(完整版)变化率与导数练习题及答案

合集下载

变化率与导数的计算-练习题

变化率与导数的计算-练习题

2.10 变化率与导数导数的计算审核人:王君校对:陈亮一、选择题1.函数f(x)=(x+2a)(x-a)2的导数为()A.2(x2-a2) B.2(x2+a2) C.3(x2-a2) D.2(x2+a2)解析:f′(x)=(x-a)2+(x+2a)[2(x-a)]=3(x2-a2).答案:C2.与直线2x-y+4=0平行的抛物线y=x2的切线方程是() A.2x-y+3=0 B.2x -y-3=0 C.2x-y+1=0 D.2x-y-1=0解析:本小题主要考查导数与曲线斜率的关系.设切点坐标为(x0,x20),则切线斜率为2x0,由2x0=2得x0=1,故切线方程为y-1=2(x-1),即y=2x-1. 答案:D3.设f(x)、g(x)分别为定义在R 上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是() A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)4.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,则f2 005(x)等于()A.sin x B.-sin x C.cosx D .-cos x 答案:C 二、填空题 5.已知函数f (x )=f ′⎝ ⎛⎭⎪⎪⎫π2sinx +cos x ,则f ⎝ ⎛⎭⎪⎪⎫π4=________. 解析:由已知:f ′(x )=f ′⎝ ⎛⎭⎪⎪⎫π2cos x -sin x .则f ′⎝ ⎛⎭⎪⎪⎫π2=-1,因此f (x )=-sin x +cos x ,f ⎝ ⎛⎭⎪⎪⎫π4=0.答案:06.曲线y =ln x 在与x 轴交点的切线方程为__________. 解析:由y =ln x 得,y ′=1x ,∴y ′|x =1=1,∴曲线y=ln x在与x轴交点(1,0)处的切线方程为y=x-1,即x-y-1=0.答案:x-y-1=07.幂指函数y=f(x)g(x)在求导数时,可以运用对数法:在函数解析式两边求对数得ln y=g (x )ln f (x ),两边求导得y ′y =g ′(x )ln f (x )+g (x )f ′(x )f (x ),于是y ′=f (x )g (x )·⎣⎢⎢⎡⎦⎥⎥⎤g ′(x )ln f (x )+g (x )f ′(x )f (x ).运用此方法可以探求得知y =x 1x (x >0)的一个单调递增区间为________.解析:由(x>0)得:ln y=1x ln x,y′y=-1x2ln x+1x2.则由y′>0,即1-ln x>0,解得0<x<e,因此(x>0)的一个单调递增区间为(0,e).答案:(0,e)三、解答题8.求下列函数的导数:9.已知a、b为实数,且b>a>e,求证:a b>b a.证明:考查函数y=ln xx,x∈(e,+∞),y′=1-ln xx2,当x>e时,则y′<0,∴函数y=ln xx在(e,+∞)上递减,又b>a>e,∴ln bb<ln a a,即a ln b<b ln a,ln b a<ln a b,因此a b>b a.10.利用导数证明:C1n+2C2n+3C3n+…+n C n n=n·2n-1.证明:(1+x)n=C0n+C1n x+C2n x2+…+C n n x n.∴[(1+x)n]′=C1n +2C2n x+…+n C n n x n-1,即n(1+x)n-1=C1n+2C2n x +…+n C n n x n-1,令x=1,则C1n+2C2n+…+n C n n=n·2n-1.1.设函数f(x)是定义域在R上周期为2的可导函数,若f(2)=2,且=-2,则曲线y=f(x)在点(0,f(0))处的切线方程是()A.y=-2x+2 B.y=-4x +2 C.y=4x+2 D.y=-12x+2答案:B2.设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x解析:若x=0,则f(0)>0,若x>0,由2f(x)+xf′(x)>x2得2xf(x)+x2f′(x)>x3,。

变化率与导数练习题(理)

变化率与导数练习题(理)

变化率与导数练习题(理)《变化率与导数》(理)、平均变化率1、已知函数f x =2X2-4的图象上一点1,-2及附近一点1:x,-2「y,则过等于()XA. 4B. 4X2C. 4 2 XD. 4 2 X2、一质点运动的方程为s=5-3t2,则在一段时间L1,V . 11内相应的平均速度是( )A. 3 t 6B. -3 t 6C. 3 t -6D. —3:t—6、导数的定义1、设f x在X处可导,则lim f x “2: x-h等于(1A. 2f XB. -r XC. f XD. 4f X2、若函数f X在x o处的切线的斜率为k,贝U极限3、若f(x )在X o处可导,则曲g2:X)fXo)4、若 f ■ X = -3,则f X o h - f X o -3h 等于hf X o -2 X - f X oZ X三、基本初等函数求导1、求下列函数的导函数(1) y =x3x? 一4sin x(2)y =x(3) y =3cos x -4sin x(4) y=(2x+3(V x+ x5+ sin x(5)y= 厂(6)y=(x+ 1)(x+ 2)(x+ 3);(7) y= .. x sin x(8)y 「-「x +1+: x ;n x(9)y = x e ;(11)y = e x ln x ;2(12) y=x cosx2 22、若 y=(2x -3)(x -4),则 y' ________3、若心,则y ' ----------------------8、已知 f (x ) = sin2x ,则 f '(x ) = ____________________ .1 +cos2x 4、若y -3x 4 3x2 -5 ,则y ' 5、若y 1 cosx 1 -cosx ,则 y' _____________ 6、已知f (x ) 3xx 1 * 3 5 x 4 3x(x ) (10)y = cosx sin x则f ' (x )9•质点运动方程是s=t2(1+sint),则当t==时,瞬时速度为________________ :2310.质点的运动方程是s =t2■ -,求质点在时刻t=4时的速度.t3 211、f(x)=ax +3x +2,若f' (—1) =4,贝U a 的值等于 _____12、若f(x) = x2—2x—4ln x,贝U f' (x) >0 的解集为_____________13、若函数f(x)满足f(x) = 3x3—f'⑴ x2—x,则f' (1)的值为( )A. 0B. 2C. 1D. —1四、曲线切线问题1、曲线y =2x 1 2在P -1,3处的切线方程是2、曲线y =x 3-3x 2・1在点1,-1处的切线方程是3、函数“J 在I-2处的切线方程是4、与直线2x — 6y+仁0垂直,且与曲线y=x 3+3x 2— 1相切的直线方程是5、曲线"2宀2在点1,-|处切线的倾斜角是6、若曲线y = x 4的一条切线I 与直线x • 4y -8 = 0垂直,则I 的方程是 9、若曲线f (x ) = ax 2 + In x 存在垂直于y 轴的18、求过点(2, 0)且与曲线y=丄相切的直线的方程.x 7、 sin xsin x + cosx —2在点M n , 0处的切线的斜率为(A . D. __22切线,则实数a的取值范围是______ .10、已知曲线y= x3+ 3X2+6X— 10上一点P,求过曲线上P点的所有切线中,斜率最小的切线方程.111、已知函数f(x) = 3X3+ 3xf' (a)(其中a€ R), 且f(a) = $ 求:(1)f(x)的表达式;(2)曲线y= f(x)在X= a处的切线方程.12、已知函数f(x) = x3+ x- 16.⑴ 求曲线y = f(x)在点(2 , - 6)处的切线的方程;(2)直线I为曲线y = f (x)的切线,且经过原点,求直线I的方程及切点坐标;1 ⑶ 如果曲线y = f (x)的某一切线与直线y= — 4x+ 3垂直,求切点坐标与切线的方程.13、已知函数f(x) = ax3+ 3x2— 6ax— 11, g(x)=3x2+ 6x+ 12,和直线m y = kx + 9,又f ' ( — 1) = 0.(1) 求a 的值;(2)是否存在k的值,使直线m既是曲线y =f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.14、设函数f(x) = ax—* 曲线y= f(x)在点(2,(2)) 处的切线方程为7x—4y—12= 0.(1)求f(x)的解析式;(2)证明:曲线y= f(x)上任一点处的切线与直线x= 0和直线y= x所围成的三角形面积为定值,并求此定值.五、复合函数求导1、( 1) y= (2x—3)5;(2)尸3—x;(3)y= sin 2x+(4)y= ln(2x+ 5).(5)y= x2+1;2(6)y= sin 2x;一x(7)y= e sin 2x;(8)y= In 1 + x2.(9) y =ln x 21 (10)4(1 -3x) (11)y 5二(12) y= 3-2x(13)y= 1 2x cosx(14) y=ln (x+ 1 x2)(15)y=(x2-3X+2)2S in3(16) y x =COS-3(17) y h 2x1(18) y= 1(2x2-1)3(20)y =sin(3 x —-) 2 (21)y =cos(1 + x ) (22)y =sin x 2 (23) y =1 nsin(3x -1).(19) y =4 i3x 1(24) y =sinx 3+sin 33x ;(26)Y=log a (x 2 -2) (27)y= In (2x 2 3x1)(25) sin 2x 2x -112.已知y=—sin2x+sinx,那么丫’是()2A .仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D.非奇非偶函数3.函数y=sin3(3x+ =)的导数为________________44■若y= (sinx-cosX3,贝U y'= _________________5.若y= 1 - cosx2,贝U y'= __________________36.若y=sin(4x+3),贝U y'= ________________7.函数y=(i+sin3x)3是由______________ 个函数复合而成.8.曲线y=sin3x在点P (工,0)处切线的斜率为______________ .39•求曲线厂启恳在M(2,4)处的切线方程.10.函数y=cos (sinx)的导数为( ) Asin (sinx) ] costB.—sin (sinx)C.[sin (sinx) ] costD . sin (cost )11.函数尸cos2k+sin 、. x 的导数为( ) COS ' xCOS Ix A. — 2sin2k+B . 2sin2X+一 2x2Jx sincos Jx C . — 2sin2x+D . 2sin2x — 21x 2(x12. 过曲线丫=丄 上点P (1, 1)且与过P 点的切线夹角最大的直线的方程为x +12A. 2y — 8x+7=0B. 2y+8x+7=0C. 2y+8x — 9=0D . 2y — 8x+9=0 13 .函数 y =Xsin (2X — 2)COs (2X+ 2)的导数是 --------------------------- .115 .函数 y=cos 3 x 的导数是 ____________ .16 .函数y=ln (3— 2x —x 2)的导数为( 123 -2x -x 2仃.函数y=lncos2x 的导数为( )A . — tan2xB . — 2tan2xC . 2tanxD . 2tan2x 18 .函数y= ■■ ln x 的导数为14 . 函数y=n cos(2x - 3)的导数为 2x 2 x 2 2x -3 2x -2x 2 2x -312xIn x19.在曲线y=汽的切线中'经过原点的切线为20.函数y=ln (lnx)的导数为___________________21.函数y=lg(1+cosX的导数为 _________________23.下列求导数运算正确的是(B.B. 2 (lna) x2 -2xa2C. 2 (X—1) a x“ • lna2D. (x—1) a x J* lna22.求函数y=ln 13x22-x2的导数.A.B.C.D. (x+ -)x(log2X)=1 +1xln(3X)' =3X log3e (xcosc)' = —2xsinx25.函数y=sin32x的导数为(A. 2 (cos:?) • 32x• ln3B.(ln3) • 32x• cos:?C.cos:D.3“ • cos3x 26.设y= (2‘%°2,则y'ex27.函数y= 2的导数为y'=28.曲线y=e x®lnx 在点(e, 处的切线方程为____________ .29.求函数y=e2x lnx的导数.1 17、已知 f (x)= ----- --------1 -vx 1 +V x。

(常考题)北师大版高中数学高中数学选修2-2第二章《变化率与导数》测试卷(有答案解析)(2)

