模糊控制理论
控制系统的模糊控制理论与应用

控制系统的模糊控制理论与应用控制系统是指通过对特定对象的操作,以达到预期目标的过程。
在控制系统中,模糊控制理论是一种常用的控制方法。
本文将介绍控制系统的模糊控制理论以及其应用。
一、模糊控制理论的基本概念模糊控制理论是一种基于模糊逻辑的控制方法,它模拟了人类的思维和决策过程。
与传统的精确控制方法相比,模糊控制理论能够应对现实世界中存在的模糊不确定性和非线性关系。
1. 模糊集合模糊集合是模糊控制理论的基础,它是对现实世界中一类事物或对象的模糊描述。
不同于传统的集合理论,模糊集合允许元素以一定的隶属度或可信度属于这个集合。
2. 模糊逻辑模糊逻辑是模糊控制理论的核心,它用于描述和处理具有模糊性质的命题和推理。
模糊逻辑采用模糊集合的运算规则,能够处理模糊不确定性和非精确性的信息。
3. 模糊控制器模糊控制器是模糊控制系统的核心组件,它基于模糊逻辑进行决策和控制。
模糊控制器通常由模糊规则库、模糊推理机和模糊输出函数组成。
二、模糊控制理论的应用领域模糊控制理论具有广泛的应用领域,并在许多实际问题中取得了良好的效果。
1. 工业控制在工业控制领域,模糊控制理论可以应对复杂的非线性系统和参数不确定性。
例如,在温度控制系统中,模糊控制器可以根据当前的温度和环境条件,控制加热器的输出功率,以使温度保持在设定范围内。
2. 智能交通在智能交通系统中,模糊控制理论可以用于交通信号灯控制、车辆路径规划和交通流量优化。
通过根据交通状况和道路条件动态调整信号灯的时序,可以提高交通效率和道路安全性。
3. 机器人技术在机器人技术中,模糊控制理论可以用于机器人路径规划、动作控制和感知决策。
通过将环境信息模糊化,机器人可以根据当前的感知结果和目标任务制定合理的动作策略。
4. 金融风险控制在金融风险控制中,模糊控制理论可以用于风险评估和交易决策。
通过建立模糊规则库和模糊推理机制,可以根据不确定和模糊的市场信息制定合理的交易策略。
三、模糊控制理论的优势和发展方向模糊控制理论具有以下几个优势,使其在实际应用中得到了广泛的应用和研究:1. 简化建模过程:相比传统的控制方法,模糊控制理论能够简化系统的建模过程,减少系统的复杂性。
模糊控制理论及工程应用

模糊控制理论及工程应用模糊控制理论是一种能够处理非线性和模糊问题的控制方法。
它通过建立模糊规则和使用模糊推理来实现对系统的控制。
本文将介绍模糊控制理论的基本原理,以及其在工程应用中的重要性。
一、模糊控制理论的基本原理模糊控制理论是由扬·托东(Lotfi Zadeh)于1965年提出的。
其基本原理是通过建立模糊规则,对系统的输入和输出进行模糊化处理,然后利用模糊推理来确定系统的控制策略。
模糊规则是一种类似于“如果...那么...”的表达式,用于描述输入和输出之间的关系。
模糊推理则是模糊控制系统的核心,它通过将模糊规则应用于模糊化的输入和输出,来确定控制的动作。
二、模糊控制理论的工程应用模糊控制理论在工程应用中具有广泛的应用价值。
下面将分别介绍其在机械控制和电力系统控制中的应用。
1. 机械控制模糊控制理论在机械控制领域有着重要的应用。
其优势在于能处理非线性和模糊问题,使得控制系统更加鲁棒和稳定。
例如,在机器人控制中,模糊控制可实现对复杂环境的适应性和灵活性控制,使机器人能够自主感知和决策。
此外,模糊控制还可以应用于精密仪器的控制,通过建立模糊规则和模糊推理,实现对仪器位置和姿态的精确控制。
2. 电力系统控制模糊控制理论在电力系统控制领域也有着重要的应用。
电力系统是一个复杂的非线性系统,模糊控制通过建立模糊规则和模糊推理,可以实现对电力系统的稳定性和性能进行优化。
例如,在电力系统调度中,模糊控制可以根据不同的负荷需求和发电能力,实现对发电机组的出力控制,保持电力系统的稳定运行。
此外,模糊控制还可以应用于电力系统中的故障诊断和故障恢复,通过模糊推理,快速准确地定位和修复故障。
三、总结模糊控制理论是一种处理非线性和模糊问题的有效方法。
其基本原理是通过建立模糊规则和使用模糊推理来实现对系统的控制。
模糊控制理论在机械控制和电力系统控制等工程领域有着广泛的应用。
它能够提高控制系统的鲁棒性和稳定性,并且能够适应复杂的环境和变化,具有良好的控制效果。
模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。
本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。
