固体物理习题解答

合集下载

固体物理学答案 黄昆原著 韩汝琦改编

固体物理学答案 黄昆原著 韩汝琦改编

《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理 课后习题解答(黄昆版)第二章

固体物理 课后习题解答(黄昆版)第二章

黄昆 固体物理 习题解答第二章 晶体的结合2.1 证明两种一价离子组成的一维晶格的马德隆常数为α = 2 2n解:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用 r 表示相邻离子间的距离,于是有α= ∑ ′ ( 1)=2[1 1 1 1 −+−+ ...]r jr ijr 2r 3r 4r前边的因子 2 是因为存在着两个相等距离 的离子,一个在参考离子左面,一个在其右面,i1 1 1故对一边求和后要乘 2,马德隆常数为234α = 2[1− + − + ...] 2 3 4xx xQl n(1 + x ) = −x + − + ... 当 x=1 时,有12 3 4 1 1 1...− + − + = l n2∴ =α 2 2n2 3 42.2 讨论使离子电荷加倍所引起的对 Nacl 晶格常数及结合能的影响(排斥势看作不变)α2e C解: u r ( )= −α2+rrnα2nC1du e nCenC 由| =−= 0 解得=+r e−1 r2n +12n 1( ) (=2)ndrrrrr 0nC11α e于是当 e 变为 2e 时,有 r−1= 4 −1 r e( )(2 ) (=2)nn= − α214α e结合能为 u r( )e (1−) 当 e 变为 2e 时,有4α e 2r0 1nnu e(2 )= −r (2 ) (1 −) = u e( ) 4 −n 1nu r( )= − α+βm n 2.3 若一晶体两个离子之间的相互作用能可以表示为计算: 1) 平衡间距r0解答(初稿)作者季正华- 1 -r r黄昆固体物理习题解答2) 结合能W(单个原子的)3) 体弹性模量4) 若取m = 2, n = 10, r= 0.3 , = 4 eV计算αβ, 的值解:1) 平衡间距r0的计算NαβdU= mαnβU r ( ) = (−+m n) dr0 −r m+1 + r n+1 = 0晶体内能nβ 12 r r平衡条件r r0 即0 0r0= ( )n m所以mα2) 单个原子的结合能W = −1u( )r u r( ) (0= −α+βm n) r nβ 1r r0=( ) n m2 0β−m r r0 αmW = 1 α(1−)( )m n n m2 n mα3)体弹性模量K = ∂2U(2)V⋅V0∂V0晶体的体积V = NAr3—— A 为常数,N 为原胞数目NαβU r ( ) = (−+m n)晶体内能∂=α2nβr rU∂U r∂N m− 1∂V ∂∂r V= 2 ( r m+1 r n+1 ) NAr23∂2 = ∂∂mαnβU N r[( −) 1 ]∂V 2 2 ∂∂V r rm+1 r n+1 3 N Ar2∂2U∂2UN1[2αmn2βmαnβK = (2)V⋅V0 ∂V2= 2 9V2−r m+ r n−r m+ r n]体弹性模量由平衡条件∂U∂V=N mα−V Vnβ 1= 00 0 0 0∂V 2 ( r m+1 r n+1 ) 3NAr2V V0解答(初稿)作者季正华0 0 0- 2 -α=n β∂2UN黄昆 固体物理 习题解答m 2αn 2βm r 0mr 0n ∂V 2V V=1[− 2 9V 02r 0m + r 0n ]体弹性模量 K= ∂2U(2)V⋅V 0∂2U=mn(−U )∂ V∂ V2 V V 9V 2mn K = U 0V 904)若取 m =β12, n = 10, r 0=0.3 ,= 4 eVβ−m计算 α β,的值r = n( ) −n mW = 1 α (1− )( )m n n mαm2 αn mβ =Wr 10α = r 2β+W 2[r 102 ]β =1.2 ×10-95eV ⋅m 103α =−7.5 ×1019eV ⋅ m 22.4 经过 sp 杂化后形成的共价键,其方向沿着立方体的四条对角线 的方向,求共价键之间的夹角。

