刘徽与割圆术

合集下载

刘徽割圆术

刘徽割圆术

.
13
(二)圆周率的定义
指平面上圆的周长与直径之比。早 在一千四百多年以前,我国古代著名 的数学家祖冲之,就精密地计算出圆 的周长是它直径的3.1415926--3.1415927倍之间。这是当时世界上 算得最精确的数值----圆周率。
.
14
(三)圆周率的发展
“圆周率”是说一个圆的周长同它的直径有一个 固定的比例。我们的祖先很早就有“径一周三”的 说法,就是说,假如一个圆的直径是1尺,那它的 周长就是3尺。后来,人们发现这个说法并不准确。 东汉的大科学家张衡认为应该是3.162。三国到西 晋时期的数学家刘徽经过计算,求出了3. 14159的 圆周率,这在当时是最先进的,但是刘徽只算到这 里就没有继续算。祖冲打算采用刘徽“割圆术” (在圆内做正6边形,6边形的周长刚好是直径的3 倍,然后再做12边形、24边形……边数越多,它的 周长就和圆的周长越接近)的方法算下去。
.

7
第四,圆面积S满足不等式 S2n<S<S2n+(S2n-Sn)。
如图所示,四边形 OADB的面积和△OAB 的面积的差等于以AD和 DB为弦的两个直角三角 形面积,而OADB的面 积再加上这样两个直角 三角形的面积,就有一 部分超出圆周了。
.
8
第五,刘徽指出:“割之弥细,所失 弥少。割之又割,以至于不可割,则与 圆周合体而无所失矣。”(《九章算术》 方田章圆田术刘徽注)这就是说,圆内 接正多边形的边数无限增加的时候,它 的周长的极限是圆周长,它的面积的极 限是圆面积。
因为《缀术》失传了,祖冲之究竟是用什么方法将π算 到小数点后第七位,又是怎样找到既精确又方便的密 率的呢?这至今仍是困惑数学家的一个谜。
.
17
祖冲之曾写过一本数学著作《缀术》,记录了他 对圆周率的研究和成果。但当时“学官莫能究其 深奥,是故废而不理”,以致后来失传。

