什么值时;函数值 y 等于零2 x 取什么值时;函数值 y 始终大于零解 过-2;0;0;-2作直线;如图.例2.已知直线y=x-3与y=2x+2的交点为-5;-8;则方程组30220x y x y --=⎧⎨-+=⎩的解是________.例3 利用图象解不等式12x -5>-x +1;2 2x -5<-x +1.解 设y 1=2x -5;y 2=-x +1;在直角坐标系中画出这两条直线;如下图所示.两条直线的交点坐标是2; -1 ;由图可知:12x -5>-x +1的解集是y 1>y 2时x 的取值范围;为x >-2;22x -5<-x +1的解集是y 1<y 2时x 的取值范围;为x <-2.13.一次函数y 1=kx+b 与y 2=x+a 的图象如图;则kx+b >x+a 的解集是 _________ .9.如图;已知函数y=2x+b 与函数y=kx ﹣3的图象交于点P;则不等式kx ﹣3>2x+b 的解集是 _________ .12.如图;直线y=kx+b 过A ﹣1;2、B ﹣2;0两点;则0≤kx+b≤﹣2x 的解集为 _________ . 实际应用23.12分一农民带了若干千克自产的土豆进城出售;为了方便;他带了一些零钱备用;按市场价售出一些后;又降价出售.售出土豆千克数与他手中持有的钱数含备用零钱的关系如图所示;结合图象回答下列问题:1农民自带的零钱是多少2降价前他每千克土豆出售的价格是多少3降价后他按每千克0.4元将剩余土豆售完;这时他手中的钱含备用零钱是26元;问他一共带了多少千克土豆问题 学校有一批复印任务;原来由甲复印社承接;按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费;则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:1乙复印社的每月承包费是多少2当每月复印多少页时;两复印社实际收费相同3如果每月复印页数在1200页左右;那么应选择哪个复印社实践应用例1 小张准备将平时的零用钱节约一些储存起来.他已存有50元;从现在起每个月节存12元.小张的同学小王以前没有存过零用钱;听到小张在存零用钱;表示从小张存款当月起每个月存18元;争取超过小张.请你写出小张和小王存款和月份之间的函数关系;并计算半年以后小王的存款是多少;能否超过小张 至少几个月后小王的存款能超过小张解 设小张存x 个月的存款是y 1元;小王的存x 个月的存款是y 2元;则y 1=50+12x ;y 2=18x ;当x =6时;y 1=50+12×6=122元; y 2=18×6=108元.所以半年后小王的存款不能超过小张.由y 2>y 1;即18x > 50+12x ;得x >318; 所以9个月后;小王的存款能超过小张.思考:①求⎩⎨⎧=+=.18,1250x y x y 的解.②观察两直线交点坐标与这个方程组的解有什么关系.例3 下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象分别是正比例函数图象和一次函数图象.根据图象解答下列问题: 1请分别求出表示轮船和快艇行驶过程的函数解析式不要求写出自变量的取值范围;2轮船和快艇在途中不包括起点和终点行驶的速度分别是多少3问快艇出发多长时间赶上轮船解 1设表示轮船行驶过程的函数解析式为y =kxk ≠0;由图象知:当x =8时;y =160.代入上式;得8k =160;可解得k =20.所以轮船行驶过程的函数解析式为y =20x .设表示快艇行驶过程的函数解析式为y =ax +ba ≠0;由图象知:当x =2时;y =0;当x =6时;y =160.代入上式;得⎩⎨⎧=+=+.1606,02b a b a 可解得⎩⎨⎧-==.,8040b a 所以快艇行驶过程的函数解析式为y =40x -80.2由图象可知;轮船在8小时内行驶了160千米;快艇在4小时内行驶了160千米;所以轮船的速度是208160=千米/时;快艇的速度是404160=千米/时. 3设轮船出发x 小时快艇赶上轮船;20x =40x -80得x =4;x -2=2.答 快艇出发了2小时赶上轮船.3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元;且都表示对学生优惠.甲旅行社表示: 全部8折收费;乙旅行社表示: 若人数不超过30人则按9折收费;超过30人按7折收费.1设学生人数为x ;甲、乙两旅行社实际收取总费用为y 1、y 2元;试分别列出y 1、y 2与x 的函数关系式y 2应分别就人数是否超过30两种情况列出;2讨论应选择哪家旅行社较优惠;3试在同一直角坐标系内画出1题两个函数的图象;并根据图象解释题2题讨论的结果.7.汽车开始行驶时;油箱内有油40升;如果每小时耗油5升;则油箱内余油量y 升与行驶时间t 时的函数关系用图象表示应为下图中的4.药品研究所开发一种抗菌新药.经多年动物实验;首次用于临床人体试验.测得成人服药后血液中药物浓度y 微克/毫升与服药后时间x 时之间的函数关系如下图.请你根据图象:1说出服药后多少时间血液中药物浓度最高2分别求出血液中药物浓度上升和下降阶段y 与x 的函数关系式.例5 某军加油飞机接到命令;立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中;设运输飞机的油箱余油量为Q 1吨;加油飞机的加油油箱的余油量为Q 2吨;加油时间为t 分钟;Q 1、Q 2与t 之间的函数图象如图所示;结合图象回答下列问题:1加油飞机的加油油箱中装载了多少吨油 将这些油全部加给运输飞机需要多少分钟 2求加油过程中;运输飞机的余油量Q 1吨与时间t 分钟的函数关系式;3求运输飞机加完油后;以原速继续飞行;需10小时到达目的地;油料是否够用 说明理由. 