一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。
在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。
模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。
最后,通过去模糊化操作将模糊集合转化为具体的输出值。
二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。
1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。
它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。
2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。
通过模糊控制,机器人可以对复杂的环境做出智能响应。
3. 交通控制:模糊控制在交通控制领域中有重要的应用。
通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。
4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。
通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。
5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。
模糊控制可以应对这些问题,提高生产过程的稳定性和质量。
三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。
未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。
通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。
2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。
例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。
3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。
第二章模糊控制理论基础

u U u U
经典集合论中任意一个元素与任意一个集合之间的 关系,只是“属于”或“不属于”两种,两者必居其一 而且只居其一。它描述的是有明确分界线的元素的组合。
用经典集合来处理模糊性概念时,就不行。
对于诸如“速度的快慢”、“年龄的大小”、 “温度的高低”等模糊概念没有明确的界限。
经典集合对事物只用"1"、"0"简单地表示“属于” 或“不属于”的分类;而模糊集合则用“隶属度 (Degree of membership)”来描述元素的隶属程度, 隶属度是0到1之间连续变化的值。
四种方法: 1、模糊统计法
基本思想:论域U上的一个确定的元素v0是否属于一个可变动的清 晰集合A*作出清晰的判断。
对于不同的实验者,清晰集合A*可以有不同的边界。但它们都对 应于同一个模糊集A。
模糊集A 年轻人
v0
清晰集A1* 清晰集A2*
论
17-30岁 20-35岁
域 U
所有人
计隶算属步度骤函:数在确每立次的统方计法中:,v0是固定的(如某一年龄), A*的值是可变的,作n次试验,则
示。
uU表示元素(个体)u在集合论域(全体) U内。
集合表示法(经典集合):
(1)列举法:将集合的元素全部列出的方法。 (2)定义法:用集合中元素的共性来描述集合的方法。
(3)归纳法:通过一个递推公式来描述一个集合的方法。 (4)特征函数表示法:利用经典集合论非此即彼的明晰性 来表示集合。因为某一集合中的元素要么属于这个集合, 要么就不属于这个集合。
定义2-8 设A,B F(U),则定义代数运算: (1)A与B的代数积记作A • B,运算规则由下式确定:
A • B(u)= A(u)B(u)
模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。
模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。