刘徽割圆术和定积分方法

刘徽割圆术和定积分方法

刘徽割圆术和定积分方法刘徽是中国古代数学家、天文学家和地理学家,他的著作《九章算术》在中国数学史上有着非常重要的地位。

刘徽在数学领域的贡献众多,其中包括刘徽割圆术和定积分方法两个重要的成就。

刘徽割圆术是刘徽在几何学中的一项杰出成就。

在中国数学史上,刘徽被尊为“割圆术”之祖。

刘徽割圆术是指通过逐步不断地用正多边形来逼近圆周,从而求出圆周的长度。

刘徽发现,如果一个正多边形的边数不断增加,那么它的周长就会趋向于圆的周长。

这样,他便构造出一个近似于圆周长的方法,成为了一种割圆的技术。

刘徽在这一方法中首次提出了极限思想,也就是不断地逼近某个值。

这种思想在现代数学中被称为极限思想,极限思想被广泛应用于微积分和数学分析等学科领域。

刘徽在割圆术的发展过程中,提出了许多新的思想和概念,对后世的数学发展产生了深远的影响。

在数学中,刘徽的定积分方法是他在微积分领域的又一杰出贡献。

定积分是微积分的一个重要概念,是将一个函数在一个区间上的取值进行求和得到近似于该函数在整个区间上取值的一个方法。

刘徽在其著作中提出了用“无限小”思想来解决问题的方法,并且这种思想在现代数学中得到了广泛的运用。

刘徽的定积分方法为后世的微积分学发展提供了重要的理论基础。

通过刘徽的方法,人们可以将一个问题进行分割,然后逐步求和,得到最终的结果。

这种思想成为了微积分学中的核心思想之一,也被应用于多个领域,包括物理学、工程学和经济学等。

刘徽在割圆术和定积分方法的研究中,提出了许多开创性的思想和概念,为数学的发展作出了巨大的贡献。

他开拓了数学的新领域,丰富了数学的内涵,对后世的数学学科发展起到了关键的作用。

刘徽的割圆术和定积分方法不仅在当时产生了深远的影响,而且对现代数学学科的发展具有重要的启发作用。

刘徽割圆术精品PPT课件

刘徽割圆术精品PPT课件
如图所示,四边形 OADB的面积和△OAB 的面积的差等于以AD和 DB为弦的两个直角三角 形面积,而OADB的面 积再加上这样两个直角 三角形的面积,就有一 部分超出圆周了。
第五,刘徽指出:“割之弥细,所失 弥少。割之又割,以至于不可割,则与 圆周合体而无所失矣。”(《九章算术》 方田章圆田术刘徽注)这就是说,圆内 接正多边形的边数无限增加的时候,它 的周长的极限是圆周长,它的面积的极 限是圆面积。
发,求得正十二边形的边长。根据勾股 定理,从圆内接正n边形每边的长,可以 求出圆内接正2n边形每边的长。
第三,从圆内接正n边形每边的长, 可以直接求出圆内接正2n边形面积。如 图所示,四边形OADB的面积等于半径 OD和正n边形边长AB乘积的一半。
第四,圆面积S满足不等式 S2n<S<S2n+(S2n-Sn)。
因为《缀术》失传了,祖冲之究竟是用什么方法将π算 到小数点后第七位,又是怎样找到既精确又方便的密 率的呢?这至今仍是困惑数学家的一个谜。
祖冲之曾写过一本数学著作《缀术》,记录了他 对圆周率的研究和成果。但当时“学官莫能究其 深奥,是故废而不理”,以致后来失传。
很多人都知道用密率355/113表示π的近似值,是 一项了不起的贡献。密率355/113传到了日本后, 1913年日本数学史家三上一夫建议将祖冲之圆周 率的密率数值命名为“祖率”,得到一致赞同。 祖冲之对圆周率的求索,超过了世界水平整整 1000年!直到16世纪德国人V·奥托和荷兰人A·安 托尼斯才发现了圆周率的密率355/113。 但是 “祖率”的妙处,和给今人留下的困惑,不少人 却说不出来。
(二)圆周率的定义
指平面上圆的周长与直径之比。早 在一千四百多年以前,我国古代著名 的数学家祖冲之,就精密地计算出圆 的周长是它直径的3.1415926--3.1415927倍之间。这是当时世界上 算得最精确的数值----圆周率。

刘徽割圆术的赏识与改进建议

刘徽割圆术的赏识与改进建议

刘徽割圆术的赏识与改进建议一、数学文化理念割圆术是由魏晋时期的数学家刘徽首创,所谓“割圆术”是用圆内接正多边形的面积(周长)去无限逼近圆的面积(周长),并以此求取圆周率的方法。

凭借其高超的对无限问题的理解和致用的处理方式,求得的圆周率的近似值徽率(3.14).刘徽在世界上最先把无穷小分割和极限思想用于数学证明。

祖冲之(429-500)在刘徽“割圆术”的基础上,首次将“圆周率”精确到小数第七位,领先世界一千年。

这是中国古代数学家的骄傲,也反映了中国古代数学家的聪明才智和钻研精神。

(1)哲学是一切自然科学和社会科学的概括和总结,数学中充满了辩证法,数学学习需要用马克思主义哲学来指导。

要想深入探索刘徽割圆术,唯有2件武器,那就是马克思辩证思想和数学中的“清晰的直觉”和“严格的演绎”。

刘徽割圆术蕴含着丰富的马克思辩证统一思想,数列极限的学习中不光要学习知识,更重要的是提升辨证思维能力。

直与曲的统一:直与曲是两个完全不同的概念,二者的差别是明显的。

刘徽开创“割圆术”来计算圆周率,以圆内接正多边形的周长去逼近圆的周长,这种方法包含的由直线向曲线转化(以直代曲)和用近似值向精确值逼近的思想,在当时条件下是难能可贵的。

常量与变量的统一:常量与变量是数学中的两个基本概念,这两种量的意义有着严格的区分,但它们又是相互依存,相互渗透,依据一定条件相互转化。

圆的周长(面积)是一个常量,这个常量的计算并非轻而易举,它是通过逐次增加边数的内接正多边形的周长(变量)来实现的,即常量是变量的逼近的极限过程。

有限与无限的统一:有限与无限存在着本质的区别.然而两者之间并非存在不可逾越的鸿沟,而是在一定条件下可以相互转化,正是这种转化使得无限在数学世界中显示威力。

刘徽割圆正是体现有限与无限对立统一思想的例子,在无限的过程中得到了圆的面积或周长。

量变与质变的统一:刘徽割圆术“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”,内接正多边形的边数越来越多时,它与圆周偏差就会越来越小。