解 1由图象知;加油飞机的加油油箱中装载了30吨油;全部加给运输飞机需10分钟. 2设Q 1=kt +b ;把0;40和10;69代入;得解得⎩⎨⎧==.40,9.2b k 所以Q 1=2.9t +400≤t ≤10.3根据图象可知运输飞机的耗油量为每分钟0.1吨.所以10小时耗油量为:10×60×0.1=60吨<69吨;所以油料够用.一次函数与方案设计问题一次函数是最基本的函数;它与一次方程、一次不等式有密切联系;在实际生活中有广泛的应用..例如;利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策..近几年来一些省市的中考或竞赛试题中出现了这方面的应用题;这些试题新颖灵活;具有较强的时代气息和很强的选拔功能..1.生产方案的设计例1 某工厂现有甲种原料360千克;乙种原料290千克;计划利用这两种原料生产A 、B 两种产品;共50件..已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克;可获利润700元;生产一件B 种产品;需用甲种原料4千克、乙种原料10千克;可获利润1200元..1要求安排A 、B 两种产品的生产件数;有哪几种方案 请你设计出来;2生产A 、B 两种产品获总利润是y 元;其中一种的生产件数是x;试写出y 与x 之间的函数关系式;并利用函数的性质说明1中的哪种生产方案获总利润最大最大利润是多少98年河北解 1设安排生产A种产品x件;则生产B种产品是50-x件..由题意得解不等式组得 30≤x≤32..因为x是整数;所以x只取30、31、32;相应的50-x的值是20、19、18..所以;生产的方案有三种;即第一种生产方案:生产A种产品30件;B种产品20件;第二种生产方案:生产A种产品31件;B种产品19件;第三种生产方案:生产A种产品32件;B种产品18件..2设生产A种产品的件数是x;则生产B种产品的件数是50-x..由题意得y=700x+120050-x=-500x+6000..其中x只能取30;31;32..因为 -500<0; 所以此一次函数y随x的增大而减小;所以当x=30时;y的值最大..因此;按第一种生产方案安排生产;获总利润最大;最大利润是:-500·3+6000=4500元..本题是利用不等式组的知识;得到几种生产方案的设计;再利用一次函数性质得出最佳设计方案问题..2.调运方案设计例2北京某厂和上海某厂同时制成电子计算机若干台;北京厂可支援外地10台;上海厂可支援外地4台;现在决定给重庆8台;汉口6台..如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台;从上海运往汉口、重庆的运费分别是3百元/台、5百元/台..求:1若总运费为8400元;上海运往汉口应是多少台2若要求总运费不超过8200元;共有几种调运方案3求出总运费最低的调运方案;最低总运费是多少元解 设上海厂运往汉口x 台;那么上海运往重庆有4-x 台;北京厂运往汉口6-x 台;北京厂运往重庆4+x 台;则总运费W 关于x 的一次函数关系式:W=3x+46-x+54-x+84+x=76+2x..1 当W=84百元时;则有76+2x=84;解得x=4..若总运费为8400元;上海厂应运往汉口4台..2 当W ≤82元;则⎩⎨⎧≤+≤≤8227640x x 解得0≤x ≤3;因为x 只能取整数;所以x 只有四种可的能值:0、1、2、3..答:若要求总运费不超过8200元;共有4种调运方案..3 因为一次函数W=76+2x 随着x 的增大而增大;又因为0≤x ≤3;所以当x=0时;函数W=76+2x 有最小值;最小值是W=76百元;即最低总运费是7600元..此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台;运往重庆4台..本题运用了函数思想得出了总运费W 与变量x 的一般关系;再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题..并求出了最低运费价..3. 营方案的设计例11杨嫂在再就业中心的支持下;创办了“润扬”报刊零售点;对经营的某种晚报;杨嫂提供了如下信息.①买进每份0.2元;卖出每份0.3元;②一个月以30天计内;有20天每天可以卖出200份;其余10天每天只能卖出120份.③一个月内;每天从报社买进的报纸份数必须相同;当天卖不掉的报纸;以每份0.1元退回给报社.1填表:2x之间的函数关系式;并求月利润的最大值.4.优惠方案的设计例4某校校长暑假将带领该校市级“三好生”去北京旅游..甲旅行社说:“如果校长买全票一张;则其余学生可享受半价优待..”乙旅行社说:“包括校长在内;全部按全票价的6折即按全票价的60%收费优惠..”若全票价为240元..1设学生数为x;甲旅行社收费为y;乙旅行社收费为y;分别计算两家旅行社的收费建立表达式;2当学生数是多少时;两家旅行社的收费一样;3就学生数x讨论哪家旅行社更优惠..解 1y=120x+240; y=240·60%x+1=144x+144..2根据题意;得120x+240=144x+144; 解得 x=4..答:当学生人数为4人时;两家旅行社的收费一样多..3当y>y;120x+240>144x+144; 解得 x<4..