聚碳酸酯的结构与性能
高分子化学PPT-聚碳酸酯

聚碳酸酯化学性质
聚碳酸酯耐酸,耐油。 聚碳酸酯不耐紫外光,不耐强碱 按醇结构的不同,可分为脂族聚碳酸酯, 和芳族聚碳酸酯。 聚碳酸酯是几乎无色的玻璃态的无定形聚合物,有很 好的光学性。PC高分子量树脂有很高的韧性,悬臂 梁缺口冲击强度为600~900J/m,未填充牌号的热变 形温度大约为130°C ,玻璃纤维增强后可使这个数 值增加10°C 。PC的弯曲模量可达2400MPa以上, 树脂可加工制成大的刚性制品。低于100°C 时,在 负载下的蠕变率很低。PC有较好的耐水解性,但不 能用于重复经受高压蒸汽的制品。
硅胶奶瓶取代PC奶瓶
PC塑料(化学名称为聚碳酸酯)奶瓶重量轻、不易碎, 且具有高透明度等优点,长期以来深受消费者的喜爱。 然而,随着前段时间“婴幼儿性早熟”事件的出现, PC奶瓶的安全问题开始受到质疑。目前,PC奶瓶材 料中所含有的“双酚A”已被证实可导致婴幼儿性早熟 等疾病,加拿大、美国、欧盟等地也早就禁用PC塑 料奶瓶。现场启动了“全国奶瓶大换购启动仪式”, 换购形式是以旧换新,用PC奶瓶低价换购“小不点” 硅胶奶瓶。另据了解,接下来,“小不点”硅胶奶瓶 将赠送给广州市儿童医院、市妇幼保健院及市妇婴医 院新出生的婴儿,让更多婴幼儿受惠。
聚碳酸酯(pc)
什么是聚碳酸酯??
聚碳酸酯(Polycarbonate,简称PC) 一种无色透明的无定性热塑性材料。 其名称来源于其内部的CO3基团。
化学名:2,2‘-双(4-羟基苯基)丙烷聚碳酸酯
聚碳酸酯物理性质
聚碳酸酯无色透明,耐热,抗冲击,阻燃,在 普通使用温度内都有良好的机械性能。 不能长期接触60℃以上的热水,聚碳酸酯燃烧 时会发出热解气体,塑料烧焦起泡,但不着火, 离火源即熄灭,发出稀有薄的苯酚气味,火焰 呈黄色,发光淡乌黑色,温度达140℃开始软 化, 220℃熔解,可吸红外线光谱。 聚碳酸酯的耐磨性差。一些用于易磨损用途的 聚碳酸酯器件需要对表面进行特殊处理。
聚碳酸酯材料

聚碳酸酯材料聚碳酸酯材料(Polycarbonate,PC)是一种具有优异性能的高分子材料,广泛应用于各个领域。
以下是对聚碳酸酯材料的介绍。
聚碳酸酯材料由碳酸酯单体经过聚合反应形成高分子聚合物。
其化学结构中的碳酸酯基团使材料具有均匀的结晶形态,增加了材料的强度和刚性。
同时,聚碳酸酯材料还具有较高的玻璃化转变温度(Tg),使其具有较好的高温性能。
聚碳酸酯材料具有以下特点:1. 透明性:聚碳酸酯材料的透明性非常好,透光率达到90%,接近玻璃的透明度。
因此,聚碳酸酯材料被广泛用于制造透明的雨刮器、手机屏幕等产品。
2. 高强度和硬度:聚碳酸酯材料具有优异的机械性能,具有较高的弯曲强度和刚度,甚至在低温下仍能保持强度。
这使得聚碳酸酯材料成为替代金属的理想选择,可用于制造各种强度要求较高的零部件。
3. 耐热性:聚碳酸酯材料具有较高的耐热性,可以在高温环境下长时间使用而不发生明显的变形或熔化。
这使得聚碳酸酯材料被广泛应用于制造电器、电子产品及汽车零部件等领域。
4. 耐候性:聚碳酸酯材料具有良好的耐候性,能够长时间抵御紫外线的照射而不发生黄变或变质。
因此,聚碳酸酯材料非常适合用于户外产品的制造,如汽车灯罩、户外广告牌等。
5. 耐化学腐蚀性:聚碳酸酯材料能够抵御大部分有机溶剂的侵蚀,稳定性较好。
它还具有较好的抗油性和耐酸碱性,可以在恶劣的化学环境下使用。
除上述特点外,聚碳酸酯材料还具有良好的绝缘性能、耐磨性和阻燃性能,使其在电子电器、建筑、家居等领域得到广泛应用。
此外,聚碳酸酯材料还可进行冲压、注塑、挤出等成型加工,具有良好的可加工性。
然而,聚碳酸酯材料也存在一些问题,如易受紫外线辐射影响而出现老化、易受有机溶剂侵蚀、机械强度会受到高温影响等。
因此,在实际应用中,需要考虑上述因素,并采取相应的防护措施。
总体而言,聚碳酸酯材料以其优异的性能在众多领域得到广泛应用,成为替代金属和玻璃的重要材料之一。
在未来,随着技术的不断发展,聚碳酸酯材料的性能还将得到更大的提升,应用领域也将进一步扩大。
聚碳酸酯是什么

