第五章矿井涌水量预测
《2024年矿井涌水量预测研究》范文

《矿井涌水量预测研究》篇一一、引言矿井涌水量预测是矿山安全生产与水资源管理的重要环节。
矿井涌水不仅对矿山的生产造成影响,而且还会影响周边地区的水文地质环境。
因此,开展矿井涌水量预测研究具有重要的现实意义和科学价值。
本文通过对某矿区的涌水量进行深入研究,旨在提出一种有效的预测方法,为矿山安全生产和水资源管理提供科学依据。
二、研究区域概况本研究区域为某大型矿山,地处山区,地质构造复杂。
矿区范围内有多个含水层,且地下水活动频繁。
矿井涌水主要来源于地下水渗透和降雨,受季节性气候变化和人类活动的影响较大。
因此,研究区域的矿井涌水量预测具有一定的难度和挑战性。
三、研究方法针对研究区域的特点,本研究采用多种方法进行矿井涌水量预测。
首先,通过对矿区地质资料和历史涌水量数据进行收集与整理,运用水文地质学的理论进行分析。
其次,利用时间序列分析法和灰色系统理论等数学方法,建立涌水量预测模型。
最后,结合现场实测数据和数值模拟方法对模型进行验证与修正。
四、模型建立与分析4.1 水文地质条件分析通过对研究区域的地质构造、含水层分布、地下水补给与排泄条件等进行分析,明确矿井涌水的来源与途径。
在此基础上,结合历史涌水量数据,分析涌水量的变化规律及影响因素。
4.2 预测模型建立本研究采用时间序列分析法和灰色系统理论两种方法建立涌水量预测模型。
时间序列分析法通过对历史数据进行趋势分析和周期性分析,提取出影响涌水量的主要因素,建立预测模型。
灰色系统理论则通过对部分已知信息和不完全信息进行建模和预测,揭示矿井涌水量的变化规律。
4.3 模型验证与修正利用现场实测数据和数值模拟方法对建立的预测模型进行验证与修正。
通过对比实际涌水量与预测值,分析模型的精度和适用性。
根据验证结果对模型进行修正和完善,提高预测的准确性和可靠性。
五、结果与讨论经过对多种方法的综合应用和分析,本研究成功建立了适用于研究区域的矿井涌水量预测模型。
该模型能够较好地反映矿井涌水量的变化规律和影响因素,为矿山安全生产和水资源管理提供了科学依据。
《2024年矿井涌水量预测研究》范文

《矿井涌水量预测研究》篇一一、引言矿井涌水量预测是矿山安全生产和环境保护的重要环节。
准确预测矿井涌水量,对于保障矿山的正常生产、预防水灾事故、保护环境具有重要意义。
本文旨在通过对矿井涌水量预测的研究,提出一种有效的预测方法,为矿山生产提供科学依据。
二、研究背景及意义随着矿山开采的深入,矿井涌水量逐渐增大,给矿山生产和环境带来了一定的压力。
矿井涌水量的预测对于矿山安全生产、水资源管理和环境保护具有重要意义。
然而,由于地质条件的复杂性和不确定性,矿井涌水量的预测一直是一个难题。
因此,研究矿井涌水量预测方法,提高预测精度,对于矿山生产和环境保护具有重要意义。
三、研究方法本文采用多种方法进行矿井涌水量预测研究,包括文献综述、实地调查、数据采集、模型建立和验证等。
其中,文献综述和实地调查是为了了解矿井涌水量的影响因素和变化规律;数据采集是为了获取矿井涌水量的实际数据;模型建立和验证则是为了提出有效的预测方法并进行验证。
四、矿井涌水量影响因素分析矿井涌水量的影响因素包括地质因素、气象因素、人为因素等。
其中,地质因素是影响矿井涌水量的主要因素,包括地层结构、岩性、含水层厚度、地下水流向等。
气象因素也会对矿井涌水量产生影响,如降雨量、气温、湿度等。
此外,人为因素也会对矿井涌水量产生影响,如开采方式、排水设备等。
五、矿井涌水量预测模型建立基于对矿井涌水量影响因素的分析,本文提出了基于神经网络的矿井涌水量预测模型。