一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。
模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。
模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。
二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。
他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。
随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。
2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。
日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。
同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。
3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。
研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。
同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。
总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。
经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。
未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。
模糊控制理论

模糊掌握理论前言“模糊”是人类感知万物,猎取学问,思维推理,决策实施的重要特征。
“模糊” 比“清楚”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
在日常生活中,人们的思维中有很多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。
人们常用的阅历规章都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的阅历:桶里没水或水较少时,应开大水阀;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应快速关掉水阀。
其中,“较少”、“很小”等,这些表示水位和掌握阀门动作的概念都具有模糊性。
即有阅历的操作人员的掌握规章具有相当的模糊性。
模糊掌握就是采用计算机模拟人的思维方式,依据人的操作规章进行掌握,实现人的掌握阅历。
模糊掌握概况模糊掌握是以模糊集合论、模糊语言变量和模糊规律推理为基础的一种计算机数字掌握技术。
1965年,美国的LA. Zadeh创立了模糊集合论;1973年他给出了模糊规律掌握的定义和相关的定理。
1974年,英国的E. H. Mamdani首先用模糊掌握语句组成模糊掌握器,并把它应用于锅炉和蒸汽机的掌握,在试验室获得胜利。
这一开拓性的工作标志着模糊掌握论的诞生。
模糊掌握实质上是一种非线性掌握,属于智能掌握的范畴。
模糊掌握的一大特点是既具有系统化的理论,又有着大量实际应用背景。
模糊掌握的进展最初在西方遇到了较大的阻力。
这是跟西方人的思维特征亲密相关,西方人喜爱理性分析问题,要把全部东西都数字化;然而在东方尤其是在日本,却得到了快速而广泛的推广应用。
近20多年来,模糊掌握不论从理论上还是技术上都有了长足的进步,成为自动掌握领域中一个特别活跃而又硕果累累的分支。
其典型应用的例子涉及生产和生活的很多方面,例如在家用电器设施中有模糊洗衣机、空调、微波炉等;在工业掌握领域中有水净化处理、发酵过程、水泥窑炉等的模糊掌握;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯以及机器人的模糊掌握等。
模糊控制原理

模糊控制原理
模糊控制原理是一种基于模糊逻辑理论的控制方法。
模糊控制通过模糊化输入变量和输出变量,建立模糊规则库,并通过模糊推理得到模糊控制输出。