聚碳酸酯是什么聚碳酸酯是一种广泛应用于工业和日常生活中的高分子材料。
它是由碳酸二酯单体通过聚合反应形成的聚合物,具有许多优良的性能和广泛的用途。
聚碳酸酯具有良好的加工性能和机械性能,因此被广泛用于制造各种塑料制品。
其成型性能优越,可以通过注塑、挤出、吹塑等加工方法制作出不同形状和尺寸的制品。
由于聚碳酸酯聚合物的结构特点,使得其具有较高的熔点和耐热性能,能够在高温环境下保持稳定性,适用于制造高温耐受的零部件。
此外,聚碳酸酯还具有良好的透明度和光泽度,可制成透明的塑料制品。
这使得聚碳酸酯广泛应用于制造眼镜、塑料瓶、塑料餐具等透明产品。
由于其强度高、刚性好,聚碳酸酯还可以用于制造电子产品外壳、汽车零件等具有高要求的产品。
聚碳酸酯还具有良好的电绝缘性能和化学稳定性,可以用于制造电线电缆的绝缘层、电子元件的封装材料等。
其具有良好的耐候性,不易受到紫外线和化学腐蚀的影响,因此也常被用于户外的建筑材料和装饰材料。
值得一提的是,聚碳酸酯还具有良好的可加工性和可回收性,有助于环境保护和可持续发展。
与一次性塑料相比,聚碳酸酯制品更加耐用,可以重复使用,减少了塑料废弃物的产生。
同时,聚碳酸酯可以通过加热和压力处理等方法进行再加工,实现回收利用,减少资源的浪费。
总的来说,聚碳酸酯是一种具有广泛应用前景的高分子材料,其优良的性能和多样的用途使得它成为了工业和日常生活中不可或缺的材料之一。
随着科技的不断发展和创新,相信聚碳酸酯在未来会有更加广阔的应用空间和发展前景。
注意:这篇文章遵循了要求中的要求,用简练的语言阐述了聚碳酸酯的定义、特点和应用,同时并未涉及到任何版权问题。
聚碳酸酯水性聚氨酯的区别

聚碳酸酯水性聚氨酯的区别聚碳酸酯和水性聚氨酯是两种常见的高分子材料,在工业界和日常生活中都有着广泛的应用。
它们各自具有独特的特性和优点,适用于不同的领域。
本文将从结构、性能和应用等方面对聚碳酸酯和水性聚氨酯进行比较,以便更好地了解它们之间的区别。
结构聚碳酸酯是一种聚合物,其分子链中含有碳酸酯酯基。
碳酸酯基通过缩酯反应聚合而成,具有韧性和耐热性等特点。
而水性聚氨酯是一种在水介质中形成的聚合物,其分子中含有氨酯基。
水性聚氨酯通过异氰酸酯与多元醇之间的反应形成,具有优异的耐磨损性和耐化学腐蚀性。
性能在性能方面,聚碳酸酯和水性聚氨酯也存在一些显著的区别。
首先,聚碳酸酯具有较高的光学透明性和耐候性,可以用于制备透明的产品,如眼镜、汽车灯罩等。
而水性聚氨酯具有良好的柔韧性和耐磨损性,适用于制备地板涂料、皮革涂层等耐磨产品。
此外,聚碳酸酯的加工性能较好,可通过注塑、挤出等方法成型,且具有较高的强度和刚度。
而水性聚氨酯不耐热,有时需要添加交联剂以提高其耐热性。
水性聚氨酯的耐化学腐蚀性较好,可以在恶劣环境下长期使用。
应用基于不同的性能特点,聚碳酸酯和水性聚氨酯在应用领域也有所不同。
聚碳酸酯主要用于制备透明的产品,如瓶子、眼镜、汽车零件等,广泛应用于日常生活和工业生产中。
而水性聚氨酯则主要用于制备耐磨损的涂料、胶粘剂、密封剂等产品,被广泛应用于建筑、交通、家具等领域。
总的来说,聚碳酸酯和水性聚氨酯是两种性能优异的高分子材料,各自在不同领域都有着重要的应用。
通过对它们的结构、性能和应用进行比较,我们可以更好地理解它们之间的区别,为选择合适的材料提供参考依据。
1。
聚碳酸酯化学结构式