(常考题)北师大版高中数学高中数学选修2-2第二章《变化率与导数》测试卷(有答案解析)(2)

一、选择题1.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f ′(1)=( )A .1B .3C .4D .52.已知函数()2f x x bx =-的图象在点()()1,1A f 处的切线l 与直线320x y -+=平行,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2019S 的值为( ) A .20192020 B .20182019 C .20172018 D .20182017 3.若函数f (x )=alnx (a ∈R )与函数g (x )x =在公共点处有共同的切线,则实数a 的值为( )A .4B .12C .2eD .e 4.函数()2221sin cos 622x x f x x =+-的导函数()y f x '=的图象大致是( ) A . B .C .D .5.已知()4cos 72f x ax b x x =++-.若()20186f '=,则()2018f '-=( ) A .6-B .8-C .6D .86.函数22sin 22()([,0)(0,])133x x f x x x ππ=∈-+的图像大致为( )A .B .C .D .7.已知函数()ln ln x x f x e x e a x =-+的图象在点()()1,1T f 处的切线经过坐标原点,则a=( )A .e -B .eC .1e e ---D .1e -8.函数()(cos )x f x a x e =+,若曲线()y f x =在点,33f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线垂直于y 轴,则实数a =( ) A 31-B 13-C 31+ D .31+9.已知(,()),(,())M t f t N s g s 是函数()ln f x x =,()21g x x =+的图象上的两个动点,则当MN 达到最小时,t 的值为 ( )A .1B .2C .12D .35510.对任意的a ∈R ,曲线y =e x (x 2+ax+1-2a)在点P(0,1-2a)处的切线l 与圆C :(x-1)2+y 2=16的位置关系是( )A .相交B .相切C .相离D .以上均有可能 11.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ B .[0,π) C .3,44ππ⎡⎤⎢⎥⎣⎦ D .[0,4π]∪[2π,34π] 12.已知ln 0a b -=,1c d -=,则22()()a c b d -+-的最小值是( ).A .1BC .2D .二、填空题13.设l 是2y x=图象的一条切线,问l 与坐标轴所围成的三角形面积为______. 14.已知223,1()ln ,1x x x f x x x ⎧--+≤=⎨>⎩,若函数1()2y f x kx =-+有4个零点,则实数k 的取值范围是______.15.已知函数32()1(0,0)32x b f x x ax a b =-++>>,则函数'()()ln f x g x a x a =+在点(,())b g b 处切线的斜率的最小值是________.16.已知曲线()32ln 3x f x x x=+在点()()1,1f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-+= ____________ 17.已知函数1()f x x x=+和点(1,0)P ,过点P 作曲线()y f x =的两条切线PM ,PN ,切点分别为M ,N ,则直线MN 的斜率等于____.18.已知函数()'cos sin 4f x f x x π⎛⎫=+ ⎪⎝⎭,则4f π⎛⎫ ⎪⎝⎭的值为__________. 19.已知()f x 的导函数为'()f x ,且满足关系式()3'(2)ln f x xf x =+,则(1)f '的值为___. 20.已知点P 在曲线sin y x =上,a 为曲线在点P 处的切线的倾斜角,则a 的取值范围是__________.三、解答题21.已知函数22()(2)ln 2f x x x x ax =-⋅++.(1)当1a =-时,求()f x 在(1,(1))f 处的切线方程;(2)设函数()()2g x f x x =--,函数()g x 有且仅有一个零点.(i )求a 的值;(ii )若2e x e -<<时,()g x m ≤恒成立,求m 的取值范围.22.已知函数()1x f x e ax =+-(e 为自然对数的底数).(Ⅰ)当1a =时,求曲线()f x 在点(1,(1))f 处的切线与坐标轴围成的三角形的面积; (Ⅱ)若2()f x x ≥在区间(0,1)上恒成立,求实数a 的取值范围.23.已知函数()()()11ln x ax a f x x x--+=-. (1)当1a =时,求曲线()y f x =在()(),e f e 处的切线方程;(2)当0x >且1x ≠,不等式()11ln 1a x x x x +-<-恒成立,求实数a 的值. 24.已知函数()()3123f x x ax a a R =-+∈. ()1当1a =时,求曲线()f x 在()()2,2f 处的切线方程;()2过点()2,0作()y f x =的切线,若所有切线的斜率之和为1,求实数a 的值.25.已知函数图象上一点,且在点处的切线与直线平行.(1)求函数的解析式; (2)求函数在区间上的最大值和最小值; (3)关于的方程在区间上恰有两个相异的实根,求实数的取值范围. 26.已知函数3()16f x x x =+-.(1)求曲线()y f x =在点(1,14)-处的切线方程;(2)直线l 为曲线()y f x =的切线且过原点,求直线l 方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【分析】根据切线的定义得到()13f =,()'11f =,相加得到答案.【详解】根据题意知:()1123f =+=,()'11f =,故()()'114f f +=. 故选:C.【点睛】本题考查了切线方程,属于简单题.2.A解析:A【分析】利用导数的几何意义,可求出直线l 的斜率,进而由l 与直线320x y -+=平行,可求出b ,从而可得到()1111f n n n =-+,进而求出2019S 即可. 【详解】由题意,()2f x x b '=-,则()12f b '=-,所以直线l 的斜率为2b -,又直线320x y -+=的斜率为3,所以23b -=,解得1b =-.则()2f x x x =+,故()211111f n n n n n ==-++, 所以201911111111201911223342019202020202020S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.【点睛】 本题考查导数的几何意义的应用,考查平行直线的性质,考查利于裂项相消求和法求数列的前n 项和,属于中档题. 3.C解析:C【分析】根据公共点处函数值相等、导数值相等列出方程组求出a 的值和切点坐标,问题可解.【详解】由已知得()()a f x g x x ''==,, 设切点横坐标为t ,∴alnt a t ⎧=⎪⎨=⎪⎩,解得22e t e a ==,. 故选:C.【点睛】本题考查导数的几何意义和切线方程的求法,以及利用方程思想解决问题的能力,属于中档题.4.C解析:C【分析】将函数()y f x =的解析式化简,求出其导数()1sin 3f x x x '=+,,然后结合导函数的符号排除错误选项即可确定导函数的图像.【详解】因为()222211sin cos cos 6226x x f x x x x =+-=-,()1sin 3f x x x '∴=+. 当03x <≤时,103x >,sin 0x >,则()1sin 03f x x x '=+>; 当3x >时,113x >,1sin 1x -≤≤,则()1sin 03f x x x '=+>.所以,当0x >时,()1sin 03f x x x '=+>,排除ABD 选项, 故选:C.【点睛】 本题考查函数图象的识别,给定函数解析式,一般要结合函数的定义域、奇偶性、单调性(导数)、特殊值符号、零点等知识进行逐一排除,考查分析问题和解决问题的能力,属于中等题.5.D解析:D【分析】分析()f x 的导函数()f x ',构造关于()f x '的新函数,借助新函数奇偶性即可计算()2018f '-的值.【详解】因为()4cos 72f x ax b x x =++-,所以()34sin 7f x ax b x '=-+,所以()374sin f x ax b x '-=-,令()()374sin g x f x ax b x '=-=-,所以()()34sin g x ax x g x -=-+=-且函数()g x 定义域为R 关于原点对称, 所以()g x 是奇函数,所以()()201820180g g +-=,所以()()20187201870f f ''-+--=⎡⎤⎡⎤⎣⎦⎣⎦,所以()20181468f '-=-=.故选:D.【点睛】本题考查函数奇偶性的应用,难度一般.一般地,形如()()()0g x f x c c =+≠的函数中,已知()f x 为奇函数,根据()f a 的值求解()f a -的值的方法:构造新函数()g x c -,根据新函数的奇偶性求解()f a -的值.6.A解析:A【分析】 根据解析式判断函数的奇偶性,2f π⎛⎫⎪⎝⎭的正负,以及2f π⎛⎫ ⎪⎝⎭'的正负,即可进行选择. 【详解】 因为()221x sinx f x x =+,()221x sinx f x x -=-+,且定义域关于原点对称, 故()f x 是奇函数,排除选项C ;因为2220212f πππ⎛⎫ ⎪⎛⎫⎝⎭=> ⎪⎝⎭⎛⎫+ ⎪⎝⎭,故排除选项D ; 因为()()()()223222121xsinx x cosx x x sinx f x x ++-=+',故可得220212f πππ⎛⎫=> ⎪⎝⎭⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦' 故函数()f x 在点(),2f x π⎛⎫ ⎪⎝⎭处的切线的斜率为正数,故排除选项B ; 故选:A.【点睛】本题考查函数图像的识别,涉及函数的奇偶性,特值的把握,利用导数研究函数某点处切线的斜率,属综合中档题.7.A解析:A【分析】利用导数求出函数()y f x =在点()()1,1T f 处的切线方程,再将原点的坐标代入切线方程可求出实数a 的值.【详解】 ()ln ln x x f x e x e a x =-+,()1f e ∴=-,切点为()1,T e -,()ln x xx e a f x e x e x x '=+-+,()1f a '=, 所以,函数()y f x =的图象在点T 处的切线方程为()1y e a x +=-,由于该直线过原点,则a e -=,解得a e =-,故选A.【点睛】本题考查切线过点的问题,一般先利用导数求出切线方程,再将所过点的坐标代入切线方程求解,考查运算求解能力,属于中等题.8.A解析:A【解析】【分析】首先求得导函数的解析式,然后利用导数与函数切线的关系得到关于a 的方程,解方程即可确定a 的值.【详解】由函数的解析式可得:()(cos sin )x f x a x x e '=+-,曲线()y f x =在点,33f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线垂直于y 轴,则:310322f a e ππ'⎛⎛⎫=+-⋅= ⎪ ⎝⎭⎝⎭,解得:a =. 故选A .【点睛】本题主要考查导数的几何意义,导函数与函数切线的关系等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C【分析】求得()f x 图像上切线斜率为2的切点的横坐标,即是t 的值.【详解】依题意可知,当()f x 图像上的切线和()21g x x =+平行时,MN 取得最小值,令()'12f x x ==,解得12x =,故12t =,所以选C. 【点睛】本小题考查函数导数,考查切线斜率与导数的对应关系,属于基础题.10.A解析:A【解析】【分析】求出曲线y =e x (x 2+ax +1﹣2a )在点P (0,1﹣2a )处的切线l 恒过定点(﹣2,﹣1),代入:(x ﹣1)2+y 2﹣16,可得9+1﹣16<0,即定点在圆内,即可得出结论.【详解】∵y=e x (x 2+ax+1-2a ),∴y′=e x (x 2+ax+2x+1-a ),x=0时,y′=1-a ,∴曲线y=e x (x 2+ax+1-2a )在点P (0,1-2a )处的切线y-1+2a=(1-a )x ,恒过定点(-2,-1),代入:(x-1)2+y 2=16,可得9+1-16<0,即定点在圆内, ∴切线l 与圆C :(x-1)2+y 2=16的位置关系是相交.故选:A .【点睛】本题考查导数的几何运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.11.A解析:A【解析】由题得cos y x '=,设切线的倾斜角为α,则,3tan cos 1tan 1[0,][,)44k x ππαααπ==∴-≤≤∴∈⋃,故选A. 12.C解析:C【分析】设点(),b a 是曲线:ln C y x =上的点,点()d c ,是直线:1l y x =+上的点;()()22a cb d -+-可看成曲线C 上的点到直线l 上的点的距离的平方.然后将问题转化为求曲线C 上一点到直线l 距离的最小值的平方,直接对函数ln y x =求导,令导数为零,可求出曲线C 上到直线l 距离最小的点,然后利用点到直线的距离公式可求出最小距离,从而得出答案.【详解】设(),b a 是曲线:ln C y x =上的点,()d c ,是直线:1l y x =+上的点;()()22a c b d -+-可看成曲线C 上的点到直线l 上的点的距离的平方. 对函数ln y x =求导得1y x '=,令1y '=,得1x =, 所以,曲线C 上一点到直线l 上距离最小的点为()10,, 该点到直线l的距离为 因此,()()22a c b d -+-的最小值为22=. 故选C . 【点睛】本题考查距离的最值问题,将问题进行转化是解本题的关键,属于中等题.二、填空题13.4【分析】根据导数的几何意义求出切线的方程进而求得轴上的截距即可求得结果【详解】因为故可得设切点为则过切点的切线方程为且则切线在轴上的截距分别为则与坐标轴所围成的三角形面积故答案为:4【点睛】本题考 解析:4【分析】根据导数的几何意义,求出切线的方程,进而求得,x y 轴上的截距,即可求得结果.【详解】 因为2y x =,故可得22y x'=-,设切点为()00,x y , 则过切点的切线方程为()00202y y x x x -=--,且002x y =, 则切线在,x y 轴上的截距分别为0042,x x ,则l 与坐标轴所围成的三角形面积0014242S x x =⨯⨯=. 故答案为:4.【点睛】 本题考查利用导数的几何意义求切线的方程,属中档题.14.【分析】转化条件得有4个零点令画出两函数的图象后可得当函数过点和时函数与的图象相切时函数与的图象恰有3个交点;当在两者范围之间时满足条件利用导数的性质求出函数与的图象相切时的值即可得解【详解】由题意解析:1(2 【分析】 转化条件得1()2f x kx =-有4个零点,令()12g x kx =-,画出两函数的图象后可得当函数()g x 过点10,2⎛⎫- ⎪⎝⎭和()1,0时、函数()g x 与()ln 1y x x =>的图象相切时,函数()g x 与()f x 的图象恰有3个交点;当k 在两者范围之间时,满足条件,利用导数的性质求出函数()g x 与()ln 1y x x =>的图象相切时k 的值即可得解.【详解】 由题意1()2y f x kx =-+有4个零点即1()2f x kx =-有4个零点, 设()12g x kx =-,则()g x 恒过点10,2⎛⎫- ⎪⎝⎭, ∴函数()g x 与()f x 的图象有4个交点,在同一直角坐标系下作出函数()g x 与()f x 的图象,如图, 由图象可知,当12k <时,函数()g x 与()f x 的图象至多有2个交点; 当函数()g x 过点10,2⎛⎫-⎪⎝⎭和()1,0时,12k =,此时函数()g x 与()f x 的图象恰有3个交点; 当函数()g x 与()ln 1y x x =>的图象相切时,设切点为(),ln a a ,1y x'=, ∴1k a =,∴1ln 12a a a +=,解得a =∴e k e=,此时函数()g x 与()f x 的图象恰有3个交点;当ek e>时,两函数图象至多有两个交点; ∴若要使函数1()2y f x kx =-+有4个零点,则1(,)2k e e∈.