该模型以地质因素、气象因素和人为因素为输入,以矿井涌水量为输出,通过训练神经网络来建立预测模型。
在模型建立过程中,采用了数据预处理、特征选择、模型训练和验证等步骤,以确保模型的准确性和可靠性。
六、模型验证及结果分析本文采用了实际矿山的涌水量数据对所建立的预测模型进行了验证。
通过对比实际数据和预测数据,发现该模型具有较高的预测精度和可靠性。
同时,还对不同影响因素对矿井涌水量的影响程度进行了分析,为矿山生产和环境保护提供了科学依据。
《矿井涌水量预测》课件

矿井涌水量预测的目的是保障煤矿生产秩序,减少煤矿事故发生。
常见的预测方法
基于经验的预测方法
基于钻井、探槽和其他采集资 料,经验预测依赖于矿工的经 验和直觉,容易出现误差。
基于物理模型的预测方法
基于物理模型的涌水量预测方 法是透过对矿井构造、水文地 质以及水动力学的认知,采用 数学物理模型并依据矿井特征 提取因素来预测矿井涌水量。
提高预测精度
矿井涌水量预测的准确度直接 影响到整个采矿工作的安全和 效率。需要进一步提高模型的 预测精度。
探索新的预测方法
矿井涌水量预测是一个复杂的 过程,目前已有一些方法可以 应用。需要从多个角度探索新 的预测方法和解决方案。
总结
1 矿井涌水量预测方法的重要性
煤矿涌水量预测是保障生产安全,提高工作效率的重要前提。随着煤矿采矿的深入,预 测矿井涌水量越来越成为必须的措施。
计划。
涌水量预测模型介绍
神经网络
决策树
支持向量机
神经网络是一种能够以极 快的速度进行比较值得方 法,但同时需要耗费极大 的空间。它利用在大型数 据集中,可以发现数据并 从中提取未知关联性的深 度学习。
决策树是一种知识表示树, 用于解决分类和回归问题。 树有一个节点分裂的过程, 并生成新分支,直到新分 支可以根据特征达到预期 的水平。
支持向量机是一种可以处 理非线性数据分类的算法, 主要特点是最大化各分类 间边界的距离。
随机森林
梯度提升决策树
随机森林算法基于多棵决策树建立的。通过 结合预测,骗异性和多样性,提高预测的精 度和鲁棒性。
梯度提升决策树算法在处理特征缺失数据方 面具有很强的适应性,在减小预测偏差方面 也有一定优势。
实例分析
煤矿巷道涌水预测预警技术研究与应用

煤矿巷道涌水预测预警技术研究与应用第一章绪论1.1 研究背景煤矿涌水是煤矿生产中常见的一种灾害,对煤矿生产及职工安全造成极大威胁。
因此,煤矿巷道涌水预测预警技术研究与应用具有十分重要的现实意义。
1.2 研究目的本文旨在对煤矿涌水预测预警技术进行深入研究,探讨当前涌水预测预警方法的优缺点,分析巷道涌水的成因、特征,并探索适用于巷道涌水预测预警的新技术和新方法,为煤矿生产安全提供保障。
第二章煤矿巷道涌水的成因与特征2.1 成因煤矿巷道涌水的成因非常复杂,主要包括:(1)地质构造因素:巨压、构造断层、褶皱等地质构造因素可能导致巷道涌水。
(2)水文地质因素:地下水位变化、突水、水流方向突变等水文地质因素也可能导致涌水。
(3)工程因素:矿井开采过程中对地下水系统的干扰,如采空区域的填充、巷道破坏等对涌水的影响。
2.2 特征巷道涌水的特征主要有以下几种:(1)涌水体积大,流速快。
(2)涌水水质复杂,包括土壤中的矿物质、矿井周边的地下水等。
(3)涌水具有突发性,往往难以预测。
(4)巷道整体结构受到严重破坏,存在威胁安全和过往车辆的危险。
第三章煤矿巷道涌水预测预警方法3.1 传统涌水预测方法传统的涌水预测方法主要包括直观法、经验法和定量分析法。
(1)直观法:根据矿工经验和直观判断,通过对矿井水情的观察和分析,来判断巷道涌水的可能性。