模糊控制的主要目标是实现对非线性、模糊、不确定或不精确系统的控制。
通过引入模糊因素,模糊控制可以在不准确或不确定的情况下,对系统进行稳定、鲁棒的控制。
模糊控制的核心思想是将控制问题转化为一系列的模糊规则,其中每个规则都包含了一组模糊化的输入和输出。
模糊规则的编写通常需要基于领域专家的经验和知识。
通过对输入变量和输出变量的模糊化,可以将问题的精确描述转化为模糊集合。
模糊推理使用了一系列的逻辑规则来描述输入模糊集合与输出模糊集合之间的关系,以得到模糊控制输出。
最后,通过解模糊过程将模糊输出转化为具体的控制信号,以实现对系统的控制。
模糊控制具有很强的鲁棒性和适应性,能够处理非线性、时变和多变量的系统。
它还可以处理模糊和不准确的信息,适用于实际系统中存在的各种不确定性和复杂性。
此外,模糊控制还具有良好的可解释性,可以用于解释控制决策的原因和依据。
总之,模糊控制原理是一种基于模糊逻辑理论的控制方法,通过模糊化变量、建立模糊规则库和进行模糊推理,实现对非线性、模糊、不确定或不精确系统的稳定控制。
模糊控制具有鲁棒性、适应性和可解释性等特点,在实际系统中有广泛的应用。
交通信号控制中的模糊控制理论

交通信号控制中的模糊控制理论在现代城市交通管理中,交通信号控制是优化交通流、提高道路通行效率、减少交通拥堵的重要手段。
传统的交通信号控制方法通常基于精确的数学模型和固定的规则,但在面对复杂多变的交通状况时,往往显得不够灵活和适应性差。
而模糊控制理论的出现,为交通信号控制带来了新的思路和方法。
模糊控制理论是一种基于模糊逻辑的智能控制方法,它能够处理和描述那些不精确、不确定和模糊的信息,非常适合应用于交通系统这种具有高度复杂性和不确定性的领域。
交通系统是一个极其复杂的动态系统,其交通流量、车辆速度、行人数量等因素都在不断变化,而且这些变化往往具有不确定性和随机性。
传统的控制方法需要精确的数学模型和大量的先验知识,但在实际情况中,很难准确地获取这些信息。
而模糊控制理论不需要精确的数学模型,它可以通过模糊规则和模糊推理来处理不精确和不确定的信息,从而更好地适应交通系统的复杂性和不确定性。
在交通信号控制中,模糊控制的基本思路是将交通流量、车辆排队长度、道路占有率等交通参数作为输入变量,经过模糊化处理后,根据预先设定的模糊规则进行模糊推理,得到控制信号的输出,如信号灯的相位和时长。
例如,我们可以将交通流量分为“低”“中”“高”三个模糊集,将车辆排队长度分为“短”“中”“长”三个模糊集。
然后制定模糊规则,如“如果交通流量为高且车辆排队长度为长,则延长绿灯时间”“如果交通流量为低且车辆排队长度为短,则缩短绿灯时间”等。
模糊化是模糊控制中的一个重要环节。
它将精确的输入值转换为模糊集的隶属度。
比如,对于交通流量为 100 辆/分钟,我们可以根据设定的模糊集将其模糊化为“中”的隶属度为 05,“高”的隶属度为 05。
模糊推理则是根据模糊规则和输入变量的隶属度进行推理,得到输出变量的模糊值。
最后,通过解模糊化将输出变量的模糊值转换为精确的控制值,如绿灯时间的具体时长。
与传统的交通信号控制方法相比,模糊控制具有许多优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制理论的发展与综述摘要:主要总结了模糊控制理论的形成,以及现在的发展,模糊控制理论的研究现状,模糊控制系统的应用的发展前景。
关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展1 引言自从美国加利福尼亚大学控制论专家L.A.Zadeh教授在1965年提出的《Fuzzy Set》开创了模糊数学的历,吸引了众多的学者对其进行研究,使其理论和方法日益完善,并且广泛的应用于自然科学和社会科学的各个领域,尤其是第五代计算机的研制和知识工程开发等领域占有特殊重要的地。
把模糊逻辑应用于控制领域则始于1973。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制。
此后20年来,模糊控制不断发展并在许多领域中得到成功应用。
由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种体系理论方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。