《固体物理》课后习题答案

《固体物理》课后习题答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。

证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。

注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。

根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。

证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。

解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。

因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。

1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。

若立方边长为a ,写出最近邻和次近邻的原子间距。

答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版
4
感谢大家对木虫和物理版的支持!
《固体物理》习题解答
成群C4:C4=(C1 C2 C3 C4) ,群中任意两元素乘积仍是群中元素。
⎛ ε1 0 ⎜ 1.11 证明六角晶体的介电常数张量为 ⎜ 0 ε 2 ⎜0 0 ⎝
0⎞ ⎟ 0⎟ ε3 ⎟ ⎠
T
证明 若 A 是一旋转对称操作,则晶体的介电常数 ε 满足 ε = A
ε A ,对六角晶系,绕 x 轴
(即 a 轴)旋转 180 度和绕 z 轴(即 c 轴)旋转 120 度都是对称操作,坐标变换矩阵分别为
⎛1 0 0⎞ ⎜ ⎟ Ax = ⎜ 0 − 1 0 ⎟ ⎜0 0 1⎟ ⎝ ⎠
⎛ −1/ 2 ⎜ Az = ⎜ − 3 / 2 ⎜ ⎜ 0 ⎝
3 / 2 0⎞ ⎟ −1/ 2 0⎟ ⎟ 0 1⎟ ⎠

⎛ ε 11 0 ⎜ ⎜ 0 ε 22 ⎜0 ε 32 ⎝


ε 23
2
⎛ ε 11 0 ⎜ ε 23 = ε 32 = ε 11 = 0 可得到六角晶系的介电常数为 ε = ⎜ 0 ε 22 ⎜ 0 0 ⎝ ⎛ ε1 0 ⎜ 可得到 ε = ⎜ 0 ε 2 ⎜0 0 ⎝
0 ⎞ ⎟ 0 ⎟ 选择相应的坐标变换 ε 33 ⎟ ⎠
《固体物理》习题解答
第一章
1.1
习 题
如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明 结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3) 面心立方(书P3, 图1-7) 六方密排(书P4, 图1-6) 金刚石(书P5, 图1-8) x
π / 6 ≈ 0.52
a2 × a3 a1 ⋅ a2 × a3
2π 2π 2π i , b2 = j , b3 = k a b c 2π 2π 2π 倒格子矢量 G = hb1 + kb2 + lb3 = h i +k j +l k a b c b1 =

固体物理基础 习题解答6.7章

固体物理基础 习题解答6.7章

· · · (1)
其中,把 V 在 r Rn 点的附近按 n 作级数展开,并保留到一级相。 原子的热振动采取格波的形式,具体考虑简单格子的情况,只有声学波。并 以弹性波近似代替声学波。原子的位移 n 用如下形式表示
n Ae cos q Rn t
· · · (2)
式中 e 表示振动方向上的单位矢量。 A 为振幅。在各向同性的介质中,存 在横波和纵波,对于横波 e q ,对于纵波 e || q 。弹性波具有恒定的速度,即对 于横波 C=Ct,对于纵波 C=Cl,根据式(1)和式(2) ,立刻可以写出一个格波引 起的整个晶格中的势场变化
40
第 7 章 晶体的导电性 习题
1、晶格散射总是伴随着声子的吸收或发射,因此电子被格波的散射不是完 全的弹性散射,但近似是弹性散射。试就铝的情况说明之。已知铝的费米能级 EF≈12eV,德拜温度ΘD≈428K。 证明: (可参考课外微扰理论的知识以加深理解) 我们知道,与电子和光子的碰撞类似,电子和声子的碰撞也遵守准动量守恒 和能量守恒定律。现在我们以单电子散射(即发生的电子与晶格交换一个声子) 过程来做分析证明。 类比 p119 的式 3-61(光子的情形)可知,有
H Vn n V r Rn A cos q Rn t e V r Rn
n n n






· · · (3)