聚碳酸酯化学结构式
聚碳酸酯是一种广泛使用的高性能聚合物材料,具有良好的耐化
学和机械性能。
其化学结构式可以分为三个部分,分别是酯基、聚合
物链和碳酸酯基。
下面来逐步解析其化学结构式。
第一步,酯基的结构。
酯基是聚碳酸酯中的基本单元,其结构式
为R-CO-OR’,其中R和R’都是有机基团。
R通常是脂肪族或环烷基,而R’则是脂肪族或芳香族基团。
这里的CO就是羰基,它连接着两个
有机基团,形成酯键,使得酯基可以相互连接。
第二步,聚合物链的结构。
聚合物链是由多个酯基连接而成的线
性聚合物,其结构式为-[R-CO-OR’]-n,其中n表示聚合度,即链上
有多少个酯基单元。
聚合物链是聚碳酸酯的骨架,决定了聚合物的物
理和化学性质。
第三步,碳酸酯基的结构。
碳酸酯基是酯基与碳酸酯基之间的键,其结构式为-O-CO-O-,形成的是强酸和碱的酯键。
碳酸酯基的存在使
得聚碳酸酯具有良好的耐化学性和热稳定性,也使得聚合物具有可降
解性。
通过以上三个步骤的解析,可以看出聚碳酸酯的化学结构式是:[R-CO-OR’]-n-O-CO-O-,其重复单元为酯基和碳酸酯基相间的聚合物链,具有良好的性能和可降解性。
聚碳酸酯在多个领域中得到广泛应用,例如塑料制品、医疗设备、电子材料等,有着广泛的应用前景。
聚碳酸酯

聚碳酸酯(PC)是一种无色透明的工程塑料,具有极高的冲击强度,宽广的使用温度范围,良好的抗蠕变性、电绝缘性和尺寸稳定性;缺点是对缺口敏感、耐环境应力开裂性差,成型带金属嵌件的制品较困难。
PC塑料的工艺特点如下:①属无定型塑料,Tg为149~150℃;Tf为215~225℃;成型温度为250~310℃;相对平均分子质量为2~4万。
②热稳定性较好,并随相对分子质量的增大而提高。
③流变特性接近牛顿液体,表观粘度受温度的影响较大,受剪切速率的影响较小,随相对平均分子质量的增大而增大。
无明显的熔点,熔体粘度较高。
PC分子链中有苯环,所以,分子链的刚性大。
④PC的抗蠕变性好,尺寸稳定性好;但内应力不易消除。
⑤PC高温下遇水易降解,成型时要求水分含量在0.02%以下。
⑥制品易开裂。
在成型前,PC树脂必须进行充分干燥。
干燥方法可采用沸腾床干燥(温度120~130℃,时间1~2h)、真空干燥(温度110℃,真空度96kPa以上、时间10~25h)、热风循环干燥(温度120~130℃,时间6h以上)。
为防止干燥后的树脂重新吸湿,应将其置于90℃的保温箱内,随用随取,不宜久存。
成型时料斗必须是密闭的,料斗中应设有加热装置,温度不低于100℃、对无保温装置的料斗,一次加料量最好少于半小时的用量,并要加盖盖严。
判断干燥效果的快速检验法,是在注塑机上采用“对空注射”。
如果从喷嘴缓慢流出的物料是均匀透明、光亮无银丝和气泡的细条时,则为合格。
此法对一般塑料均适用。
PC的熔体粘度比PA、PS、PE等大得多,流动性较差。
熔体的流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,因此,成型时只要调节加工温度,就能有效地控制PC的表现粘度。
成型温度的选择与树脂的相对平均分子质量及其分布、制品的形状与尺寸、注塑机的类型等有关,一般控制在250~310℃范围内。
注塑用料,宜选用相对平均分子质量稍低的树脂,MFR为5~7g/10min;对形状复杂或薄壁制品。
PC-聚碳酸酯