刘徽割圆术

刘徽割圆术

(四)建议将3月14日定为祖冲之纪念日 建议将 月 日定为祖冲之纪念日
美国麻省理工学院首先倡议将3日 日 寓意3﹒ ) 美国麻省理工学院首先倡议将 日14日(寓意 ﹒14)定为国际 圆周率日(National p Day)。1736年,瑞士数学家歐拉 (Euler, 圆周率日 。 年 , 1707 – 1783) 提倡以希腊字母 p (音:pi) 来表示圓周率,p是圓周 来表示圓周率, 是圓周 音 的字頭。直到現在, 的希腊文 perijereia (英文为 periphery) 的字頭。直到現在,p 已 英文为 成为圓周率的专用符號。在这一天,学生们会彼此祝福“ 成为圓周率的专用符號。在这一天,学生们会彼此祝福“圆周率日 快乐! 快乐!”用大家熟悉的生日歌旋律唱起 happy pi day to you!学 ! 院众多对圆周率有兴趣的人聚在一起讨论圆周率问题,吃馅饼(英 院众多对圆周率有兴趣的人聚在一起讨论圆周率问题,吃馅饼 英 同音)以及其他各种以圆周率为主题的食物 文pie,与圆周率英文 同音 以及其他各种以圆周率为主题的食物, ,与圆周率英文pi同音 以及其他各种以圆周率为主题的食物, 举行圆周率背诵比赛。 举行圆周率背诵比赛。 全球各地的一些著名大学的数学系,也在3月 日举行 日举行Party庆 全球各地的一些著名大学的数学系,也在 月14日举行 庆 在圓周率日當天, 祝。在圓周率日當天,加拿大滑铁庐大学还会以供應免費的餡餅来 庆祝。而3月14日恰好又是著名的物理学家爱因斯坦 (Albert 庆祝。 月 日恰好又是著名的物理学家爱因斯坦 Einstein,1879 – 1955) 的生日。所以他们还会「择时辰」以庆祝 的生日。所以他们还会「择时辰」 , 圆周率日:选择在下午1時 分开始庆祝 分开始庆祝, 圆周率日:选择在下午 時59分开始庆祝,它代表 3.14159 (准确至 准确至 六位小数) 的圓周率近似值。 六位小数 的圓周率近似值。

刘徽和割圆术

刘徽和割圆术

刘徽和割圆术中国向来以文明古国自称,谈到中国古代文明,我们一定会说起以“经世致用”为信条,以筹算为主的中国古代数学史。

在这段曲折发展的历史中,我们的古代数学跟其他古文明一样,在一定程度上获得了发展,特别是在算法的深度和广度上有着卓越的发展。

但我们不得不提及,在中国古代长达2000多年的封建制度统治下,数学研究一直停留在计算层面,理论的严谨和系统却不尽如人意,这同时也导致了一些错误的结果的出现。

在这样的数学背景下,刘徽可谓是中国数学史上的一朵奇葩,他有着“为数学而数学”的价值观,曾令中国古代数学的严谨与系统达到前所未有的高度。

下面我将主要介绍刘徽及其最耐人寻味的一段成就——割圆术。

刘徽,生于公元250年左右,是魏晋时人。

他的一生为数学刻苦探求,虽然地位低下,但人格高尚。

他所撰的《九章算术注》是中国最宝贵的数学遗产。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观,是中国最早明确主张用逻辑推理的方式来论证数学命题的人。

他不是沽名钓誉的庸人,而是学而不厌的伟人。

由于篇幅有限,对刘徽卓越的成就不能一一介绍,只能介绍其最耐人寻味的割圆术。

割圆术可谓是中国古代数学的奇迹,在后面与阿基米德求圆面积方法的比较中,您将发现割圆术的精妙与美丽。

在《九章算术》中曾提到“圆田术”---半周半径相乘得积步。

这就是著名的圆面积公式:(1) 其中S 表示圆面积,C 表示周长,R 表示半径。

我们今天可以得出这个公式是正确的,但在《九章算术》中只是提到了这一结论,却未给出严谨的证明。

在刘徽之前人们以圆内接正六边形的周长代替圆周长C ,以圆内接正十二边形的面积代替圆面积S ,用出入相补原理将正十二边形拼补成一个以正六边形的周长的一半作为长,以圆半径作为宽的长方形来推证上述公式。