1 1 Aeit eiqRn e V r Rn Aeit eiqRn e V r Rn 2 n 2 n n n

max =k BD 5.9 1021 0.037eV 0.003EF
略)
(小于百倍, 可直接忽

《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析

《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析

()
()
间的运动轨迹是一条垂直于 B 德平面和等能面所截成的曲线,显然电子从曲线 k1 点运动曲线 k2 点所需 的时间为
J G
t2 − t1 =

t2
dt =
t1

k2
k1
dk dk / dt
其中 dk 是 k 空间曲线的弧元
3
第七章 能带结构分析
G G J G JJ G J G dk 由= = −ev × B = −ev⊥ × B dt JJ G J G v⊥ 为垂直于 B 德速度分量,可得
N = 2×
S2
( 2π )
2
2 × π kF
N ⎞ ⎛ k F = ⎜ 2π 2 ⎟ S ⎠ ⎝
1/ 2
= ( 2nπ )
1/ 2
7.3 试证明,当 n / na = 1.36 时,费米球和面心立方晶格的第一布里渊区相切,其中 na 是原子数密度。 解:参考陈金富 13.6 面心立方晶格原子数密度 nα = 界的最近距离 km = 4
5
第七章 能带结构分析 同理可用 ω =
2π eB =2
dA ( E ) dE
7.7 考虑两个能带
E (k ) = ±
=2k 2Δ + Δ2 ∗ m
式中Δ为一常数。设所有取正号的正能态都是空的,所有取负号的负能态都是填满的。 (1)在 t=0 时刻加上一个电子于正能带上的 ( k0 , 0, 0 ) ,并施加一个电场 E = Ez k ′ ,求 t 时刻的电流 (2)当 t → ∞ 时,上述情况如何? (3)在相同条件下,如果负能带出现一个空穴,求其电流。 解:参考陈金富 13.16 (1)正能带上只有一个电子,它对电流的贡献,根据《固体物理学》式 7-20

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章

黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移为,μ= anj j sin(ωj_j+ σj) ,σj为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。

解:任意一个原子的位移是所有格波引起的位移的叠加,即μn= ∑ μnj=∑ a j sin(ωj t naq j+σj)j j(1)μ2 n =⎛⎜⎝∑μjnj⎞⎛⎟⎜⎠⎝∑μj*nj⎞⎟⎠= ∑μj2nj+ ∑ μ μnj*nj′j j′由于μ μnj⋅nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项μ相比是一小量,可以忽略不计。

所以2= ∑ μ 2njn j由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2j aj sin( t naqjj j)dt a=j(2)T0 2已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为1 L T ⎡1 ⎛dμ⎞2 ⎤ρw a2 T 1= ∫ ∫dx0⎢ρnj⎥= j j∫0 2 ω+ σ= ρ 2 2 T⎜⎟dt L a sin( t naq)dt w Lanj T0 0 0 ⎢ 2 ⎝dt⎠⎥2T0 j j j j 4 j j其中L 是原子链的长度,ρ 使质量密度,T0为周期。

1221所以Tnj= ρ w La j j=KT(3)4 2μKT因此将此式代入(2)式有nj2 = ρ ωL 2 jμ所以每个原子的平均位移为2== ∑ μ 2= ∑KT= KT∑1n njρ ωL2ρLω2j j j j j3.2 讨论 N 个原胞的一维双原子链(相邻原子间距为 a),其 2N 格波解,当 M=m 时与一维单原子链的结果一一对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所示,质量为M 的原子位于2n-1,2n+1,2n+3 ……质量为m 的原子位于2n,2n+2,2n+4 ……牛顿运动方程:..mμ2n= −β μ(22n−μ2n+1 −μ2n−1)..Mμ2n+1 = −β μ(22n+1 −μ2n+2 −μ2n)体系为N 个原胞,则有2N 个独立的方程i na q方程解的形式:iμ2n=Ae[ωt−(2 ) ] μ2n+1=Be[ω−(2n+1)aq]na qμ=将μ2n=Ae[ωt−(2 ) ]2n+1 Be i[ωt−(2n+1) aq]代回到运动方程得到若A、B 有非零的解,系数行列式满足:两种不同的格波的色散关系:——第一布里渊区解答(初稿)作者季正华- 2 -第一布里渊区允许 q 的数目黄昆 固体物理 习题解答对应一个 q 有两支格波:一支声学波和一支光学波。