(2)经验法:基于历史数据积累,结合专家经验,建立涌水预测模型,根据历史数据和预设变量来进行巷道涌水的预测。
(3)定量分析法:采用数学模型对巷道涌水进行分析,包括统计学模型、神经网络模型和贝叶斯网模型等。
3.2 新兴涌水预测方法新兴的涌水预测方法主要包括无损检测技术、遥感技术和无人机技术。
(1)无损检测技术:通过非破坏性检测技术对煤体结构进行分析,如X射线、磁力计等。
(2)遥感技术:利用遥感卫星、GPS、GIS等技术,对巷道周边环境进行监测和分析。
(3)无人机技术:无人机传感器技术可以提供高分辨率的图像和真实的三维地形模型,能够清晰地呈现地形的细节图像。
《矿井涌水量预测研究》

《矿井涌水量预测研究》篇一一、引言矿井涌水量预测是矿山安全生产和环境保护的重要环节。
准确预测矿井涌水量,不仅有助于合理安排矿井排水,防止水灾事故的发生,而且对于矿井水资源的管理和利用具有重要意义。
本文旨在通过对矿井涌水量预测的研究,分析影响涌水量的主要因素,探讨预测方法及模型,为矿井安全生产和环境保护提供科学依据。
二、矿井涌水量的影响因素矿井涌水量受多种因素影响,主要包括地质因素、气象因素、采矿因素等。
地质因素如地下水位、含水层厚度、岩性等;气象因素如降雨量、气温等;采矿因素如采矿方法、开采深度等。
这些因素相互影响,共同决定矿井涌水量。
三、矿井涌水量预测方法及模型目前,矿井涌水量预测方法主要包括水文地质法、统计分析法、数值模拟法等。
其中,水文地质法主要依据地下水动力学原理,分析地下水的运动规律,从而预测矿井涌水量;统计分析法主要依据历史数据,建立统计模型,通过分析影响因素与涌水量的关系,预测未来涌水量;数值模拟法则是通过建立地下水流动的数学模型,模拟地下水的运动过程,从而预测矿井涌水量。
四、具体预测模型介绍1. 水文地质法模型:根据地下水动力学原理,建立水文地质模型。
通过分析地下水的补给、径流、排泄等过程,确定地下水位、含水层厚度等参数,从而预测矿井涌水量。
该方法需要考虑地质条件、水文地质条件等因素,适用于具有较为完整水文地质资料的矿井。
2. 统计分析法模型:根据历史数据,建立统计模型。
常用的统计模型包括线性回归模型、灰色预测模型等。
通过分析影响因素与涌水量的关系,建立数学表达式,从而预测未来涌水量。
该方法需要考虑影响因素的选取和数据的质量等因素。
3. 数值模拟法模型:通过建立地下水流动的数学模型,模拟地下水的运动过程。
常用的数值模拟软件包括FEFLOW、MODFLOW等。
该方法可以较为准确地反映地下水的运动规律,但需要较为复杂的建模过程和计算过程。
五、实例分析以某矿山为例,采用上述三种方法进行矿井涌水量预测。
第五章矿井涌水量预测

第三阶段,在水文地质模型“校正型”的基础上,根据开 采方案(即疏干工程的内边界条件)预测未来开采条件下外边 界的变化规律,建立水文地质模型的“预测型”。
采矿量P0 采空区面积F0 采掘长度L0 采空体积V0
KP
Q0 P0
KF Q0 F0
KL
Q0 L0
KV
Q0 V0
二、单位涌水量比拟法
疏干面积F0和水位降深S0是矿井涌水量Q0变化 的主要影响因素。根据生产矿井有关资料求得的单 位涌水量q0,可作为预测类似条件下新矿井在某个 开采面积F和水位降深S条件下涌水量Q的依据。
Ⅲ 幂曲线型:从某一降深值起,涌
Ⅴ
水量Q随阵深S的增大而增加很少
Ⅰ
Ⅳ
S
Ⅲ
Ⅱ
Ⅳ 对数型:补给衰竭或水流受阻,随 S增大Q增量很小,曲线趋向S轴
Ⅴ 可能有误或特殊现象发生
原来被阻塞的裂隙、岩溶通道被突然疏通
2、
判别实际的Q–S曲线的类型
得到抽水试验散点 图!(Qi,Si)