当y<y;120x+240<144x+144; 解得 x>4..答:当学生人数少于4人时;乙旅行社更优惠;当学生人数多于4人时;甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识;解决了优惠方案的设计问题..综上所述;利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题;如果学生能切实理解和掌握这方面的知识与应用;对解决方案问题的数学题是很有效的..练习1.某童装厂现有甲种布料38米;乙种布料26米;现计划用这两种布料生产L 、M 两种型号的童装共50套;已知做一套L 型号的童装需用甲种布料0.5米;乙种布料1米;可获利45元;做一套M 型号的童装需用甲种布料0.9米;乙种布料0.2米;可获利润30元..设生产L 型号的童装套数为x;用这批布料生产这两种型号的童装所获利润为y 元..1写出y 元关于x 套的函数解析式;并求出自变量x 的取值范围;2该厂在生产这批童装中;当L 型号的童装为多少套时;能使该厂所获的利润最大 最大利润为多少2.A 城有化肥200吨;B 城有化肥300吨;现要把化肥运往C 、D 两农村;如果从A 城运往C 、D 两地运费分别是20元/吨与25元/吨;从B 城运往C 、D 两地运费分别是15元/吨与22元/吨;现已知C 地需要220吨;D 地需要280吨;如果个体户承包了这项运输任务;请帮他算一算;怎样调运花钱最小24.9分 A 市和B 市分别库存某种机器12台和6台;现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.1设B 市运往C 市机器x 台;•求总运费Y 元关于x 的函数关系式.2若要求总运费不超过9000元;问共有几种调运方案3求出总运费最低的调运方案;最低运费是多少例4 某公司到果园基地购买某种优质水果;慰问医务工作者.果园基地对购买量在3000千克以上含3000千克的有两种销售方案;甲方案:每千克9元;由基地送货上门;乙方案:每千克8元;由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.1分别写出该公司两种购买方案的付款y 元与所买的水果量x 千克之间的函数关系式;并写出自变量x 的取值范围.2当购买量在什么范围时;选择哪种购买方案付款最少 并说明理由.解 1)3000(9 x x y =甲;.=xx)+y30008≥(5000乙18. 下面有两处移动电话计费方式全球通神州行月租费50元/月0本地通话0.40元/分0.60元/分你知道如何选择计费方式更省钱吗4.有批货物;若年初出售可获利2000元;然后将本利一起存入银行..银行利息为10%;若年末出售;可获利2620元;但要支付120元仓库保管费;问这批货物是年初还是年末出售为好10. 如图;在边长为2的正方形ABCD的一边BC上;一点P从B点运动到C点;设BP=x;四边形APCD的面积为y.⑴写出y与x之间的函数关系式及x的取值范围;⑵说明是否存在点P;使四边形APCD的面积为1.52.宁夏回族自治区已知:等边三角形的边长为4厘米;长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动运动开始时;点与点重合;点到达点时运动终止;过点分别作边的垂线;与的其它边交于两点;线段运动的时间为秒.1线段在运动的过程中;为何值时;四边形恰为矩形并求出该矩形的面积;2线段在运动的过程中;四边形的面积为;运动的时间为.求四边形的面积随运动时间变化的函数关系式;并写出自变量的取值范围.6、金华如图1;在平面直角坐标系中;已知点;点在正半轴上;且.动点在线段上从点向点以每秒个单位的速度运动;设运动时间为秒.在轴上取两点作等边.1求直线的解析式;2求等边的边长用的代数式表示;并求出当等边的顶点运动到与原点重合时的值;2. 如右图;在矩形ABCD中;AB=20cm;BC=4cm;点P从A开始沿折线A—B—C—D以4cm/s的速度运动;点Q从C开始沿CD边1cm/s的速度移动;如果点P、Q分别从A、C同时出发;当其中一点到达点D时;另一点也随之停止运动;设运动时间为ts;t为何值时;四边形APQD也为矩形。
(必考题)初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)
一、选择题1.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .B解析:B【分析】根据一次函数y kx b =+图像在坐标平面的位置,可先确定,k b 的取值范围,在根据,k b 的取值范围确定一次函数y bx k =+图像在坐标平面的位置,即可求解.【详解】根据一次函数y kx b =+经过一、二、四象限,则函数值y 随x 的增大而减小,可得0k <;图像与y 轴的正半轴相交则0b >,因而一次函数y bx k =+的一次项系数0b >,y 随x 的增大而增大,经过一三象限,常数0k <,则函数与y 轴的负半轴,因而一定经过一、三、四象限,故选:B .【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b 的取值范围.2.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 3.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和3A解析:A【分析】 根据题意可得OC 的解析式为y=-x ,再由各选项的数字得到点P 的坐标,代入解析式即可得出结论.