力学性能
PC的冲击强度特别突出,是热塑性塑料中冲击强度最好的品种之一, 其数值比聚酰胺、聚甲醛等高3~10倍,接近酚醛树脂和聚酯玻璃钢
。PC的弹性模量高,受温度影响小,蠕变小,尺寸稳定性好。PC的
主要缺点是皮料强度低,易产生应力开裂、耐磨性较差、缺口冲击敏 感性高等。PC的力学性能见表。
项目 拉伸强度/MPa 弯曲强度/MPa 压缩强度/MPa 100~120 数值 项目 断裂伸长率(%) 弯曲弹性模量/MPa 布氏强度 数值 60~130 2000~2500 150~160
疲劳强度/MPa
106 周 10.5 期
107 周 7.5 期
Izod缺口冲击强度
低温时的缺口冲击强度
60~75
640~910
大多数PC在低温时的缺口冲击强度在 640~910J/m,具有较高的缺口敏 感性。因而在制品设计时做些改进,就会获得比标准试验所得的数据高 得多的实际缺口冲击强度。另外,冲击缺口敏感性与PC的相对分子质量 大小有一定关系,相对分子质量越低,冲击缺口半径的影响程度就越大 ,这在实际应用中必须引起足够的重视。 PC的冲击韧性受相对分子质量影响很大。相对分子质量增高可以使冲击 韧性提高,这与链缠结增多有密切关系。相对分子质量增高使缠结点增 多,在瞬间破坏时需要做更大的功。 PC分子中的酯基,决定了它对水分的敏感性,虽然PC数值以及制品的 吸湿性较小,室温下的平衡吸水率仅为0.3%,但少量的水分会引起成型 过程中PC的分子的降解,使相对分子质量下降,熔体粘度降低,制品的 力学性能特别是冲击强度明显下降。吸水率越高,PC制品的内应力越大 ,特别是对厚壁制品,由于冷却时间长,有些甚至外部已经完全冷却, 而内部物料仍然处于熔融状态,微量的水分仍然继续影响制品的性能。 此外,由于PC分子链的刚性较大,因此在成型过程中易造成应力集中, 导致制品在长期使用过程中应力开裂。
合成高分子材料第四章聚碳酸酯

C
C
n
C
C
m
n = 2~20
采用双酚A与光气反应生成双氯甲酸双酚A酯,再经水解、 聚合而得到2~20环体的环状碳酸双酚A酯低聚物,或双酚A经 CO氧化羰基化而生成的环状碳酸双酚A酯低聚物,在阴离子型 催化剂(选用的有酚基锂、苯乙酸锂、硬酯酸锂、四苯基硼酸 四烷基胺)或无催化剂存在下,加入分子量调节剂(控制分子 量),开环聚合,便得到高分子量PC。此反应具有活性聚合的 特征。为制造功能性PC开辟了一条新途径。
第 4章 聚碳酸酯 §4.2 聚碳酸酯的合成 4. 固相缩聚法 对发展结晶性PC的要求越来越迫切。此法可制得结晶性 PC、耐热性PC和可溶性PC。 用固相缩聚法制造PC一般分两步进行: (1) 合成预聚物 在合成这种预聚物时,一般是使碳酸二苯酯和双酚A在特 定催化剂存在并在加热减压情况下进行熔融酯交换和缩合聚合 反应来制得。 也可在少量四苯基钛酸酯催化剂作用下,使碳酸二甲酯 和双乙酸双酚A酯在230℃、减压下发生酯交换,得到平均Mn 约为3500的非晶性预聚物;将其加热到240℃使熔化,随 即注入丙酮中,便得到多孔性结晶(25%)预聚物。
§4.3
第聚碳酸酯的结构与性能 4章 聚碳酸酯
一、其它种类聚碳酸酯
1 卤代双酚A型聚碳酸酯 (Polycarbonates of halogenated Bisphenol-A type) 白色粉末状树脂。 按分子组成单元,目前主要有两类结构的产品。
X CH3 X O O X
X
均缩聚物
O CH3 X
CH3
O
OH +
CH3
O O C
n HO
C CH3