故答案为:1(,)2ee.【点睛】本题考查了函数的零点问题和导数的几何意义,考查了数形结合思想,属于中档题.15.2【解析】【分析】根据已知条件得到的导函数根据限制性条件和基本不等式进行解答【详解】因为所以又因为所以(b )所以斜率的最小值是2故答案是:2【点睛】本题主要考查导数的计算和基本不等式求最值根据导数的解析:2 【解析】 【分析】根据已知条件得到()()f x g x alnx a'=+的导函数,根据限制性条件0a >,0b >和基本不等式 进行解答. 【详解】 因为()()f x g x alnx a'=+, 所以2()a x b g x x a-'=+. 又因为0a >,0b >, 所以g '(b )22a b b a ab a b b-=+=+, 所以斜率的最小值是2. 故答案是:2.【点睛】本题主要考查导数的计算和基本不等式求最值,根据导数的几何意义求出切线斜率是解决本 题的关键.16.【解析】【分析】根据导函数的几何意义得到【详解】曲线求导得到函数在点处的切线的倾斜角为则得到故答案为:【点睛】这个题目考查了导数的几何意义三角函数化简求值本题主要考察诱导公式同角三角函数的基本关系式解析:87【解析】 【分析】根据导函数的几何意义得到()tan 13f α'==,222sin cos 2sin cos cos ααααα-+2tan 18=2tan 17αα-=+. 【详解】曲线()32ln 3x f x x x =+,求导得到()221ln 2x f x x x -=+',函数在点()()1,1f 处的切线的倾斜角为α,则得到()tan 13f α'==,222sin cos 2sin cos cos ααααα-+2tan 18=2tan 17αα-=+故答案为:87. 【点睛】这个题目考查了导数的几何意义,三角函数化简求值,本题主要考察诱导公式、同角三角函数的基本关系式的知识,注意切弦互化这一转化思想的应用;同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍;注意求值与化简后的结果一般要尽可能有理化、整式化.17.2【解析】设∵函数∴∵过点作曲线的两条切线∴∴直线的方程为直线的方程为∵∴∴即是方程的两根∴∴直线的斜率故答案为2点睛:本题主要考查利用导数求切线斜率属于中档题应用导数的几何意义求切点处切线的斜率主解析:2 【解析】设11(,)M x y ,22(,)N x y . ∵函数()1f x x x=+ ∴21()1f x x =-' ∵过点P 作曲线()y f x =的两条切线PM ,PN∴2111PM k x =-,2211PNk x =- ∴直线PM 的方程为11211(1)()y y x x x -=--,直线PN 的方程为22221(1)()y y x x x -=--. ∵1111y x x =+,2221y x x =+ ∴11211110()(1)(1)x x x x -+=--,22222110()(1)(1)x x x x -+=-- ∴211210x x +-=,222210x x +-=,即1x ,2x 是方程2210x x +-=的两根. ∴122x x +=-,121x x ⋅=- ∴直线MN 的斜率12121212121211112MN x x y y x x k x x x x x x +---===-=--⋅.故答案为2.点睛:本题主要考查利用导数求切线斜率,属于中档题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2) 己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3) 巳知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x -'==-求解.18.【解析】解得故故答案为 解析:1【解析】()''sin cos 4f x f x x π⎛⎫=-⋅+ ⎪⎝⎭,''sin cos 4444ff ππππ⎛⎫⎛⎫∴=-⋅+ ⎪ ⎪⎝⎭⎝⎭,解得'14f π⎛⎫= ⎪⎝⎭,故)'cos sin 114444f f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,故答案为1.19.【分析】】根据导数的计算公式求出令可得然后把x=1代入即可【详解】由可得:∴解得:∴故答案为【点睛】本题考查函数的导数的应用属基础题解析:14【分析】】根据导数的计算公式求出()f x ',令2x =可得 ()124f '=-, 然后把x=1代入即可. 【详解】由()()3'2ln f x xf x =+,可得: ()()132f x f x''=+, ∴()()12322f f ''=+,解得: ()124f '=- ∴()()113214f f +'='=. 故答案为 14【点睛】本题考查函数的导数的应用,属基础题.20.【解析】由题意可得:即切线的斜率取值范围为据此可知倾斜角的取值范围是解析:3044πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭,,【解析】由题意可得:[]'cos 1,1y x =∈-,即切线的斜率取值范围为[]1,1-,据此可知倾斜角a 的取值范围是3044πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭,,. 三、解答题21.(1)340x y (2)(ⅰ)a=1(ⅱ)223m e e ≥-【解析】试题分析:(1)当a=﹣1时,函数f (x )=(x 2﹣2x )lnx+ax 2+2=(x 2﹣2x )lnx ﹣x 2+2,求出f′(x ),则k=f′(1),代入直线方程的点斜式可得切线的方程. (2)①令g (x )=f (x )﹣x ﹣2=0,则(x 2﹣2x )•lnx+ax 2+2=x+2,即()12ln x xa x--⋅=,构造函数h (x )=()12ln x xx--⋅,确定h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,可得h (x )max =h (1)=1,即可求a 的值; ②当a=1时,g (x )=(x 2﹣2x )•lnx+x 2﹣x ,若2e x e -<<,g (x )≥m ,只需g (x )min ≥m .试题(1)当1a =-时,()()222ln 2f x x x x x =--+,()0,x ∈+∞,∴()()()22ln 22f x x x x x =-+--' ()13f ∴'=-,又()11f = ∴()f x 在()()1,1f 处的切线方程340x y +-=.(2)(ⅰ)令()()20g x f x x =--=,则()222ln 22x x x ax x -++=+∴()12ln x xa x--⋅=令()()12ln x xh x x--⋅=, 则()2221122ln 12ln x x x h x x x x x ---=-+'-=. 令()12ln t x x x =--,则()221x t x x x'--=--= ()0,x ∈+∞, ()0t x '<,∴()t x 在()0,+∞上是减函数 又()()110t h '==,∴当01x <<时,()0h x '>,当1x <时,()0h x '<, ∴()h x 在()0,1上单调递增,在()1,+∞上单调递减,()()max 11h x h ∴==,∴当函数()g x 有且只有一个零点时,1a =.(ⅱ)当1a =,()()222ln g x x x x x x =-+-,若2e x e -<<时,()g x m ≤恒成立,只需()max ,g x m ≤ ()()()132ln g x x x '=-+.令()0g x '=得1x =或32x e -=,2e x e -<<,∴函数()g x 在322,e e --⎛⎫ ⎪⎝⎭上单调递增,在32,1e -⎛⎫ ⎪⎝⎭上单调递减,在()1,e 上单调递增.又∵33322122g e e e ---⎛⎫=-+ ⎪⎝⎭, ()223g e e e =-()333322213222222g e e e e e e e g e ----⎛⎫⎛⎫=-+<<<-= ⎪ ⎪⎝⎭⎝⎭,即()32g e g e -⎛⎫< ⎪⎝⎭.∴()()2max 23g x g e e e ==-,223m e e ∴≥-.22.(Ⅰ)12(1)e +(Ⅱ)2a e ≥-【解析】试题分析:(I )当a=1时,f (x )=e x +x-1,根据导数的几何意义可求得在点(1,f (1))处的切线的斜率,再由点斜式即可得切线方程,分别求出切线与x 轴、y 轴的交点A 、B ,利用直角三角形的面积公式即可求得;(II )将f (x )≥x 2在(0,1)上恒成立利用参变量分离法转化为21xx ea x+-≥在(0,1)上恒成立,再利用导数研究不等式右边的函数的单调性,从而求出函数的最大值,即可求出a 的取值范围. 试题(Ⅰ)∵当1a =时,()1xf x e x =+-,()1111f e e =+-=,()'1x f x e =+,()1'111f e e =+=+,∴函数()f x 在点()()1,1f 处的切线方程为()()11y e e x -=+-, 即()11y e x =+-.设切线与,x y 轴的交点分别为,A B , 令0x =得,1y =-,令0y =得,11x e =+, ∴1,01A e ⎛⎫ ⎪+⎝⎭,()0,1B -,∴()11112121OAB S e e ∆=⨯⨯=++, ∴函数()f x 在点()()1,1f 处的切线与坐标轴围成的三角形的面积为()121e +.(Ⅱ)由()()()20,1f x x x ≥∈得,21x x ea x+-≥.令()211x xx e e h x x x x x+-==+-,则()()2211'1x e x h x x x -=-- ()()211x x x ex-+-=, 令()1xk x x e =+-,则()'1xk x e =-.∵()0,1x ∈,∴()'10xk x e =-<,()k x 在区间()0,1上为减函数,∴()()00k x k <=.又10x -<,20x >,∴()()()211'0x x x e h x x-+-=>,∴()h x 在区间()0,1上为增函数,()()12h x h e <=-, 因此只需2a e ≥-即可满足题意. 点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x > ,若()0f x <恒成立max ()0f x ⇔<;(3)若()()f x g x > 恒成立,可转化为min max ()()f x g x >(需在同一处取得最值). 23.(1)()10e x ey e -+-=(2)12a = 【解析】试题分析:(1)根据导数几何意义得切线斜率为()f e ',再根据点斜式得切线方程(2)根据分母符号转化为:1x >时()0max f x <,01x <<时()0min f x >,研究()f x ,其导函数有两个零点1x =或11x a =-,根据11a-与0,1大小分类讨论,确定函数单调性,进而确定函数最值,解对应不等式可得实数a 的值.试题(1)1a =时,()ln 1f x x x =-+,()2f e e =- ∴切点为(),2e e -()11f x x '=-,()11f e e '=- ∴切线方程为11e y x e-=+ 即曲线()y f x =在()(),e f e 处的切线方程()10e x ey e -+-= (2)∵当0x >且1x ≠时,不等式()11ln 1a x x x x+-<-恒成立 ∴x e =时()11ln 1a e e e e+-<- ∴()2101a e >>- 又()()111ln 01x ax a x x x ⎡⎤--+-<⎢⎥-⎣⎦即()101f x x <-对0x >且1x ≠恒成立 等价于1x >时()0f x <,01x <<时()0f x >恒成立 ∵()()0,11,x ∈⋃+∞()()()222111x ax a ax x af x x x --+-+-'-=-= 令()0f x '= ∵0a > ∴1x =或11x a=- ①111a ->时,即102a <<时,11,1x a ⎛⎫∈- ⎪⎝⎭时,()0f x '> ∴()f x 在11,1a ⎛⎫- ⎪⎝⎭单调递增∴()()10f x f >=,∴102a <<不符合题意②当111a -=时,即12a =时,()0,1x ∈时()0f x '<∴()f x 在()0,1单调递减 ∴()()10f x f >=;()1,x ∈+∞时()0f x '<∴()f x 在()1,+∞单调递减∴()()10f x f <= ∴12a =符合题意 ③当1011a <-<时,即112a <<时,11,1x a ⎛⎫∈- ⎪⎝⎭时,()0f x '> ∴()f x 在11,1a ⎛⎫- ⎪⎝⎭单调递增∴()()10f x f <=∴112a <<不符合题意④当110a-<时,即1a >时,()0,1x ∈时,()0f x '>∴()f x 在()0,1单调递增 ∴()()10f x f <= ∴1a >不符合题意 综上,12a =. 点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件. 24.(I)93100x y --=;(Ⅱ)4. 【解析】试题分析:(1)根据曲线的解析式求出导函数,把P 的横坐标代入导函数中即可求出切线的斜率根据点斜式可得切线的方程;(2)设出曲线过点P 切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标代入切线方程即可得到关于切点横坐标的方程,解方程方即可得到切点横坐标的值,分别代入所设的切线方程即可的结果. 试题(Ⅰ)当a =1时,()3123f x x x =-+,∴f'(x )=x 2-1, ∴k 切=f'(2)=4-1=3. ∵()823f =, 所以切线方程为()8323y x -=-,整理得9x -3y -10=0. (Ⅱ)设曲线的切点为(x 0,y 0),则3212'3k x ax a x a ⎛⎫-+=-⎪⎝⎭切, 所以切线方程为()()202y x ax =--.又因为切点(x 0,y 0)既在曲线f (x )上,又在切线上,所以联立得()()200030002,]123y x a x y x ax a⎧=--⎪⎨=-+⎪⎩可得x 0=0或x 0=3,所以两切线的斜率之和为-a +(9-a )=9-2a =1,∴a =4.【方法点晴】本题主要考查导数的几何意义、利用导数求曲线切线,属于中档题.求曲线切线方程的一般步骤是:(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=•-. 25.(1)(2)答案见解析 (3)【解析】 试题分析:(1)由及曲线在处的切线斜率为,即可求得,又函数过点,即可求的. (2)由(1)易知,令可得或,然后对进行分类讨论,确定函数在的单调性,即可求出函数在上的最大值和最小值; (3)构造函数,研究函数的单调性,列出该方程有两个相异的实根的不等式组,求出实数的取值范围.试题 (1)因为,曲线在处的切线斜率为,即,所以.又函数过点,即,所以.所以. (2)由,.由,得或. ①当时,在区间上,在上是减函数,所以,.②当时,当变化时,、的变化情况见下表:2-++2-2,为与中较大的一个.. 所以.(3)令,. 在上,;在上,.要使在上恰有两个相异的实根,则解得.考点:利用导数求函数的最值;利用导数求参数的范围. 26.(1)4180x y --=;(2)130x y -=. 【分析】(1)求出原函数的导函数,得到函数在x =1时的导数,即切线的斜率,然后由直线方程的点斜式得答案;(2)设出切点坐标,求出函数过切点的切线方程,由切线过原点求得切点横坐标,即可求得直线方程. 【详解】(1)(1)14f =-,2()31f x x '=+(1)4f '=,144(1)y x +=-所以曲线()y f x =在点(1,14)-处的切线方程为:4180x y --=(2)设直线l 与曲线()y f x =相切的切点坐标为()00,x y 即:()3000,16x x x +-则切线方程为()()()3200001631y x x x x x -+-=+-把(0,0)代入得308x =-,所以02x =-此时026y =-,切点(2,26)-- 所以直线l 方程为:130x y -= 【点睛】本题考查了利用导数研究在曲线上某点处的切线方程及过曲线上某点处的切线方程的求解方法,关键是区分切线所经过的点是否为切点,属于中档题.。