(1)伸直法
将曲线方程以直线关系式表示,并以直线关系式中的两个
N
1 b
N lg Q lg S lg Q lgS
N lg S 2 lg S 2
④对数曲线型 a Q b lgS
N
b
N Q lg S Q lgS
N lg S 2 lg S 2
将参数a,b及设计的水位降深S设计值代入原方程, 即可外推钻孔涌水量。
4、井径换算
由于抽水试验的钻孔孔径远小于井筒直径,为消 除井径的影响,所以在预测井筒涌水量时需进行井径 换算。
矿井水害预测预报制度范文(3篇)

矿井水害预测预报制度范文第一章总则第1条水害预测预报是煤矿生产建设中不可或缺的基础工作,也是提高地测防治水保障能力的重要手段。
为了进一步加强矿井防治水工作,充分发挥地质“尖兵”作用,超前、准确地为矿井安全生产提供地质和水文地质资料,结合矿井生产实际,特制定本制度。
第二章职责划分第2条地质部门职责1、负责水害预测预报日常管理工作,制定落实《水害预测预报管理办法》。
2、编制矿井年度、季度、月度、每周《水害预测预报》及临时预报,并跟踪验证分析和总结。
3、负责《水害预测预报》的审批及向集团公司上报(传)工作。
4、负责督促施工队组按照水害预测预报或临时地质预报编制作业规程或施工安全技术措施。
5、负责施工队组超前探放水、地质钻探、物探等指令性工作任务的安排及报工工作。
第3条调度指挥中心职责1、负责井下开掘及回采过程中出现地质条件变化时信息的传递。
2、负责地质构造、探放水、物探施工的有关协调工作。
第4条通防事业部职责负责提供各采掘开头面实测瓦斯和二氧化碳涌出量数据、分析预测结果,用来作为水文地质预测预报资料。
第5条施工单位职责1、根据水害预测预报编制作业规程或施工安全技术措施。
2、根据职能部门的指令安排,负责(配合)本单位作业头面超前探放水、地质构造的钻探施工。
3、负责在掘进或回采过程中水文发生异常时,及时向矿调度和地质部门汇报。
第三章预测预报的主要依据第6条水害预测预报的依据1、根据《地质报告》中已经查明的地质构造包括断层、陷落柱、冲刷带、褶曲、薄煤区,查明的水文地质情况等进行预测预报。
2、根据现有三维地震勘探查明的地质构造,主要是落差≥3m的断层、直径≥25m的陷落柱、褶曲、冲刷带、薄煤区和积水区等进行预测预报。
3、根据巷道在掘进、回采过程中实际揭露水文地质情况,利用地质构造和水文地质的规律,对相邻巷道或工作面进行预测预报。
4、利用现有的物探设备,如坑透仪、直流电法仪在井下巷道进行超前物探,结合井田地质构造发育规律对富水等物探异常区进行预测预报。
探析矿井涌水量的预测

探析矿井涌水量的预测摘要凡是在矿井采掘过程中,渗入、淌入、淋入、流入、涌入和溃入井巷或工作面的任何水源水,统称为矿井水。
关键词矿井水;矿井涌水量中图分类号TD742 文献标识码 A 文章编号1673-9671-(2012)111-0143-01矿井涌水量是指矿井在建设开发过程中,不同水源的水通过不同途径,单位时间内流入矿井的水量,是矿井井筒涌水量、巷道涌水量和采区涌水量的总和。
1 预测计算的内容包括1)矿井正常涌水量:指开采系统在某一标高(水平)时,正常状态保持相对稳定的总涌水量,一般指平水期的涌水量。
2)矿井最大涌水量:指开采系统在正常开采时雨季期间的最大涌水量。
3)井巷工程涌水量:包括井筒和巷道开拓过程中的涌水量。
4)矿井疏干排水量:指在规定的疏干时间内,将水位降到规定标高时所必需的疏干排水强度。
它是指井巷系统还未开拓,或疏干漏斗还未形成,受人为因素(规定的疏干期限)所决定的排水疏干工程(钻孔或排水巷)的排水量。