在今天,我们可以看出用圆内12S CR接正六边形和圆内接正十二边形来近似代替圆是相当粗糙的,但在当时很少有人能指出这一算法的不严谨性,而刘徽却说此方法“合径率一而外周率三也”,一针见血的指出了这一方法的不严格性。

《刘徽割圆术》课件

《刘徽割圆术》课件
形状,从而方便计算和推导。
割圆术与极限思想的关系
极限思想是数学中一个重要的 概念,它描述了当某量变化时 ,其极限的存在性。
割圆术体现了极限思想的应用 ,即通过不断增加多边形的边 数,使得多边形的周长无限接 近于圆的周长。
这种极限思想的应用使得刘徽 能够利用有限的手段来逼近无 限的数值,从而得到圆周率的 近似值。
感谢您的观看
THANKS
计算机图形学
在现代计算机图形学中,刘徽割圆术 的思想被广泛应用于生成平滑的曲线 和曲面,例如在制作动画、游戏、电 影等领域。
数值分析
刘徽割圆术中的数值计算方法也被广 泛应用于现代科学中的数值分析领域 ,例如在计算物理、工程等领域中, 可以利用刘徽割圆术的方法进行数值 模拟和计算。
04
刘徽割圆术的局限性与挑战
在数学史上的地位
推动了中国古代数学的发展
刘徽割圆术是中国古代数学发展史上的重要里程碑,它的出现标志着中国古代数学从经验型向理论型的转变。
对世界数学史的影响
刘徽割圆术的提出和应用,不仅对中国古代数学产生了深远影响,也对世界数学史的发展产生了重要影响,为后 来的数学家提供了宝贵的启示和借鉴。
在现代科学中的应用
古代科学技术的局限性
缺乏精确的测量工具
古代科学技术的限制使得刘徽在进行 割圆术时无法获得精确的数值和比例 。
缺乏数学理论支持
受限于经验和实践
由于历史背景和知识体系的限制,刘 徽只能通过直观和实践来验证割圆术 ,这使得其结果的可靠性和准确性存 在一定问题。
当时的数学理论尚未发展到能够完全 支撑刘徽割圆术的证明,这使得该方 法在理论上的可靠性受到质疑。
刘徽割圆术在现代科学中的应用前景
数学建模
刘徽割圆术的基本思想和技巧可以应用 于数学建模中,为解决实际问题提供新 的思路和方法。例如,在物理、工程、 经济等领域中,可以利用刘徽割圆术的 思想来建立数学模型,解决复杂的问题 。