从广义上讲,模糊控制是基于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。
它是模糊数学同控制理论相结合的产物,同时也是只能控制的重要组成部分。
模糊控制的突出特点在于:1)控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。
2)控制系统的鲁棒性强,适用于解决常规控制难以解决的非线性、时变及大滞后等问题。
3)以语言变量代替常规的数学变量,易于形成专家的“知识”。
4)控制系统采用“不精确推理”。
推理过程模仿人的思维过程。
由于介入了人的经验,因而能够处理复杂甚至“病态”系统。
传统的控制理论(包括经典控制理论和现代控制理论)是利用受控对象的数学模型(即传递函数模型或状态空间模型)对系统进行定量分析,而后设计控制策略。
这种方法由于其本质的不溶性,当系统变得复杂时,难以对其工作特性进行精确描述。
而且,这样的数学模型结构也不利于表达和处理有关受控对象的一些不确定信息,更不利于人的经验、知识、技巧和直觉推理,所以难以对复杂系统进行有效地控制。
经典的模糊控制器利用模糊集合理论将专家知识或操作人员经验形成的语言规则直接转化为自动控制策略(通常是模糊规则表查询),其设计不依靠对象精确数学模型,而是利用其语言知识模型进行设计和修正控制算法。
90年代以来,模糊控制系统的研究取得了一些比较突出的进展,如模糊系统的万能逼近特性,模糊状态方程及稳定性分析,软计算技术等等,这些研究逐步丰富和发展了模糊系统的理论体系。
模糊控制在理论上突飞猛进的同时,也越来越多地、成功地应用于现实世界中。
2 模糊控制的发展模糊控制的发展基本上可分为两个阶段:初期的模糊控制器是按一定的语言控制规则进行工作的,而这些控制规则是建立在总结操作者对过程进行控制的经验基础上,或设计者对某个过程认识的模糊信息的归纳基础上,因而它适用于控制不易获得精确数学模型和数学模型不确定或多变的对象。
后期的模糊控制器则是基于控制规则难以描述,即过程控制还总结不出什么成熟的经验,或者过程有较大的非线性以及时滞等特征,试图吸取人脑对复杂对象进行随机识别和判决的特点,用模糊集理论设计自适应、自组织、自学习的模糊控制器。
模糊控制现正从以下几个方面加紧研究:1) 研究模糊控制器非线性本质的框架结构及其同常规控制策略的联系,揭示模糊控制器工作的实质和机理。
它可提供系统的分析和设计方法,解决一些先前被认为是困难但却是非常重要的问题,如稳定性、鲁棒性等。
2) 在模糊控制已取得良好实践效果的同时,从理论分析和数学推导角度揭示和证明模糊控制系统的鲁棒性优于常规控制策略。
3) 研究模糊控制器的优化设计问题,尤其是在线优化问题。
模糊控制器源于采用启发式直觉推理,其本身的推理方式难于保证控制效果的最优。
解决模糊控制器的优化问题也是进一步将其推向工业应用的有效手段。
4) 在理论研究中规则本身非线性问题及实际应用中模糊控制器的规则自学习和自动获取问题。
前者之所以成为难点,是因为具有线性规则的模糊控制器本身已属非线性控制,非线性规则则更使问题的系统化研究方法困难;后者则构成智能控制中专家系统的核心问题。
5) 将模糊控制同其它领域的理论研究方法相结合,利用模糊控制的优势解决该领域中过去用常规方法难以解决的问题。
3模糊控制理论的研究现状尽管模糊控制理论已经取得了可观的进展,但与常规控制理论相比仍不成熟。
模糊控制系统的分析和设计尚未建立起有效的方法,在很多场合下仍然需要依靠经验和试凑。
近年来,许多人一直尝试将常规控制理论的概念和方法扩展至模糊控制系统,而模糊控制与神经网络相结合的方法已成为研究的热点,二者的结合有效地推动了自学习模糊控制的发展。
模糊控制易于获得由语言表达的专家知识,能有效地控制那些难以建立精确模型而凭经验可控制的系统,而神经网络则由于其仿生特性更能有效利用系统本身的信息,并能映射任意函数关系,具有并行处理和自学习能力,容错能力也很强。
在集成大系统中,神经网络可用于处理低层感知数据,模糊逻辑可用于描述高层的逻辑框架。
模糊逻辑与神经网络的结合有两种情况: 一是将模糊技术用于神经网络形成模糊神经网络,一是用神经网络实现模糊控制。
这两方面均见于大量的研究文献。
常规模糊控制的两个主要问题在于: 改进稳态控制精度和提高智能水平与适应能力。
从大量文献中可以看出,在实际应用中,往住是将模糊控制或模糊推理的思想,与其他相对成熟的控制理论或方法结合起来,发挥各自的长处,从而获得理想的控制效果。