第3章第1节 变化率与导数、导数的计算练习和答案

第3章第1节 变化率与导数、导数的计算练习和答案

m
e
e
e
1
1
1
,+∞
- >0,即 m> 即可.故填 e
.
e
e
13.D 解析:当曲线在点 P 处的切线与直线 y=x-2 平行时,所求距离取得最小值.由题意,y=
x2-lnx,x>0,∴y′=2x-1,令
1 y′=2x- =1,得
x=1

1 x=- (舍去),所以点
P

x
x
2
纵坐标为 y=12-0=1.因此曲线 y=x2-lnx 的斜率为 1 的切线方程为 y-1=x-1,即 x-y =0.∴点 P 到直线 y=x-2 的最小距离即切线 x-y=0 与直线 y=x-2 这两条平行线间的距
|0-(-2)|
离,为 d=
= 2,故选 D.
2
14.A
解析:由题意,该三次函数的图像关于原点对称,所以可设三次函数的解析式为 f(x)=ax3 125a+5b=-2,
+bx,则 f′(x)=3ax2+b.由题图可知 f(5)=-2,f′(5)=0,∴ 75a+b=0,
a= 1 ,
125
解得
3 所以 b=- ,
能力提升题组 (建议用时:20 分钟) 13. 已知点 P 是曲线 x2-y-lnx=0 上的任意一点,则点 P 到直线 y=x-2 的最小距离为 ()
A.1
3 B.
2
5 C.
2
D. 2
14.如图,某飞行器在 4 千米高空水平飞行,从距着陆点 A 的水平距离 10 千米处开始下降, 已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )
y=f(x)= 1 x3-3x,故选 125 5