【详解】解:由作图可知,OC 为第四象限角的平分线,故可得直线OC 的解析式为y=-x ,A 、当x=2,y=-1时,P (2,-2),代入y=-x ,可知点P 在射线OC 上,故A 符合题意;B 、当x=2,y=-2时,P (2,-3),代入y=-x ,可知点P 不在射线OC 上,故B 不符合题意;C 、当x=2,y=2时,P (2,1),代入y=-x ,可知点P 不在射线OC 上,故C 不符合题意; D/当x=2,y=3时,P (2,2),代入y=-x ,可知点P 不在射线OC 上,故D 不符合题意; 故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确的理解题意是解题的关键.4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx中,得k=6(8)-=34-. 【详解】 ∵点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-, 故选:B. .【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限D 解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键. 8.函数2y x=+()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >A解析:A【分析】 根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.10.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】 11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.二、填空题11.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y=ax+b与y=cx+d的图象的交点P的横坐标为1,∴a+b=c+d,故④正确;⑤∵一次函数y=cx+d图象与x轴的交点坐标为(dc-,0),且dc->-1,c>0,∴c>d.故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.12.某生物小组观察一植物生长,得到植物高度y(位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴)请你算一下,该植物的最大高度是________厘米.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC的解析式为y=kx+b(k≠0)然后利用待定系数法求出直线AC的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴63012 bk b=⎧⎨+=⎩,解得156kb⎧=⎪⎨⎪=⎩.所以,直线AC的解析式为165y x=+(0≤x≤50),当x=50时,15065y =⨯+=16cm . 答:该植物最高长16cm .【点睛】 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b 【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.14.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键.15.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.k=b=或k=b=【分析】分 k >0和 k <0两种情况结合一次函数的增减性可得到关于 k b 的方程组求解即可【详解】解:当 k >0时此函数是增函数∵当﹣1≤x≤4时3≤y≤6∴当x =﹣1时解析:k =35,b =185或k =35-,b=275. 【分析】分 k >0和 k <0两种情况,结合一次函数的增减性,可得到关于 k 、 b 的方程组,求解即可.【详解】解:当 k >0时,此函数是增函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =3;当x =4时,y =6,∴346k b k b -+=⎧⎨+=⎩ ,解得35185k b ⎧=⎪⎪⎨⎪=⎪⎩; 当k <0时,此函数是减函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =6;当x =4时,y =3,∴643k b k b -+=⎧⎨+=⎩,解得35275k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故答案为:k =35,b =185或k =35-,b=275. 【点睛】本题考查一次函数知识,涉及一次函数的增减性以及求一次函数解析式,属于基础题,熟练掌握一次函数的增减性以及解析式的求法是解决此题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.18.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解19.