如: 利用模糊复合控制理论的分档控制,将PI或PID 控制策略引入Fuzzy 控制器,构成Fuzzy2PI或Fuzzy2PID 复合控制;适应高阶系统模糊控制需要的三维模糊控制器;将精确控制和模糊控制结合起来的精确—模糊混合控制;将预测控制与模糊控制相结合,利用预测模型对控制结果进行预报,并根据目标误差和操作者的经验应用模糊决策方法在线修正控制策略的模糊预测控制等。
模糊控制的发展过程中,提出了多种自组织、自学习、自适应模糊控制器。
它们根据被控过程的特性和系统参数的变化,自动生成或调整模糊控制器的规则和参数,达到控制目的。
这类模糊控制器在实现人的控制策略基础上,又进一步将人的学习和适应能力引入控制器,使模糊控制具有更高的智能性。
自校正模糊控制器、参数自调整模糊控制等控制方法也都较大地增强了对环境变化的适应能力。
模糊控制与其他智能控制方法的结合组成的模糊控制,如专家模糊控制能够表达和利用控制复杂过程和对象所需的启发式知识,重视知识的多层次和分类的需要,弥补了模糊控制器结构过于简单、规则比较单一的缺陷,赋予了模糊控制更高的智能。
二者的结合还能够拥有过程控制复杂的知识,并能够在更为复杂的情况下对这些知识加以有效利用。
基于神经网络的模糊控制能够实现局部或全部的模糊逻辑控制功能。
模糊控制器正向着自适应、自组织、自学习方向发展,使得模糊控制参数、规则在控制过程中自动地调整、修改和完善,从而不断完善系统的控制性能,达到更好的控制效果,而与专家系统、神经网络等其他智能控制技术相融合成为其发展趋势。
4模糊控制系统的应用及发展前景模糊控制理论是控制领域中非常有前途的一个分支,在工程上也取得了很多成功的应用。
1974 年, E.H.Mamdani 首次将模糊控制理论应用于蒸汽机和锅炉的控制,取得了满意的控制效果; 随后,J . J . Oster2garad 又将模糊控制成功地应用于热交换器和水泥窖的生产;之后,M. Sugeno 又将模糊控制用于汽车控制,取得了很好的控制效果。
80 年代末,在日本兴起了一次模糊控制技术的高潮,其成果被广泛应用于各个领域。
模糊控制在许多实际控制系统中得到广泛应用,如工业控制过程中的蒸汽发生装置控制系统、合金钢冶炼控制系统、炼油厂催化炉控制系统、铸铁退火炉温度控制系统等。
另外,模糊控制也应用于航天飞行器控制、机器人控制、核反应堆控制、热交换过程控制、异步电动机控制、污水处理、肌肉麻醉控制、病人血压调整、电梯群控制、吊车自动控制等系统中。
日用家电产品中的模糊控制应用也已相当普遍,如用模糊控制系统控制水温。
5结束语近年来,模糊控制系统的研究取得了很大的进展,特别是模糊控制器的结构分析,模糊系统的万能逼近特性,模糊状态方程及稳定性分析,软计算技术等;同时,模糊逻辑在软件硬件方面也取得了飞速的发展.但模糊系统理论仍存在一定的问题,主要有以下不足之处:1)尽管模糊系统的万能逼近特性已被证明,但只是一个存在性定理.实际中,对于一般的未知系统,如何找到一个合理的模糊逼近器,尚无确定的方法。
2)常见的模糊系统种类比较多,如TS,FBF,SAM等,一般的模糊系统应具有怎样的形式,目前仍不很清晰。
模糊系统的系统化设计方法仍须进一步研究。
3)模糊控制系统的稳定性分析近年来有了一定的进展,但这些分析都是针对一定的特殊系统。
模糊控制器具有一定的鲁棒性,但只能从概念上讲,严格的理论分析仍须进一步深入研究。
稳定性和鲁棒性的分析仍依赖于模糊系统的系统化设计方法和模糊系统理论的进一步研究发展。
这些问题都有待于进一步研究。
4)建立一套系统的模糊控制理论,以解决模糊控制的机理、稳定性分析、系统化设计方法、专家模糊控制系统、神经模糊控制系统和多变量模糊控制系统的分析与设计等一系列问题;5)模糊控制在非线性复杂系统应用中的模糊建模、模糊规则的建立和推理算法的深入研究;6)模糊集成控制系统的设计方法研究;.7)自学习模糊控制策略的实现;8)模糊控制系统的稳定性分析。
参考文献[1]李友善,李军. 模糊控制理论及其在过程控制中的应用[M]. 北京:国防工业出版社, 1993.[2]张化光.复杂系统的模糊辨识与模糊自适应控制.沈阳: 东北大学出版社,1994.[3] 窦振中. 模糊逻辑控制技术及其应用[M]. 北京: 北京航空航天大学出版社,1995.[4]权太范等. 模糊控制技术在过程控制中的应用现状及前景.控制与决策,1988,3(1):59-62.[5]汪培庄.模糊集合及应用.上海: 上海科学技术出版社,1983.。