(整理)变化率与导数作业题

(整理)变化率与导数作业题

变化率与导数作业题一、选择题:1.设f(x)=xlnx ,若f′(x 0)=2,则x 0= ( ) A .e 2 B .e C.ln22D .ln2 2.设f 0(x)=cosx ,f 1(x)=f 0′(x),f 2(x)=f 1′(x),…,f n +1(x)=f n ′(x),n∈N, 则f 2010(x)=( )A .sinxB .-sinxC .cosxD .-cosx 3.(2009·安徽高考)设函数f(x)=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f′(1)的取值范围是 ( ) A .[-2,2] B .[2,3] C .[3,2] D .[2,2] 4.(2009·辽宁高考)曲线y =xx -2在点(1,-1)处的切线方程为 ( ) A .y =x -2 B .y =-3x +2 C .y =2x -3 D .y =-2x +15.(2010·福建四地六校联考)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是( )A .f(x)=e xB .f(x)=x 3C .f(x)=lnxD .f(x)=sinx6.下图中,有一个是函数f(x)=13x 3+ax 2+(a 2-1)x +1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)= ( )A .13B .-13 C.73 D .-13或537. (2010·开原模拟)设a >0,f(x)=a 2+bx +c ,曲线y =f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值范围为[0,π4],则点P 到曲线y =f(x)对称轴距离的取值范围为( ) A .[0,1a ] B .[0,12a ] C .[0,|b 2a |] D .[0,|b -12a |]8. 曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 ( )A. 5 B .2 5 C .3 5 D .0二、填空题:9.(2009·宁夏、海南高考)曲线y=xe x+2x+1在点(0,1)处的切线方程为________________.10.(2009·福建高考)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是________.三、解答题:11.设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.12.设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处有相同的切线.试用t表示a,b,c.13.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线的方程.14.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,和直线m:y=kx+9,又f′(-1)=0.(1)求a的值;(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.变化率与导数作业题及解答一、选择题:1.设f(x)=xlnx ,若f′(x 0)=2,则x 0= ( ) A .e 2 B .e C.ln22D .ln2 解析:f′(x)=x×1x +1×lnx=1+lnx ,由1+lnx 0=2,知x 0=e. 答案:B2.设f 0(x)=cosx ,f 1(x)=f 0′(x),f 2(x)=f 1′(x),…,f n +1(x)=f n ′(x),n∈N, 则f 2010(x)=( )A .sinxB .-sinxC .cosxD .-cosx解析:∵f 1(x)=(cosx)′=-sinx ,f 2(x)=(-sinx)′=-cosx ,f 3(x)=(-cosx)′=sinx ,f 4(x)=(sinx)′=cosx ,…,由此可知f n (x)的值周期性重复出现,周期为4, 故f 2010(x)=f 2(x)=-cosx. 答案:D3.(2009·安徽高考)设函数f(x)=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f′(1)的取值范围是 ( ) A .[-2,2] B .[2,3] C .[3,2] D .[2,2] 解析:∵f′(x)=sin θ·x 2+3cos θ·x, ∴f′(1)=sin θ+3cos θ=2sin(θ+π3). ∵θ∈[0,5π12],∴θ+π3∈[π3,3π4].∴sin(θ+π3)∈[22,1],∴f′(1)∈[2,2].答案:D4.(2009·辽宁高考)曲线y =xx -2在点(1,-1)处的切线方程为 ( ) A .y =x -2 B .y =-3x +2 C .y =2x -3 D .y =-2x +1 解析:y′=(x x -2)′=-2(x -2)2,∴k=y′|x =1=-2. l :y +1=-2(x -1),即y =-2x +1. 答案:D5.(2010·福建四地六校联考)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是 ( )A .f(x)=e xB .f(x)=x 3C .f(x)=lnxD .f(x)=sinx 解析:设切点的横坐标为x 1,x 2则存在无数对互相垂直的切线,即f′(x 1)·f′(x 2)=-1有无数对x 1,x 2使之成立 对于A 由f′(x)=e x >0,所以不存在f′(x 1)·f′(x 2)=-1成立; 对于B 由于f′(x)=3x 2>0,所以也不存在f′(x 1)·f′(x 2)=-1成立; 对于C 由于f(x)=lnx 的定义域为(0,+∞), ∴f′(x)=1x>0,对于Df′(x)=cosx ,∴f′(x 1)·f′(x 2)=cosx 1·cosx 2,当x 1=2k π,x 2=(2k +1)π,k∈Z,f′(x 1)·f′(x 2)=-1恒成立. 答案:D6.下图中,有一个是函数f(x)=13x 3+ax 2+(a 2-1)x +1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)= ( )A .13 B .-13 C.73 D .-13或53解析:∵f′(x)=x 2+2ax +(a 2-1), ∴导函数f′(x)的图象开口向上. 又∵a≠0,∴其图象必为第(3)个图.由图象特征知f′(0)=0,且-a >0,∴a=-1. 故f(-1)=-13-1+1=-13.答案:B7. (2010·开原模拟)设a >0,f(x)=a 2+bx +c ,曲线y =f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值范围为[0,π4],则点P 到曲线y =f(x)对称轴距离的取值范围为( ) A .[0,1a ] B .[0,12a ] C .[0,|b 2a |] D .[0,|b -12a|]解析:∵y=f(x)在点P(x0,f(x))处切线的倾斜角的范围为[0,π4],∴0≤f′(x)≤1,即0≤2ax0+b≤1,∴-b2a≤x≤1-b2a,∴0≤x+b2a≤12a,即点P到曲线y=f(x)对称轴的距离的取值范围为[0,12a ].答案:B8. 曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是 ( )A. 5 B.2 5 C.3 5 D.0解析:设曲线上过点P(x0,y)的切线平行于直线2x-y+3=0,此切点到直线2x-y+3=0的距离最短,即斜率是2,则y′|x=x0=[12x-1·(2x-1)′]|x=x=22x-1|x=x=22x-1=2.解得x0=1,所以y=0,即点P(1,0),点P到直线2x-y+3=0的距离为|2-0+3|22+(-1)2=5,∴曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是 5.答案:A二、填空题:9.(2009·宁夏、海南高考)曲线y=xe x+2x+1在点(0,1)处的切线方程为________________.解析:y′=e x+x·e x+2,y′|x=0=3,∴切线方程为y-1=3(x-0),∴y=3x+1.答案:y=3x+110.(2009·福建高考)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是________.解析:f′(x)=2ax+1 x .∵f(x)存在垂直于y轴的切线,∴f′(x)=0有解,即2ax+1x=0有解,∴a=-12x2,∴a∈(-∞,0).答案:(-∞,0)三、解答题:11.设f(x)=(ax +b)sinx +(cx +d)cosx ,试确定常数a ,b ,c ,d ,使得f′(x)=xcosx. 解:由已知f′(x)=[(ax +b)sinx +(cx +d )cosx]′ =[(ax +b)sinx]′+[(cx +d)cosx]′=(ax +b)′sinx+(ax +b)(sinx)′+(cx +d)′cosx+(cx +d)·(cosx)′ =asinx +(ax +b)cosx +ccosx -(cx +d)sinx =(a -cx -d)sinx +(ax +b +c)cosx. 又∵f′(x)=xcosx ,∴必须有⎩⎨⎧ a -d -cx =0,ax +b +c =x.即⎩⎨⎧a -d =0,-c =0,a =1,b +c =0.解得a =d =1,b =c =0.12.设t≠0,点P(t,0)是函数f(x)=x 3+ax 与g(x)=bx 2+c 的图象的一个公共点,两函数的图象在点P 处有相同的切线.试用t 表示a ,b ,c. 解:因为函数f(x),g(x)的图象都过点(t,0), 所以f(t)=0,即t 3+at =0.因为t≠0,所以a =-t 2. g(t)=0,即bt 2+c =0,所以c =ab.又因为f(x),g(x)在点(t,0)处有相同的切线, 所以f′(t)=g′(t).而f′(x)=3x 2+a ,g′(x)=2bx , 所以3t 2+a =2bt.将a =-t 2代入上式得b =t.因此c =ab =-t 3. 故a =-t 2,b =t ,c =-t 3. 13.已知函数f(x)=x 3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f(x)的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f(x)上. ∵f′(x)=(x 3+x -16)′=3x 2+1,∴在点(2,-6)处的切线的斜率为k =f′(2)=13.∴切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)法一:设切点为(x 0,y 0),则直线l 的斜率为f′(x 0)=320x +1,∴直线l 的方程为y =(320x +1)(x -x 0)+30x +x 0-16,又∵直线l 过点(0,0),∴0=(320x +1)(-x 0)+30x +x 0-16, 整理得,30x =-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=300016x x x +-,又∵k=f′(x 0)=320x +1,∴300016x x x +-=320x +1,解之得x 0=-2,∴y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f′(x 0)=320x +1=4,∴x 0=±1, ∴⎩⎨⎧x 0=1,y 0=-14,或⎩⎨⎧x 0=-1,y 0=-18.切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.14.已知函数f(x)=ax 3+3x 2-6ax -11,g(x)=3x 2+6x +12,和直线m :y =kx +9,又f′(-1)=0.(1)求a的值;(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)f′(x)=3ax2+6x-6a,f′(-1)=0,即3a-6-6a=0,∴a=-2.(2)∵直线m恒过定点(0,9),先求直线m是曲线y=g(x)的切线,设切点为(x0,32x+6x0+12),∵g′(x0)=6x+6,∴切线方程为y-(32x+6x0+12)=(6x0+6)(x-x0),将点(0,9)代入,得x0=±1,当x=-1时,切线方程为y=9;当x=1时,切线方程为y=12x+9.由f′(x)=0得-6x2+6x+12=0,即有x=-1或x=2,当x=-1时,y=f(x)的切线方程为y=-18;当x=2时,y=f(x)的切线方程为y=9.∴公切线是y=9.又有f′(x)=12得-6x2+6x+12=12,∴x=0或x=1.当x=0时,y=f(x)的切线方程为y=12x-11;当x=1时,y=f(x)的切线方程为y=12x-10,∴公切线不是y=12x+9.综上所述公切线是y=9,此时存在,k=0.。

导数—变化率测试题

导数—变化率测试题

导数—变化率测试题与解析一、选择题1.在表达式f (x 0+Δx )-f (x 0)Δx 中,Δx 的值不可能导学号 10510017( )A .大于0B .小于0C .等于0D .大于0或小于02.质点运动规律S (t )=2t +3,则t 从3到3.3内,质点运动的平均速度为导学号 10510018( )A .9B .9.6C .2D .0.23.已知函数f (x )=x 2+4上两点A 、B ,x A =1,x B =1.3,则直线AB 的斜率为导学号 10510019( )A .2B .2.3C .2.09D .2.14.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为导学号 10510020( )A .3B .0.29C .2.09D .2.95.一运动物体的运动路程S (x )与时间x 的函数关系为S (x )=-x 2+2x ,则S (x )从2到2+Δx 的平均速度为导学号 10510021( )A .2-ΔxB .-2-ΔxC .2+ΔxD .(Δx )2-2·Δx6.已知函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,f (1+Δx )),则ΔyΔx =导学号 10510022( )A .4B .4+2ΔxC .4+2(Δx )2D .4x二、填空题7.已知函数y =x 3-2,当x =2时,ΔyΔx =________.导学号 10510023 8.在x =2附近,Δx =14时,函数y =1x 的平均变化率为________.导学号 105100249.已知曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.导学号 10510025三、解答题10.已知函数f (x )=2x +1,g (x )=-2x ,分别计算在区间[-3,-1]、[0,5]上函数f (x )及g (x )的平均变化率.导学号 10510026一、选择题1.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x 中,平均变化率最大的是导学号 10510027( )A .④B .③C .②D .①2.汽车行驶的路程s 和时间t 之间的函数图象如图,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为导学号 10510028()A.v2=v3<v1B.v1<v2=v3 C.v1<v2<v3D.v2<v3<v1二、填空题3.函数y=x在x=1附近,当Δx=12时的平均变化率为________.导学号 105100294.过曲线f(x)=2x2的图象上两点A(1,2),B(1+Δx,2+Δy)作曲线的割线AB,当Δx=14时割线的斜率为________.导学号 10510030三、解答题5.比较y=x3与y=x2在x=2附近平均变化率的大小.导学号 105100316.路灯距地面8m,一个身高为1.6m的人以84m/min的速度在地面上从路灯在地面上的射影点C处沿直线匀速离开路灯.导学号 10510032(1)求身影的长度y与人距路灯的距离x之间的关系式;(2)求人离开路灯10s内身影的平均变化率.参考答案1.[答案]C[解析]Δx可正,可负,但不为0,故应选C. 2.[答案]C[解析]S(3)=9,S(3.3)=9.6,∴平均速度v=S(3.3)-S(3)3.3-3=0.60.3=2,故应选C.3.[答案]B[解析]f(1)=5,f(1.3)=5.69.∴k AB=f(1.3)-f(1)1.3-1=5.69-50.3=2.3,故应选B.4.[答案]D[解析]f(-1)=-(-1)2+(-1)=-2. f(-0.9)=-(-0.9)2+(-0.9)=-1.71.∴平均变化率为f(-0.9)-f(-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.5.[答案]B[解析]∵S(2)=-22+2×2=0,∴S(2+Δx)=-(2+Δx)2+2(2+Δx)=-2Δx-(Δx)2,∴S(2+Δx)-S(2)2+Δx-2=-2-Δx,故应选B.6.[答案] B[解析]Δy=f(1+Δx)-f(1)=2(1+Δx)2-1-2+1=2·(Δx)2+4·Δx,所以ΔyΔx =2Δx+4.7.[答案](Δx)2+6Δx+12[解析]ΔyΔx=(2+Δx)3-2-(23-2)Δx=(Δx)3+6(Δx)2+12ΔxΔx=(Δx)2+6Δx+12.8.[答案]-29[解析]ΔyΔx=12+Δx-12Δx=-14+2Δx=-29.9.[答案]5 4.1[解析]当Δx=1时,割线AB的斜率k1=ΔyΔx=(2+Δx)2-1-22+1Δx=(2+1)2-221=5.当Δx=0.1时,割线AB的斜率k2=ΔyΔx=(2+0.1)2-1-22+10.1=4.1.10.[解析]函数f(x)在[-3,-1]上的平均变化率为f(-1)-f(-3)-1-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2.函数f(x)在[0,5]上的平均变化率为f(5)-f(0)5-0=2.函数g(x)在[-3,-1]上的平均变化率为g(-1)-g(-3)-1-(-3)=-2.函数g(x)在[0,5]上的平均变化率为g(5)-g(0)5-0=-2.1.[答案] B[解析]Δx=0.3时,①y=x在x=1附近的平均变化率k1=1;②y=x2在x =1附近的平均变化率k2=2+Δx=2.3;③y=x3在x=1附近的平均变化率k3=3+3Δx+(Δx)2=3.99;④y=1x在x=1附近的平均变化率k4=-11+Δx=-1013.∴k3>k2>k1>k4,故应选B.2.[答案] C[解析]∵v1=k OA,v2=k AB,v3=k BC,由图象易知k OA<k AB<k BC,∴v1<v2<v3,故选C.3.[答案]6-2[解析]ΔyΔx=1+Δx-1Δx=6-2.4.[答案]-72 25[解析]割线AB的斜率k=(2+Δy)-2(1+Δx)-1=Δy Δx=2(1+Δx )2-2Δx =-2(Δx +2)(1+Δx )2=-7225. 5. [解析] 当自变量x 从x =2变化到x =2+Δx 时,y =x 3的平均变化率k 1=(2+Δx )3-23Δx=(Δx )2+6Δx +12,y =x 2的平均变化率k 2=(2+Δx )2-22Δx=Δx +4,∵k 1-k 2=(Δx )2+5Δx +8=(Δx +52)2+74>0, ∴k 1>k 2.∴在x =2附近y =x 3的平均变化率较大.6. [解析] (1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,则AB AC =BECD ,即y y +x=1.68,所以y =f (x )=14x .(2)84m /min =1.4m/s ,在[0,10]内自变量的增量为 x 2-x 1=1.4×10-1.4×0=14, f (x 2)-f (x 1)=14×14-14×0=72. 所以f (x 2)-f (x 1)x 2-x 1=7214=14.即人离开路灯10s 内身影的平均变化率为14.。