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k可取-1,把(-1,2)代入y=-x+b得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3-=,a解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.设一次函数y1=kx﹣2k(k是常数,且k≠0).(1)若函数y1的图象经过点(﹣1,5),求函数y1的表达式.(2)已知点P(x1,m)和Q(﹣3,n)在函数y1的图象上,若m>n,求x1的取值范围.(3)若一次函数y2=ax+b(a≠0)的图象与y1的图象始终经过同一定点,探究实数a,b满足的关系式.解析:(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.22.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?解析:(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中,得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB ,=2AM =25BM ,又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.解析:(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)解析:(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩. (3)由②得,025x ≤≤时,4200y x =-+,2535x <≤时,100y =,如图所示,由图象可知,配货中心建在CD 段时,这辆货车每天行驶的路程最短为100km .【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P 到A ,B ,C ,D 距离是解题关键.25.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x1 2 3 4 温度()y ℃ 55 90 125 160 y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?解析:(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 26.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.解析:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.27.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.解析:(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键. 28.已知一次函数3y kx =-的图象经过点()2,1A .。
初二一次函数经典例题
初二一次函数经典例题一、题目背景在初中数学中,学生常常遇到关于一次函数的问题。
一次函数是一种非常基础的函数类型,在数学中具有很重要的地位。
通过学习一次函数的性质和应用,可以为学生建立起一种较为系统的数学思维方式和解决问题的方法。
本文将给出一些初二一次函数的经典例题,以帮助学生更好地理解一次函数的概念和应用。
二、例题一题目:某种商品的价格与销量之间存在一种线性关系,已知当销量为0时,价格为100元;当销量为200时,价格为50元。
那么销量为350时,价格是多少元?解析:我们可以设商品的价格为P,销量为S。
根据题目中给出的信息,可以列出两个点的坐标:(0, 100)和(200, 50)。
由于这两个点在直线上,我们可以利用直线的斜率公式来求解。
首先,我们需要计算出直线的斜率k。
斜率可以通过两个点的纵坐标之差除以横坐标之差来计算。
在这个例子中,斜率k为:k = (50 - 100) / (200 - 0) = -50 / 200 = -1/4接下来,我们可以利用直线的斜截式方程来求解。
斜截式方程的一般形式为:y = kx + b,其中k为斜率,b为截距。
已知斜率k为-1/4,我们可以将一个已知点的坐标代入方程来求解截距b。
以(0, 100)代入方程:100 = (-1/4) * 0 + b,可以得到b = 100。
因此,直线的方程为:y = (-1/4)x + 100。
最后,我们可以代入销量为350的坐标x = 350,得到价格y = (-1/4) * 350 + 100 = 25。
所以销量为350时,价格为25元。
三、例题二题目:某家电商网站进行促销活动,设定了一次函数来计算用户购买商品的折扣。
已知当购买1件商品时,折扣为10%;当购买10件商品时,折扣为30%。
那么购买20件商品时,折扣是多少?解析:同样地,我们可以设折扣为D,购买商品的数量为N。
根据题目中给出的信息,可以列出两个点的坐标:(1, 0.1)和(10, 0.3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数典型例题讲解
例1 下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=-21x ; (2)y=-x
2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-
21 (6)y=x(x-4)-x 2.