5)矿井突水量:指井巷工程开拓过程或开采时对围岩或顶底板含水层造成影响和破坏,产生瞬时溃入矿井的水量,是矿井在不可预知的充水条件发生时所产生的涌水量。
从理论上讲,矿井突水量是不可预知的,是无法通过预测计算获得的。
这一不可预知性主要来自矿井涌水的过水通道类型(如小煤窑、断层、陷落柱等)不可预知。
矿井涌水量大小是评价矿井充水条件复杂程度的主要标志。
这标志在已采矿井或采区可以通过实测获得,但对未采矿井或采区涌水量大小就不能实测,必须根据不同条件进行预测。
正确计算未来井巷及采区的涌水量大小,是一项重要工作。
它不仅对矿井的技术经济评价有很大影响,而且矿井涌水量的大小及其在矿井三维空间的分布,也是开车设计部门选择采掘方案、确定排水设备和制定相配套的防治水工程设计、防水安全技术措施的主要依据,所以做好矿井涌水量预测工作,对于煤炭资源安全开采有着重要意义。
正确预计矿井涌水量是矿井水文地质工作的重要任务之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章矿井涌水量预测
四、矿井涌水量预测步骤-3
第一步:建立水文地质(概化)模型 要求:
(1)概化已知状态下矿区水文地质条件; (2)给出未来开采井巷的内部边界条件; (3)预测未来开采条件下的外部边界。
例2:泗顶铅锌
矿
实际涌水量
预测方案一
预测方案二
6048 m3/d 80524.8 m3/d 95299.2 m3/d
第五章矿误井涌差水量1预2测31%
误差1475%
二、预测失误的原因分析
1、水文地质条件的复杂性认识不足,对水文地质条件未 予查清;
叶庄矿:三个方面补给边界←一个补给方向 杨二矿:半封闭型地下水系统←开放型大水矿区 红岩矿:水源底板茅口组灰岩←顶板长兴组灰岩
第五章 矿井涌水量预测
江西榨一煤矿
第五章矿井涌水量预测
内容安排
第一节 第二节 第三节 第四节 第五节 第六节
概述 水文地质比拟法 Q-S曲线外推法 水均衡法 解析法 数值法
第五章矿井涌水量预测
第一节 概
述
矿井涌水量是指矿山建设和生产过程中单位时间 内流入矿井(包括各种巷道和开采系统)的水量。
确定依据
矿井涌水量预测以准确地预测丰水期最大涌水量为目标; 我国矿井大多分布于基岩山区,充水条件差异悬殊,补排
条件复杂,边界、结构与流态复杂,定量化难度大。
矿山井巷类型与空间分布千变万化,开采方法、速度与规 模等生产条件复杂且不稳定,给矿井涌水量预测带来诸多 不确定性因素。
矿井涌水量预测多为大降深,必然导致对矿区水文地质条 件的严重干扰与破坏,且破坏强度难于预料与定量化。
稳定井流公式 非稳定井流公式
渗流型
模 型
确定性模型
数值解
有限元法 有限差分法
非渗流型
分
类 混合型模型
第五章矿井涌水量预测
第三步:求解数学模型,评价预测结果
数学模型的解算是 对水文地质模型和 数学模型进行全面 验证识别的过程, 最终使所建模型和 预测结果更加合理 和趋于实际。
-60.00 597
-70.00
第三阶段,在水文地质模型“校正型”的基础上,根据开 采方案(即疏干工程的内边界条件)预测未来开采条件下外边 界的变化规律,建立水文地质模型的“预测型”。
第五章矿井涌水量预测
第二步:选择计算方法,建立相应的数学模型
常用的数学模型为:
经验方程(比拟法)
Q-S曲线方程
数 学
非确定性统计模型 回归方程
解析解-井流方程
2、水文地质模型概化不当,选用的水文地质参数不妥, 缺乏代表性;
叶庄矿:
单孔抽水试验二次降深得 K=0.215m/d ←
三次降深抽水试验得 K=11.67m/d,增长44倍;
3、数学模型选择不当。
求解参数的关键环节!