14春-固体物理-第一章习题解答参考

14春-固体物理-第一章习题解答参考

r b3
倒格矢,
4
a
r rrr G h h 1 b 1 h 2 b 2 h 3 b 3
2 a h 1 h 2 h 3 i r h 1 h 2 h 3 r j h 1 h 2 h 3 k r
(h 1 ,h 2 ,h 3 0 , 1 , 2 , 3 , )
.
11
晶面族 (h1h2的h3)面间距,
得到布里渊界面方程,
k G h 1 2 G h 2 2 a2 h 1 k x h 2 k y 2 a 2 22 h 1 2 h 2 2 2h1kxh2kya2h1 2h2 2
.
8
得到第一、第二布里渊界面方程,
2 h1 1, h 2 0 , k x 2
h1 0 , h 2 1,
.
1
11、描述同一晶面时,米勒指数和晶面指数一定相同吗? 12、怎样判断晶体对称性的高低?讨论对称性有什么意义? 13、六角网状二维格子是不是布拉维格子?如果是,写出其基矢;如果不是,请挑选合 适的格点组成基元,使基元的中心构成布拉维格子。 14、填写下表的中的数据
晶体结构
sc
bcc
fcc
金刚石
配位数
ca3 ba2 a1
a
面心立方晶胞与元胞
原胞基矢,
a1
a2
a(j k) a2(ik)
2
a3
a(i 2
j)
ar1 ar2 ar3
2a 2
.
10
倒格子原胞基矢,
r
b1
2
a
rrr i jk
r
b2
2
a
rrr i j k
r
b3
2
a
rrr i j k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 固体中的元激发 什么是元激发,举出三种元激发,并加以简要说明,以及所满足的统计特性 元激发:能量靠近基态的低激发态与其他激发态相比,情况比较简单,这种低激发态可以看出是独立的基本激发单元的集合,这些基本激发单元称为元激发(准离子)。 分为集体激发的准离子和单粒子激发的准粒子。 声子:晶体中原子振动的简正坐标是一系列格波,格波表示原子的一种集体运动,每个格波的能量取值是量子化的,体系的激发态可以看成是一些独立基本激发单元的集合,激发单元就是声子。声子是玻色型准粒子。 磁振子:铁磁材料在T=0K时基态的原子磁矩完全平行排列,基态附近的低激发态相应于少数自旋取向的反转,由于原子之间的相互耦合,自选反转不会局限在个别原子上,而是在晶体内传播形成自选波,自选波表示自旋系统的集体激发,能量是量子化的,体系激发态可以表示成一些独立基本激发单元的集合,即磁振子。遵循玻色统计。 金属中电子和空穴:系统激发态可以看成电子能量和空穴能量之和。电子和空穴都是单粒子元激发。金属中电子系统的激发态可以看成是电子、空穴准粒子的集合。 半导体中电子空穴对:半导体中电子从价带激发到导带形成电子空穴对。费米型元激发。 激子:电子和空穴之间由于库伦作用形成激子。玻色型元激发。 极化激元:离子晶体长光学波与光学波形成的耦合振动模,其元激发称为极化激元。

在相互作用电子系统中可能存在玻色元激发吗?举一例说明 等离激元:电子气相对于正电背景的等离子体振荡,振荡的能量是量子化的,元激发即等离激元。玻色型元激发。

第十二章 晶体中的缺陷和扩散 分析说明小角晶界的角度和位错间距关系,写出表达式。 相互有小角度倾斜的两部分晶体之间的小角晶界可以看成是一系列刃位错排列而成, D=b/θ,D是小角晶界位错相隔的距离,θ是两部分倾角,b是原子间距。

简述晶体中位错种类及位错方向和滑移方向的关系,哪种位错对体生长有重要影响。 刃位错:位错方向与晶体局部滑移方向垂直。 螺位错:位错方向与晶体局部位移方向平行。螺位错对晶体生长有重要影响。