(易错题)高中数学选修1-1第三章《变化率与导数》测试题(答案解析)(1)

(易错题)高中数学选修1-1第三章《变化率与导数》测试题(答案解析)(1)

一、选择题1.已知函数()()xx af x e a R e=+∈,若()f x 为奇函数,则曲线()y f x =在0x =处的切线方程为( ) A .2y x =- B .y x =-C .2y x =D .y x =2.已知过点P 作曲线y =x 3的切线有且仅有两条,则点P 的坐标可能是( )A .(0,1)B .(0,0)C .(1,1)D .(-2,-1)3.已知函数()2ln f x x x =+,则函数()f x 在1x =处的切线方程是( ) A .320x y --= B .320x y +-= C .320x y -+= D .320x y ++=4.已知函数34(x)sin 1xf x x e =+++,其导函数为'()f x ,则(2020)'(2020)(2020)'(2020)f f f f ++---的值为( )A .4040B .4C .2D .05.函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=,若()()g x xf x =,则()'1g =( )A .3B .2C .1D .326.已知函数()f x 为奇函数,当0x <时,()()3ln f x x a x =+-,且曲线()y f x =在点()()1,1f 处的切线的斜率是1,则实数a =( )A .1B .1-C .2D .2-7.已知函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,则m 的取值范围是( ) A .()0,eB .()0,2eC .(,)e +∞D .(2,)e +∞8.若过点(1,)P n 可作两条不同直线与曲线()2212y x x x -+=≤≤相切,则n ( ) A .既有最大值又有最小值 B .有最大值无最小值 C .有最小值无最大值D .既无最大值也无最小值9.设函数的定义域为D ,若满足条件:存在[],a b D ⊆,使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称()f x 为“倍缩函数”.若函数()2xt f x e =+为“倍缩函数”,则实数t 的取值范围是( ) A .(],1ln 2-∞--B .(),1ln2-∞--C .[)1ln 2,++∞D .()1ln 2,++∞10.某种新产品的社会需求量y 是时间t 的函数,记作:y =f (t ).若f (0)=y 0,社会需求量y 的市场饱和水平估计为500万件,经研究可得,f (t )的导函数f '(t )满足:f '(t )=kf (t )(500﹣f (t ))(k 为正的常数),则函数f (t )的图象可能为( )③ ④① ②A .①②B .①③C .②④D .①②③11.若52345012345(23)x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++为() A .-233B .10C .20D .23312.已知函数()f x 的导函数为()()()2,232ln f x f x x xf x ''=-+,则()2f '=( ) A .92B .94C .174D .178二、填空题13.曲线2x y ae +=的切线方程为260x y -+=,则实数a 的值为_______. 14.已知函数()()1,1ln ,1x x f x x x ⎧+<=⎨≥⎩,若方程()=f x ekx 恰有两个实数解,其中e 是自然对数的底数,则实数k 的取值范围为________. 15.在1x =附近,取0.3x ∆=,在四个函数①y x =;②2y x ;③3y x =;④1y x=中,平均变化率最大的是__________.16.已知函数()f x 的导函数为(x)f ',若32()(1)2f x x f x '=+-,则(1)f '的值为___.17.设曲线1cosx y sinx +=在点π,12⎛⎫⎪⎝⎭处的切线与直线x ay 10-+=平行,则实数a =______.18.过点()0,1且与曲线11x y x +=-在点()3,2处的切线垂直的直线的方程为______. 19.已知函数()11,03ln ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩若函数()0f x ax -=恰有3个零点,则实数a 的取值范围为________.20.已知直线l 与曲线()sin f x x =切于点(,sin )A αα,且直线l 与曲线()sin f x x =交于点(,sin )B ββ ,若-αβπ=,则tan α的值为________.三、解答题21.设函数1()ln x xbe f x ae x x-=+.(1)求导函数()'f x ;(2)若曲线()y f x =在点(1,(1))f 处的切线方程为(1)2y e x =-+,求a ,b 的值. 22.已知函数f (x )=x 3﹣3x 2+a (a ∈R ).(1)若f (x )的图象在(1,f (1))处的切线经过点(0,2),求a 的值;(2)若对任意x 1∈[0,2],都存在x 2∈[2,3]使得f (x 1)+f (x 2)≤2,求实数a 的范围. 23.已知曲线32:32C y x x x =-+,直线:l y kx =,且直线l 与曲线C 相切于点()()000,0x y x ≠,求直线l 的方程及切点的坐标.24.函数在点处的切线方程为,若在区间上,恒成立,求的取值范围.25.已知函数()sin xxf x e =(1)求函数()f x 在点()()0,0M f 处的切线方程;(2)若()0f x k -≤在[]0,x π∈时恒成立,求k 的取值范围. 26.已知函数()2e 2xf x ax x x =--.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,若曲线()y f x =在直线y x =-的上方,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由函数()f x 为奇函数,解得1a =-,得到1()xx f x e e=-,求得(0)f ',得到切线的斜率,进而可求解切线的方程. 【详解】由题意,因为函数()()xxa f x e a R e=+∈为奇函数,则()0000a f e e =+=,解得1a =-,即1()xx f x e e =-,则1()x x f x e e +'=,所以01(0)2f e e'=+=,即2k =, 且当0x =时,001(0)0f e e=-=,即切点的坐标为(0,0), 所以切线的方程为2y x =,故选C. 【点睛】本题主要考查了利用导数求解在某点处的切线方程,其中熟记导数的几何意义求解切线的斜率,再利用直线的点斜式求解切线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.2.C解析:C 【分析】求出函数的导数,设切点为3(,)m m ,求得切线的斜率,以及切线的方程,运用代入法,将选项代入切线的方程,解方程即可得到结论. 【详解】3y x =的导数为23y x '=,设切点为3(,)m m ,可得切线的斜率为23m ,切线的方程为323y m m x m -=-(),若(0,0)P ,则3230)(m m m -=-,解得0m =,只有一解;若(01)P ,,则32130)(m m m -=-,可得312m =-,只有一解; 若(1,1)P ,则32131m m m -=-(),可得322310m m -+=, 即为2(1)20(1)m m -+=,解得1m =或12-,有两解; 若(2,1)P --,则32132)m m m --=-(-, 可得322610m m +-=,由322()261()612f m m m f m m m '=-=++,,当20m -<<时,()f m 递减;当0m >或2m <-时,()f m 递增. 可得(0)1f =-为极小值,(2)7f -=为极大值, 则322610m m +-=有3个不等实数解. 故选:C . 【点睛】本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和设出切点是解题的关键,注意运用排除法,属于中档题.3.A解析:A 【分析】求出导数,求得切线的斜率,切点坐标,由斜截式方程,即可得到切线的方程. 【详解】()2ln f x x x =+, 1()2(0)f x x x x'∴=+>(1)3f '∴=,又(1)1f =,∴函数()f x 在1x =处的切线方程13(1)y x -=-,即320x y --=. 故选:A 【点睛】本题主要考查导数的几何意义,求切线的方程,正确求导是解题的关键,属于基础题.4.B解析:B 【分析】计算得到()()4f x f x +-=,()()''0f x f x --=,代入数据得到答案. 【详解】函数34(x)sin 1x f x x e =++⇒+()()44411x x x e f x f x e e +-=+=++, ()()224'3cos 1xxe f x x x e=-+++,()()''0f x f x --=,(2020)'(2020)(2020)'(2020)=4f f f f ++---,故答案选B . 【点睛】本题考查了函数的奇偶性,计算出()()4f x f x +-=是解题的关键.5.D解析:D 【解析】分析:先求出()'g x 和(1)g ',再求(1)(1)f f '和即得()'1g . 详解:由题得()()(),(1)(1)(1),g x f x xf x g f f =+∴'=+'''因为函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=, 所以1(1),(1)1,2f f =='所以13(1)(1)(1)1.22g f f =+'='=+ 故答案为D.点睛:(1)本题主要考查求导和导数的几何意义,意在考查学生对该知识的掌握水平.(2) 函数()y f x =在点0x 处的导数0()f x '是曲线()y f x =在00(,())P x f x 处的切线的斜率,相应的切线方程是000()()y y f x x x '-=-6.C解析:C 【分析】利用奇偶性可求得0x >时()f x 的解析式,根据切线斜率为()1f '可构造方程求得结果. 【详解】当0x >时,0x -<,()3ln f x x a x ∴-=-+,()f x 为奇函数,()()()3ln 0f x f x x a x x ∴=--=->, ()23af x x x'∴=-,()131f a '∴=-=,解得:2a =. 故选:C . 【点睛】本题考查导数几何意义的应用,涉及到利用函数奇偶性求解函数解析式的问题7.D解析:D 【分析】原问题等价于函数()x h x xe =与函数1()()2g x m x =-有两个不同的交点,求出两函数相切时的切线斜率,再结合函数特征,求出m 的取值范围即可. 【详解】解:函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,等价于()x h x xe =与1()()2g x m x =-有两个不同的交点,()g x 恒过点1(,0)2,设()g x 与()h x 相切时切点为(,)a a ae ,因为'()(1)x h x e x =+,所以切线斜率为(1)a e a +,则切线方程为(1)()a a y ae a e x a -=+-,当切线经过点1(,0)2时,解得1a =或12a =-(舍),此时切线斜率为2e ,由函数图像特征可知:函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,则实数m 的取值范围是(2,)e +∞. 故选:D. 【点睛】本题考查导数的综合应用,由函数零点求参数的取值范围,难度中等.8.C解析:C 【分析】数形结合分析临界条件再判断即可. 【详解】对()2212y x x x -+=≤≤求导有'22y x =+()12x -≤≤,当2x =时'6y =,此时切线方程为()()22226264y x y x -+⨯=-⇒=-,此时642n =-=.此时刚好能够作出两条切线,为临界条件,画出图像有:又当1x =时 3y =为另一临界条件,故[)2,3n ∈.故n 有最小值无最大值. 故选:C 【点睛】本题主要考查了导数的几何意义的运用,需要数形结合分析临界条件进行求解.属于中档题.9.B解析:B 【分析】判处出()2xt f x e =+单调递增,可得2222a b t a e t b e ⎧+=⎪⎪⎨⎪+=⎪⎩,进而可得a ,b 为方程2x x t e -=的两个实根,进一步转化为函数1xy e =与22x t y -=有两个交点,求出斜率为12的切线方程为111ln 222y x ⎛⎫-=- ⎪⎝⎭,切线在y 轴上的截距为1ln 22+,只需1ln 222t +->即可. 【详解】因为函数()2xtf x e =+为“倍缩函数”, 所以存在[],a b D ⊆,使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,由于()2xt f x e =+单调递增,所以2222a b t ae t be ⎧+=⎪⎪⎨⎪+=⎪⎩,即a ,b 为方程2xx te -=的两个实根, 进一步转化为函数1xy e =与22x ty -=有两个交点, 不妨先求出与函数1xy e =相切且斜率为12的直线方程. 对于数1x y e =,求导得1x y e '=,令12xe =,解得1ln 2x =,112y =, 所以斜率为12的切线方程为111ln 222y x ⎛⎫-=- ⎪⎝⎭,该直线在y 轴上的截距为1ln 22+, 要使函数1xy e =与22x t y -=有两个交点,则1ln 222t +->,所以1ln 2t <--,故选:B . 【点睛】本题是函数的新定义题目,考查了函数的单调性求值域、导数的几何意义求切线方程,属于中档题.10.B解析:B 【分析】令()0f t '=,则()0f t =或500,即当()0f t =或500时,曲线的切线斜率接近0,从而得到答案. 【详解】因为()()()()500f t kf t f t '=﹣, 令()0f t '=,则()0f t =或500,即当()0f t =或500时,曲线的切线斜率接近0, 由选项可知,只有①③符合题意, 故选:B. 【点睛】本题考查函数的实际应用,考查导数的几何意义,根据导数的值求函数图像切线的斜率,属于中档题.11.A解析:A 【解析】 【分析】对等式两边进行求导,当x =1时,求出a 1+2a 2+3a 3+4a 4+5a 5的值,再求出a 0的值,即可得出答案. 【详解】对等式两边进行求导,得:2×5(2x ﹣3)4=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4, 令x =1,得10=a 1+2a 2+3a 3+4a 4+5a 5; 又a 0=(﹣3)5=﹣243,∴a 0+a 1+2a 2+3a 3+4a 4+5a 5=﹣243+10=﹣233. 故选A . 【点睛】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a 1+2a 2+3a 3+4a 4+5a 5是解题的关键.12.D解析:D 【分析】求导数,将2x =代入导函数解得()2f ' 【详解】()()()()21232ln '432f x x xf x f x x f x''=-+⇒=-+将2x =代入导函数()()()117'2832'228f f f '=-+⇒= 故答案选D 【点睛】本题考查了导数的计算,把握函数里面()2f '是一个常数是解题的关键.