例2 当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?
例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.
变式训练乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是 .
例4 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃.
例5 已知y-3与x成正比例,且x=2时,y=7.
),
2
当
例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式
变式训练已知y+a与x+b(a,b为是常数)成正比例.
(1)y是x的一次函数吗?请说明理由;
(2)在什么条件下,y是x的正比例函数?
例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方
式的费用分别为y
1元和y
2
元.
例10 已知y+2与x成正比例,且x=-2时,y=0.
(1)求y与x之间的函数关系式;
(2)画出函数的图象;
(3)观察图象,当x取何值时,y≥0?
(4)若点(m,6)在该函数的图象上,求m的值;
(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S
△ABP
=4,求P点的坐标.
例11 已知一次函数y=(3-k)x-2k2+18.
(1)k为何值时,它的图象经过原点?
(2)k为何值时,它的图象经过点(0,-2)?
(3)k为何值时,它的图象平行于直线y=-x?
(4)k为何值时,y随x的增大而减小?
例12 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.
例13(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?
(2)直线y=-x与y=-x+6的位置关系如何?
甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”
乙生说:“直线y=-x与y=-x+6是互相平行的.”
你认为这两个同学的说法正确吗?
例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.
(1)设学生人数为x,甲旅行社的收费为y
甲元,乙旅行社的收费为y
乙
元,
分别表示两家旅行社的收费;
(2)就学生人数讨论哪家旅行社更优惠
变式训练某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;
(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.
例15 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .
中考试题预测
例1 某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.
(1)求y与x之间的函数关系式;
(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?
例2 已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.
(1)求这个函数的解析式。
(2)在直角坐标系内画出这个函数的图象.
例3 如图11-27所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得
(1
(2)某人身高为196cm,一般情况下他的指距应是多少?
例4 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(时)的函数关系用图象(如图11-28所示)表示应为()
例 5 已知函数:(1)图象不经过第二象限;(2)图象经过点(2,-5).请你写出一个同时满足(1)和(2)的函数关系式:.
例6 人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人运动时所能承受的每分心跳的最高次数,另么b=0.8(220-a).
(1)正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是多少?
(2)一个50岁的人运动10秒时心跳的次数为20次,他有危险吗?
例7 某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.
(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;
(2)求最低总运费,并说明总运费最低时的运送方案.
例8 2006年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降,图11-29是某水库的蓄水量V(万米2)与干旱持续时间t(天)之问的关系图,请根据此图回答下列问题.
(1)该水库原蓄水量为多少万米2?持续干旱10天后.水库蓄水量为多少万米3?
(2)若水库存的蓄水量小于400万米3时,将发出严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?
(3)按此规律,持续干旱多少天时,水库将干涸?
例9 图11-30表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题.
(1)当比赛开始多少分时,两人第一次相遇?
(2)这次比赛全程是多少千米?
(3)当比赛开始多少分时,两人第二次相遇?
例10 如图11-31所示,已知直线y=x+3的图象与x轴、y轴交于A,B 两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式.。