简述晶体中主要缺陷类型(至少回答三种) 空位:空位是未被占据的原子位置。晶体中的原子围绕其平衡位置做热振动,原子可能获得较大的能量脱离平衡位置,在晶体中形成一个空位 间隙原子:间隙原子是进入点阵间隙的原子。杂质的半径较小可以在点阵中形成间隙原子,格点上的原子也可能获得能量离开而进入晶格形成间隙原子。 位错:由于晶体局部的滑移或者位移,在一定区域原子的排列是不规则的,这个原子错配的过渡区域就是位错。

解释具有点缺陷的离子晶体的导电机制。 离子晶体中的点缺陷(空位和间隙原子)是带有一定的电荷,正空格点、负空格点、正填隙原子、负填隙原子,原来晶体是电中性的,格点失去一个电子而形成空位,使该处多了一个相反的电荷。在没有外电场时,这些缺陷做无规则的布朗运动,不产生宏观电流,有外电场存在时,由于外电场对它们所带电荷的作用,使布朗运动产生一定的偏向,从而引起宏观电流。

第十三章 相图 相律的表达式及各参数的含义 相律:表示材料系统相平衡条件的热力学表达式,f=c-p+1,f是自由度数,c是组元数,p是相数。

举例说明固溶体的类型及其测定方法 连续固溶体:两种元素可以无限的相互溶解,随着成分改变从一种纯元素连续的过渡到另一种纯元素。Ag-Au合金。 有限固溶体:两种元素的相互溶解有一定的溶解度。Ag-Cu合金。 间隙式固溶体:溶质原子位于溶剂点阵的间隙中。Fe-C的α固溶体。 代位式固溶体:溶质原子位于点阵节点上,替代了部分溶剂原子。Cu-Zn的α固溶体。 通过X光或者电子衍射确定固溶体的点阵类型和点阵常数,由此推出一个晶胞内原子数N和晶胞体积V,再算出固溶体理论密度。另一方面可以通过实验直接测得实际密度。 理论密度小于实际密度 间隙式固溶体 理论密度等于实际密度 代位式固溶体 理论密度大于实际密度 缺位式固溶体

简述相图在晶体生长中的应用 相图是表示材料相得状态和温度成分的综合图形。 相图是材料科学的基本内容。 1、研制开发新材料,确定材料成分。 2、利用相图制定材料生产和处理工艺。 3、利用相图分析平衡态的组织和推断不平衡态可能的组织变化。 4、利用相图和性能关系预测材料性能。 5、利用相图进行材料生产过程中的故障分析。

导出固溶体混合熵的表达式 画出含有两个化合物并包含共晶反应和包晶反应的二元相图,注明相应的共晶和包晶反应的成分点和温度

第十章 超导基本现象和基本规律 简述超导体两个基本特征 1、零电阻,温度下降到一定温度以下时,材料的电阻突然消失,温度在临界温度Tc以下,超导体进入零电阻状态,在临界温度以上,超导体和正常金属一样。 2、迈斯纳效应(完全抗磁性)。由于超导体的零电阻,在超导态的物体内部不可能存在电场,因此根据电磁感应定律,磁通量不可能改变,施加外磁场时,磁通量不能进入超导体内。超导体内部B=0,,根据B=μ0(H+M),M=-H。 什么是第一类超导体,什么是第二类超导体,二者有什么本质区别 第一类超导体:对于超导态物体,外加磁场H增加到临界值,就转入正常态,降低磁场,物体又恢复到超导态。 第二类超导体:磁化曲线上存在两个临界磁场:下临界磁场和上临界磁场。当外磁场H小于Hc1,样品处于超导态;H大于Hc2,样品处于正常态;当H介于两者之间时,样品处于混合态,磁通量并不完全排除在体外,而是有部分磁通穿过,这时既有抗磁性又有零电阻效应。

约瑟夫森效应 S-I-S结构 直流约瑟夫森效应:当两端电压为零时,可以存在一股很小的超导电流,这是超导电子对的隧道电流。电流有一临界电流密度Jc,临界电流密度值依赖于磁场。 交流约瑟夫森效应:当结两端直流电压不为零,仍然存在超导电子对的隧道电流,是一个交变的超导电流,其频率ω与V成正比,满足关系式ω=2qV/hbar。外加一个频率为ω1的交变电磁场会对结内的交变电流起频率调制作用,从而产生一个直流分量。在直流I-V特性曲线上会产生一系列台阶,该电流台阶所对应的电压值满足2qV/hbar=nω1。