二、填空题13.2【分析】根据题意设直线与曲线的切点坐标为利用导数求出切线的方程与比较分析可得且解可得即可得切点的坐标将切点坐标代入曲线方程分析可得答案【详解】根据题意设曲线与的切点的坐标为其导数则切线的斜率又由切解析:2 【分析】根据题意,设直线与曲线的切点坐标为2m m ae +(,),利用导数求出切线的方程,与260x y -+=比较分析可得22m ae +=且226m -+=,解可得2m =-,即可得切点的坐标,将切点坐标代入曲线方程,分析可得答案. 【详解】根据题意,设曲线2x y ae +=与260x y -+=的切点的坐标为2m m ae +(,),其导数2x y ae+'=,则切线的斜率2m k ae += ,又由切线方程为260x y -+=,即26y x =+,则22m k ae +==, 则切线的方程为22m m y aeae x m ++-=-(),又由22m ae +=,则切线方程为22y x m -=-(),即222y x m =-+,则有226m -+=,解可得2m =- ,则切点的坐标为22-(,) ,则有(2)22a e -+=⨯ , 2a ∴=. 故答案为:2. 【点睛】本题考查利用导数计算曲线的切线方程,关键是求出切点的坐标.14.【分析】方程恰有两个实数解即曲线与直线有两个不同的交点利用导数求切线方程的斜率运用数形结合思想结合图象进行求解即可【详解】方程恰有两个实数解即曲线与直线有两个不同的交点设则设过原点的直线与相切的切点解析:1[e -,21]e【分析】方程()f x ekx =恰有两个实数解,即曲线()y f x =与直线y ekx =有两个不同的交点,利用导数求切线方程的斜率,运用数形结合思想结合图象进行求解即可. 【详解】方程()f x ekx =恰有两个实数解, 即曲线()y f x =与直线y ekx = 有两个不同的交点,设()ln g x x =,则1()g x x'=, 设过原点的直线与()ln g x x =相切的切点坐标为:(,)x y '',则切线方程为:1()y y x x x ''-=-', 又此切线过点(0,0),求得:1y '=,即ln 1x '=,即x e '=,即1()g x e''=, 由图可知:曲线()y f x =与直线y ekx =有两个不同的交点时有:11eke-, 即实数k 的取值范围为:1[e -,21]e, 故答案为:1[e -,21]e【点睛】本题考查了分段函数的性质、考查了利用导数求切线方程的斜率,考查了数形结合的思想,考查了数学运算能力.15.③【分析】先根据平均变化率的定义求得再分别计算各选项对应的平均变化率即可求解【详解】根据平均变化率的计算公式可得所以在附近取则平均变化率的公式为则要比较平均变化率的大小只需比较的大小下面逐项判定:①解析:③ 【分析】先根据平均变化率的定义,求得00()()f x x f x y x x+∆-∆=∆∆,再分别计算各选项对应的平均变化率,即可求解. 【详解】根据平均变化率的计算公式,可得00()()f x x f x y x x+∆-∆=∆∆, 所以在1x =附近取0.3x ∆=,则平均变化率的公式为(1.3)(1)0.3y f f x ∆-=∆, 则要比较平均变化率的大小,只需比较(1.3)(1)y f f ∆=-的大小,下面逐项判定:①中,函数y x =,则(1.3)(1)0.3y f f ∆=-=; ②中,函数2yx ,则(1.3)(1)0.69y f f ∆=-=;③中,函数3y x =,则(1.3)(1) 1.197y f f ∆=-=; ④中,函数1y x=中, 则(1.3)(1)0.23y f f ∆=-≈, 所以,平均变化率最大的是③. 【点睛】本题主要考查了平均变化率的应用,其中解答中熟记平均变化率的计算公式,正准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.16.【解析】【分析】求函数的导函数令即可求出的值【详解】因为令则所以【点睛】本题主要考查了函数的导数及导函数求值属于中档题 解析:3-【解析】 【分析】求函数的导函数,令1x =即可求出()1f '的值. 【详解】因为 2()32(1)f x x f x ''=+令1x =则(1)32(1)f f ''=+ 所以(1)3f '=- 【点睛】本题主要考查了函数的导数,及导函数求值,属于中档题.17.【解析】【分析】对函数求导求得得到a 的方程求解即可【详解】切线与直线平行斜率为又所以切线斜率所以的斜率为即解得故答案为【点睛】本题考查根据切线的斜率求参数熟记基本初等函数的求导公式准确计算是关键是基 解析:1-【解析】【分析】 对函数1cosx y sinx +=求导,求得πf 2⎛⎫⎪⎝⎭',得到a 的方程求解即可. 【详解】切线与直线x ay 10-+=平行,斜率为1a, 又21cosxy sin x--=', 所以切线斜率πk f'12⎛⎫==- ⎪⎝⎭,所以x ay 10-+=的斜率为1-, 即11a=-,解得a 1=-. 故答案为1-. 【点睛】本题考查根据切线的斜率求参数,熟记基本初等函数的求导公式,准确计算是关键,是基础题.18.【解析】【分析】求导函数确定切线的斜率可得所求直线的斜率再利用点斜式可得直线方程【详解】当时即曲线在点处的切线斜率为与曲线在点处的切线垂直的直线的斜率为2直线过点所求直线方程为即故答案为【点睛】本题 解析:210x y -+=【解析】 【分析】求导函数,确定切线的斜率,可得所求直线的斜率,再利用点斜式可得直线方程. 【详解】11x y x +=-, 22'(1)y x ∴=--,当3x =时,1'2y =-,即曲线11x y x +=-在点()3,2处的切线斜率为12-, ∴与曲线11x y x +=-在点()3,2处的切线垂直的直线的斜率为2, 直线过点()0,1,∴所求直线方程为12y x -=,即210x y -+=.故答案为210x y -+=. 【点睛】本题考查导数的几何意义,考查直线方程,解题的关键是理解导数的几何意义.19.【分析】画出的图像再分析与的交点个数即可【详解】画出函数的图像如图所示:先求与相切时的情况由图可得此时设切点为则解得此时斜率又当时与平行也为临界条件故故答案为:【点睛】本题主要考查了数形结合求解函数解析:11 , 3e⎡⎫⎪⎢⎣⎭【分析】画出()11,03ln,0x xf xx x⎧+≤⎪=⎨⎪>⎩的图像,再分析()f x与y ax=的交点个数即可.【详解】画出函数()f x的图像,如图所示:先求y ax=与lny x=相切时的情况,由图可得此时lny x=,1'yx=设切点为()00,lnx x,则001lnaxx ax⎧=⎪⎨⎪=⎩,解得0x e=,1ae=.此时xye=.斜率113e>.又当13a=时13y x=与11,03x x+≤平行也为临界条件.故11,3ae⎡⎫∈⎪⎢⎣⎭.故答案为:11,3e⎡⎫⎪⎢⎣⎭【点睛】本题主要考查了数形结合求解函数零点个数的问题,需要根据题意画出图像,再分析临界条件分析.属于中档题.20.【分析】由导数的几何意义求出切线方程代入点坐标由代入后可求得【详解】由题意∴直线的方程为又直线过∴由得∴整理得∴故答案为:【点睛】本题考查导数的几何意义考查同角间的三角函数关系与诱导公式解题时只要由解析:2π 【分析】 由导数的几何意义求出切线方程,代入B 点坐标,由βαπ=-代入后可求得tan α. 【详解】由题意()cos f x x '=,∴直线l 的方程为sin cos ()y x ααα-=-,又直线l 过(,sin )B ββ,∴sin sin cos ()βααβα-=-,由得βαπ=-,∴sin()sin cos ()απααπ--=-,整理得2sin cos απα=,∴tan 2πα=.故答案为:2π. 【点睛】本题考查导数的几何意义,考查同角间的三角函数关系与诱导公式.解题时只要由导数几何意义写出切线方程,代入已知条件即可求解.三、解答题21.(1)()f x '=112ln ---++x x x xae be x beae x x x;(2)1a =,2b =. 【分析】(1)根据导数的运算法则求导; (2)求出(1)f ',由(1)e f ,(1)2f =可求得,a b .【详解】(1)由1e ()e ln x xb f x a x x-=+,得()1()ln x xbe f x ae x x -'⎛⎫'=+ ⎪⎝⎭' 112ln x x x xae be x be ae x x x---=++. (2)由题意得,切点既在曲线()y f x =上,又在切线(1)2y e x =-+上,将1x =代入切线方程,得2y =, 将1x =代入函数()y f x =,得(1)f b =, 所以2b =.将1x =代入导函数()'f x 中 得(1)f ae e ==', 所以1a =. 【点睛】关键点点睛:本题考查导数的运算法则,考查导数的几何意义.函数()f x 在点00(,())x f x 处的切线方程是000()()()y f x f x x x '-=-,若求过点()00,x y 的切线方程,则切点坐标为11(,)x y ,写出切线方程111()()y y f x x x '---,代入00(,)x y 求出11,x y 即可得切线方程.22.(1)a =1;(2)a ≤3 【分析】(1)出导数,求出切线的斜率和切点,再由两点斜率公式,即可得到a ;(2)运用导数判断()f x 在[0,2],在[2,3]的单调性,求出最值,由题意得,()()12max min 2f x f x +≤得到不等式,解出即可. 【详解】(1)2()36f x x x '=-,(1)3f '∴=-,又(1)2f a =-,∴切点坐标(1,2)a -, 又∵切线经过点(0,2), ∴由两点的斜率公式,得431a -=-, 解得1a =;(2)2()363(2)f x x x x x '=-=-,当[0,2]x ∈时,()0,()f x f x '≤单调递减; 当[2,3]x ∈时,()0f x '≥,()f x 单调递增,1[0,2]x ∈,()1f x ∴的最大值为(0)f a =,又2[2,3]x ∈,()2f x ∴的最小值为(2)4f a =-,对任意1[0,2]x ∈,都存在2[2,3]x ∈使得()()122f x f x +≤,()()12max min 2f x f x +≤,即有42a a +-≤, 解得3a ≤. 【点睛】本题主要考查的是导数的运用:求切线方程和求单调区间,最值,考查恒成立和存在思想,注意转化为求最值,考查运算能力,属于中档题和易错题. 23.14y x =-,33,28⎛⎫- ⎪⎝⎭【分析】切点(x 0,y 0)既在曲线上,又在切线上,由导数可得切线的斜率,构造方程,求解即可. 【详解】∵直线过原点,∴()0000y k x x =≠. 由点()00,x y 在曲线C 上,得32000032y x x x =-+,∴2000032y x x x =-+. 又∵2362y x x =-+',∴在点()00,x y 处曲线C 的切线的斜率()2000362k f x x x =-'=+,∴22000032362x x x x -+=-+,整理得200230x x -=,解得()00302x x =≠. 这时,038y =-,14k =-. 因此,直线l 的方程为14y x =-,切点的坐标是33,28⎛⎫- ⎪⎝⎭. 【点睛】本题考查了导数的几何意义、求函数的导数;“已知”曲线的切点时,包含以下三方面信息:①切点在切线上,②切点在曲线上,③切点横坐标处的导数等于切线的斜率.24.【解析】 【分析】先求出切线方程为,设,则,再对分类讨论,利用导数分析解答得解. 【详解】 解:,在处切线的斜率为,所以切线方程为,即.设,则. 依题意,当时,恒成立.①当时,在区间上,,是增函数,所以;②当时,在区间上,,是减函数,所以.综上所述,的取值范围是.【点睛】本题主要考查导数的几何意义,考查利用导数研究不等式的恒成立问题,考查函数的单调性、最值的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.25.(1)y x =(2)4,π-⎫+∞⎪⎪⎣⎭【分析】(1)求得函数的导数cos sin ()xx xf x e'-=,得到'(0)1f =,(0)0f =,利用直线的点斜式方程,即可求解其切线的方程;(2)利用导数求得函数()sin xf x e x -=在0,4π⎡⎫⎪⎢⎣⎭单调递增,在4ππ⎛⎤⎥⎝⎦单调递减,求得函数4max ()2f x e π=,进而由max ()k f x >,即可求解k 的取值范围.【详解】(1)由题意,函数sin ()x x f x e =,则cos sin ()xx x f x e '-=,可得'(0)1f =,又(0)0f =,所以函数()f x 在点(0,(0))M f 处的切线方程为y x =.(2)因为[0,]x π∈,令cos sin ()0x x xf x e '-==,解得4x π=,当x [0,)4π∈时,'()0f x >,当4x ππ⎛⎤∈ ⎥⎝⎦时,'()0f x <, 所以函数()sin xf x e x -=在0,4π⎡⎫⎪⎢⎣⎭单调递增,在4ππ⎛⎤⎥⎝⎦单调递减,所以4max ()42f x f e ππ⎛⎫== ⎪⎝⎭,若()0f x k -≤,在[0,]x π∈恒成立,即max ()k f x >恒成立,所以42k e π-≥,所以k 的取值范围是4,π-⎫+∞⎪⎪⎣⎭. 【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,以及利用导数求解函数的恒成立问题,其中解答中熟记导数的几何意义,以及准确利用导数求得函数的单调性与最值是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题. 26.(1)y x =-;(2)[)1,+∞ 【分析】(1)根据题意,求出函数的导数,由导数的几何意义可得切线的斜率,求出切点的坐标,由直线的点斜式方程分析可得答案;(2)根据题意,原问题可以转化为1e xx a +>恒成立,设()1x x g x e+=,求出()g x 的导数,由函数的导数与函数单调性的关系分析可得其最大值,分析可得答案. 【详解】(1)当1a =时,()22xf x xe x x =--,其导数()()122xf x ex x =+--',()01f '=-.又因为()00f =,所以曲线y=f (x )在点(0,f (0))处的切线方程为y x =-; (2)根据题意,当0x >时,“曲线y=f (x )在直线y x =-的上方”等价于“2e 2x ax x x x -->-恒成立”, 又由x >0,则2e 2x ax x x x -->-10x ae x ⇒-->⇒1ex x a +>, 则原问题等价于1ex x a +>恒成立; 设()1x x g x e +=,则()xxg x e '=-, 又由0x >,则()0g x '<,则函数()g x 在区间()0,∞+上递减, 又由()0101g e ==,则有11x x e+<, 若1e xx a +>恒成立,必有1a ≥, 即a 的取值范围为[)1,+∞. 【点睛】本题考查利用导数分析函数的切线方程以及最值,考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为()a h x >或()a h x <恒成立,即()max a h x >或()min a h x <即可,利用导数知识结合单调性求出()max h x 或()min h x 即得解,属于中档题.。