数学模型-水文地质模型-水文地质勘探资料
第五章矿井涌水量预测
三、矿井涌水量预测的特点
矿床水文地质条件类型 矿床水文地质条件复杂程度 矿床开发经济技术条件 矿山疏干排水设计 矿井生产能力 防治水措施
第五章矿井涌水量预测
一、矿井涌水量预测内容
1、矿井正常涌水量
主要工作
开采系统达到某一标高(或水平)时,正常状态下保持 相对稳定时的总涌水量。通常是指平水年的涌水量。
2、矿井最大涌水量 正常状态下开采系统在丰水年雨季时的最大涌水量。
-80.00
-90.00
-100.00 H(m)
1-99-3 H-t曲线
t(d) 872 1214 1303 1396 1500 1570
观测值 计算值
-60.00
597
ቤተ መጻሕፍቲ ባይዱ872
-70.00
-80.00
-90.00
-100.00 H(m)
3-00-7 H-t曲线
t(d) 1214 1303 1396 1500 1570
综合
采矿量P0 采空区面积F0 采掘长度L0 采空体积V0
KP
Q0 P0
KF Q0 F0
KL
Q0 L0
KV
Q0 V0
第五章矿井涌水量预测
二、单位涌水量比拟法
疏干面积F0和水位降深S0是矿井涌水量Q0变化 的主要影响因素。根据生产矿井有关资料求得的单 位涌水量q0,可作为预测类似条件下新矿井在某个 开采面积F和水位降深S条件下涌水量Q的依据。
3、开拓井巷涌水量
井筒(立井、斜井)和巷道(平硐、平巷、斜巷、石门) 在开拓过程中的涌水量。
第五章矿井涌水量预测
4、疏干工程的排水量 人为 在规定的疏干时间内,将水位降到某一规定标
高时所需的疏干排水强度。
5、矿井突水量 难以预测! 矿井采掘过程中在某些因素的作用下,含水
层(体)中的地下水突破隔水层而突然进入开采 系统的水量,突水量常常是正常涌水量的数倍 甚至数十倍。
第五章矿井涌水量预测
以条件复杂的大水矿井为例,大致分三个阶段:
第一阶段(初勘阶段),通过初勘资料,对矿床水文地质 条件概化,提出水文地质模型的“雏型”,它可作为大型抽 (放)水试验设计的依据;
第二阶段(详勘阶段),根据勘探工程提供的各种信息,特 别是大型抽(放)水试验资料,完成对水文地质模型“雏型” 的调整,建立水文地质模型的“校正型”;
观测值 计算值
第五章矿井涌水量预测
第五章矿井涌水量预测
第二节 水文地质比拟法
第五章矿井涌水量预测
水文地质比拟法利用地质和水文地质条件 相似、开采方法基本相同的生产矿井的排水 或涌水量观测资料,来预测新建矿井的涌水 量。
前提: ①新建矿井与老矿井的条件应基本相似; ②老矿井要有长期的水量观测资料,保证涌水量与 各影响因素之间数学表达式的可靠程度。
第五章矿井涌水量预测
一、富水系数法
富同水时系期数内:的指采一矿定量时P0间之内比矿。井排出的总水量Q0与
KP
Q0 P0
K Q P
已建矿
QKPP
新建矿
第五章矿井涌水量预测
富水系数不仅取决于矿区的自然条件,而且还 与开采条件有关,因此还要充分考虑开采方法、范 围、进度等方面的相似性。
为了排除生产条件的影响,对该法作修正,采 用综合平均值作为比拟依据。
第五章矿井涌水量预测
二、预测失误的原因分析
1977~1978年,地质矿产部曾对55个重点岩溶充水矿山 进行了水文地质回访调查,矿井涌水量预测值与开采后的实 际涌水量的对比表明:
10%的矿区--误差小于30% 80%的矿区--误差大于50% 个别矿区----误差达数10倍、100倍
例1:叶庄铁矿预测值为417.4m3/d,实际值为预测值的256.3倍。