什么是超导临界温度,超导能隙和同位素效应?并写出临界温度和超导能隙关系的表达式。低于超导临界温度,材料转变为超导体,高于超导临界温度,材料处于正常态。 同一种超导元素的各同位素的超导临界温度与同位素原子质量之间存在下列关系 TcMa=常数,即同位素效应。

定性说明恒定电场中超导电子运动规律 在超导体内存在以费米能级为中心,宽度为2△的能隙,给出超导-绝缘体-金属和超导-绝缘体-超导体结(假设两侧超导体的能隙分别为2△1和2△2)的遂川电流随电压变化的关系。

超导体的正常态和超导态吉布斯自由能差为μ0Hc2(T),Hc是超导临界磁场,说明在无磁场时超导相变时二级相变,而有磁场时是一级相变。

第九章 固体中的光吸收 简述固体中常见的三种光吸收过程及各自对应的跃迁 本征光吸收:本征吸收是光子能量大于禁带宽度时,价带电子吸收光子跃迁至导带,产生电子空穴对,电子和空穴的运动是自由的。带间吸收。 激子吸收:电子吸收光子从价带跃迁到导带,但是由于电子和空穴之间的库伦相互作用有可能结合在束缚状态中,电子和空穴所形成的这种相互束缚的状态便是激子。带间跃迁。 自由载流子吸收:自由载流子吸收过程联系着的是同一个能带内电子状态之间的跃迁,这种吸收只能发生在能带部分填满的情况。是导带内电子和价带内空穴在带内跃迁所引起的。

固体中有哪几种可能的光吸收过程 7种,本征吸收、激子吸收、自由载流子吸收、晶格吸收、杂质吸收、磁吸收、回旋共振吸收。

光吸收实验如何确定半导体的带隙宽度 为什么晶格驰豫会使电子在发生跃迁的过程中发射和吸收若干声子 什么是激子。它有几种类型。各有什么特点。激子光吸收和本征光吸收各有什么差别。 电子和空穴由于相互之间的库伦作用可能结合在束缚状态中,电子和空穴所形成的这种相互作用的状态便是激子。 弱束缚激子(瓦尼尔激子):电子和空穴之间束缚比较弱,束缚能小,电子和空穴距离远大于原子间距。 紧束缚激子(弗伦克尔激子):电子和空穴束缚较强,束缚能大,电子和空穴距离小于原子间距。 激子光吸收所需能量比本征光吸收较小;本征光吸收形成自由电子和空穴,激子吸收形成的电子和空穴是相互束缚的。

从能带观点出发分析固体光吸收过程 本征吸收和激子吸收是带间吸收;自由载流子吸收是带内吸收;杂质吸收与杂质能级和能带相联系。

半导体材料可以发生哪几种光吸收过程。什么是半导体本征吸收。 本征吸收,激子吸收,杂质吸收,自由载流子吸收,晶格吸收,磁吸收,回旋共振吸收。

推导光吸收系数和光学常数之间的关系。

第七章 半导体电子论 简述半导体导电机理,分析其电导率的温度关系。 半导体的自由载流子来自于本征激发产生的电子和空穴,以及杂质电离在导带中形成的电子和价带中的空穴。 在低温时,本征激发 温度稍高,本征激发+杂质电离,电导率升高 温度再高,杂质已经基本电离,载流子来自本征激发,电导率升高。 随温度提高,电导率会相应提高。

从导电载流子的起源看有几种半导体 本征半导体,N型半导体,P型半导体。

什么是施主杂质,什么是受主杂质,施主能级和受主能级有什么特点。 施主杂质(n型杂质)在固体中能施放电子而产生导电电子并形成正电中心。 受主杂质(p型杂质)在固体中能接受电子而产生导电空穴并形成负电中心。 被施主杂质束缚的电子能量状态称为施主能级,施主能级位于离导带底很近的禁带中,一般

相关文档
最新文档