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算

第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】 一、选择题
1.(2015春 保定校级月考)函数在一点的导数是( ) A.在该点的函数值的增量与自变量的增量的比 B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率。

2.(2015春 淄博校级月考)在曲线2
2y x =+的图象上取一点(1,3)及邻近一点()1,3x y +∆+∆,则
y
x
∆∆ 为( )
A. 12x x ∆+
+∆ B. 2x ∆+ C. 1x x ∆-∆ D. 1
2x x
∆-+∆
3.一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么t
s
t ∆∆→∆0lim 为 ( )
A .从时间t 到t t +∆时,物体的平均速度
B .时间t 时该物体的瞬时速度
C .当时间为t ∆时该物体的速度
D .从时间t 到t t +∆时位移的平均变化率
4. 已知函数)(x f y =,下列说法错误的是( ) A. )()(00x f x x f y -∆+=∆叫函数增量
B.
x
x f x x f x y ∆-∆+=
∆∆)
()(00叫函数在[x x x ∆+00,]上的平均变化率 C. )(x f 在点0x 处的导数记为y ' D. )(x f 在点0x 处的导数记为)(0x f '
5.一木块沿某一斜面自由下滑,测得下滑的水平距离s 与时间t 之间的函数关系为2
18
s t =, 则t=2 s 时,此木块在水平方向的瞬时速度为( ) A .2 B .1 C .
12 D .14
6. 设()4f x ax =+,若'(1)2f =,则a=( )
A .2
B .-2
C .3
D .不确定
7.(2015秋 泗县校级期末)若()f x 在(),-∞+∞可导,且
(2)()
13lim
x f a x f a x
∆→+∆-=∆,则'()f a =( )
A. 23
B.2
C.3
D.32
8.在地球上一物体作自由落体运动时,下落距离2
12
S gt =其中t 为经历的时间,29.8/g m s =, 若 0(1)(1)
lim
t S t S V t
∆→+∆-=∆9.8/m s =,则下列说法正确的是( )
A. 0~1s 时间段内的速率为9.8/m s
B. 在1~1+△ts 时间段内的速率为9.8/m s
C. 在1s 末的速率为9.8/m s
D. 若△t >0,则9.8/m s 是1~1+△ts 时段的速率;
若△t <0,则9.8/m s 是1+△ts ~1时段的速率.
二、填空题
9.已知函数y =x 3
-2,当x =2时,Δy Δx
= .
10.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则
[(0)]f f = ;0
(1)(1)
lim
x f x f x
∆→+∆-∆= .
11. 一质点的运动方程是3
2
2s t t t =-+, 其中最小速度是 。

三、解答题 12.已知函数1
y x x
=求函数在x=4处的导数.
13.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热。

如果在第x h 时,原油温度(单位:C ︒)为()()801572
≤≤+-=x x x x f .计算第2h 和第6h 时,原油温度的瞬时变化
率,并说明它们的意义。

14. 已知函数y=log 2x+1。

(1)求函数在[2,2.1]上的平均变化率;
(2)若自变量从x 0增加到x 0+Δx ,该函数的平均变化率又是多少?(x 0>0)
15. 已知曲线2
2(0)y px y =>,用定义求:0x x =处的导数;
【答案与解析】 1. 【答案】 C 2. 【答案】B
【解析】Δy =(1+Δx )2+2-1-1=Δx 2+2Δx ,x
y
∆∆=2+Δx .选B 。

3. 【答案】 C
【解析】 ∵f ′(4)=-sin4,π<4<2

, ∴sin4<0.∴f ′(4)>0,即函数在点(4,f (4))处的斜率为正值. ∴切线的倾斜角为锐角.
4. 【答案】 C
【解析】 正确的写法应该是0'|x x y = 5. 【答案】 C
【解析】 220011(2)2
1118
8'|lim lim 822t t t t s t t =∆→∆→+∆-⨯⎛⎫==∆+= ⎪∆⎝
⎭。

故选C 。

6. 【答案】 A
【解析】 ∵0
0(1)(1)'(1)lim lim 2x x f x f a x
f a x x
∆→∆→+∆-∆====∆∆,∴a=2,故选A 。

7. 【答案】 D
【解析】因为
(2)()
13lim
x f a x f a x
∆→+∆-=∆,即
2(2)()132lim x f a x f a x ∆→+∆-⋅=∆,02(2)()132lim x f a x f a x ∆→+∆-=∆,'2()13f a = ,所以'
3()2
f a =,故选D 。

8. 【答案】 C
【解析】 0(1)(1)
lim
'(1)t s t s v s t
∆→+∆-==∆,即s (t )在t=1 s 时的导数值。

由导数的物理意义,得
9.8 m / s 是物体在t=1 s 这一时刻的速率。

故选C 。

9. 【答案】 2
42()x x +∆+∆
【解析】332(2)(22)42()y x x x x x
∆+∆--==+∆+∆∆∆ 10. 【答案】 2, 2
【解析】 由图可知:f(0)=4,f(4)=2; f(x)=-2x+4,带入可得。

11. 【答案】
53
【解析】由于()2
2
155
3223333
s t t t t ⎛⎫'=-+=-+≥ ⎪⎝⎭
12. 【答案】
12
【解析】
0011
(2)
(4)(4)44'(4)lim lim x x f x f x f x x
∆→∆→-+∆-+∆==∆∆
01
12)44lim x x x ∆→⎛⎫-- ⎪+∆⎝⎭=
∆0lim x ∆→=
15
lim 4(4)
16x x ∆→⎛
-==- +∆⎝, 13. 【解析】在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f
根据导数定义
0(2)()f x f x f
x x
+∆-∆=
∆∆ 22(2)7(2)15(27215)3x x x x
+∆-+∆+--⨯+==∆-∆
所以00
(2)lim lim(3)3x x f
f x x ∆→∆→∆'==∆-=-∆ 同理可得:(6)5f '=
在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5, 说明在第2h 附近,原油温度大约以3/C h 的速率下降
在第6h 附近,原油温度大约以5/C h 的速率上升.
14.【 答案】0.7 120log 1x
x x ∆⎛⎫
∆+ ⎪⎝

【解析】(1)∵x 1=2,x 2=2.1,Δx=x 2-x 1=0.1,
∴12()log 212f x =+=,22()log 2.11 2.07f x =+≈, ∴函数在[2,2.1]上的平均变化率 2121()() 2.072
0.70.1
f x f x y x x x -∆-===∆-。

(2)x1=x0,x2=x0+Δx ,
020()log 1f x x =+,
020()log ()1f x x x x +∆=+∆+,
200020202
00()()log ()log log log 1x x
x y f x x f x x x x x x ⎛⎫+∆∆∆=+∆-=+∆-==+ ⎪⎝
⎭, ∴ 函数的平均变化率
1
2200log 1log 1x
y
x x x x x x ∆⎛⎫⎛⎫∆∆∆=+÷∆=+ ⎪ ⎪∆⎝⎭⎝
⎭。

15.
【解析】∵y >0
,∴y =
∴y ∆=

y x ∆=∆
=
= 当x ∆趋近于0
lim x ∆→
=。

相关文档
最新文档