刘徽的小故事简短

刘徽的小故事简短

《刘徽的小故事简短》小朋友们,今天我来给你们讲讲刘徽的小故事。

刘徽呀,是咱们中国古代特别厉害的一个数学家。

他可聪明啦!有一次,刘徽看到人们在计算图形面积的时候总是不太准确,他就想啊,怎么才能算得更准呢?于是,他天天琢磨,不停地在纸上画图、计算。

有一天,他突然想到了一个好办法。

就拿计算圆的面积来说吧,他想出了用“割圆术”的方法。

就是把圆不停地分割成很多很多小的扇形,然后通过计算这些小扇形的面积,就能越来越接近圆的真实面积啦。

刘徽就这样一直努力研究,为数学的发展做出了很大的贡献呢。

小朋友们,刘徽是不是很厉害呀?《刘徽的小故事简短》小朋友们,咱们接着讲刘徽的故事。

刘徽还对计算体积很有研究呢。

比如说,要计算一个不规则形状物体的体积,这可难倒了好多人。

但是刘徽不怕,他又开始动脑筋啦。

他通过观察和思考,想出了一些巧妙的办法。

就像把复杂的形状分解成简单的部分,然后再一点点计算。

刘徽的这些想法和方法,让后来的人们在计算各种形状的体积时都方便了很多。

他的努力和聪明才智,让数学变得更有趣、更有用啦。

小朋友们,你们觉得刘徽棒不棒?《刘徽的小故事简短》小朋友们,让我再给你们讲讲刘徽的故事。

刘徽不仅在数学理论上有成就,他还很注重实践呢。

有一回,村里的人们要盖房子,不知道怎么计算要用多少木材。

刘徽就主动帮忙,用他的数学知识很快就算出来了。

还有一次,大家要分粮食,不知道怎么分才公平。

刘徽又站出来,用他的办法让每个人都分到了合适的粮食。

刘徽就是这样,用他的数学才能帮助了很多很多人。

小朋友们,咱们要向刘徽学习,爱思考,爱学习!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②在筹式演算理论方面 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基 础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数 学中的“方程”,即现代数学中线性方程组的增广矩阵。 学中的“方程”,即现代数学中线性方程组的增广矩阵。 ③在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理 论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图 形的论析,形成了中国特色的相似理论。 ④在面积与体积理论方面 用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理, 用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理, 并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值 至今仍闪烁着余辉。
成就
刘徽的成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算 是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《
术注》 术注》中。它实已形成为一个比较完整的理论体系: ①在数系理论方面 用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的 用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的 运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根 的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则 与圆合体,而无所失矣”。其思想与古希腊穷竭法不谋而合。割 圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用 圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用 2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利 2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利 用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最 用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最 好结果。分析方法发明后逐渐取代了割圆术,但割圆术作为计算 圆周率最早的科学方法一直为人们所称道。
割圆术介绍与发展
割圆术(cyclotomic method) 割圆术(cyclotomic method) 利用圆内接或外切正多边形,求圆周率近似值的方法,其原 理是当正多边形的边数增加时,它的边长和逐渐逼近圆周。早在 公元前5 公元前5世纪,古希腊学者安蒂丰为了研究化圆为方问题就设计 一种方法:先作一个圆内接正四边形,以此为基础作一个圆内接 正八边形,再逐次加倍其边数,得到正16边形、正32边形等等, 正八边形,再逐次加倍其边数,得到正16边形、正32边形等等, 直至正多边形的边长小到恰与它们各自所在的圆周部分重合,他 认为就可以完成化圆为方问题。到公元前3 认为就可以完成化圆为方问题。到公元前3世纪,古希腊科学家 阿基米德在《论球和阅柱》 阿基米德在《论球和阅柱》一书中利用穷竭法建立起这样的命题: 只要边数足够多,圆外切正多边形的面积与内接正多边形的面积 之差可以任意小。阿基米德又在《圆的度量》 之差可以任意小。阿基米德又在《圆的度量》一书中利用正多边 形割圆的方法得到圆周率的值小于三又七分之一三又七十分之十 而大于 ,还说圆面积与夕卜切正方形面积之比为11:14,即取 ,还说圆面积与夕卜切正方形面积之比为11:14,即取 圆周率等于22/7。公元263年,中国数学家刘徽在《九章算术注》 圆周率等于22/7。公元263年,中国数学家刘徽在《九章算术注》 中提出“割圆”之说,他从圆内接正六边形开始,每次把边数加 倍,直至圆内接正96边形,算得圆周率为3.14或157/50,后人称 倍,直至圆内接正96边形,算得圆周率为3.14或157/50,后人称 之为徽率。书中还记载了圆周率更精确的值3927/1250(等于 之为徽率。书中还记载了圆周率更精确的值3927/1250(等于 3.1416)。 3.1416)。
刘徽与割圆术
主讲人:李慧
小教一班 12号 12号

刘徽生平简介
生平
刘徽(生于公元250年左右) 三国后期魏国人,是中国古代杰 刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰 出的数学家,也是中国古典数学理论的奠基者之一.其生卒年 出的数学家,也是中国古典数学理论的奠基者之一.其生卒年 月、生平事迹, 史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。 终生未做官。
刘徽由正六邊形開始,不斷倍增正多邊形的邊數 刘徽由正六邊形開始,不斷倍增正多邊形的邊數。
正6邊形
正12邊形
正24邊形
正48邊形
邊數愈多,正多邊形愈接近圓形。 最後,劉徽求得π≈ 3.1416。 最後,劉徽求得π≈ 3.1416。
谢谢观看
②刘徽原理 在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时, 九章算术•阳马术》 提出了关于多面体体积计算的刘徽原理。 提出了关于多面体体积计算的刘徽原理。 ③“牟合方盖”说 在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径) 九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径) 的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是 的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是 指正方体的两个轴互相垂直的内切圆柱体的贯交部分。 指正方体的两个轴互相垂直的内切圆柱体的贯交部分。 ④方程新术 在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了 九章算术•方程术》 比率算法的思想。 ⑤重差术 在白撰《海岛算经》 在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等 测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展 为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次 为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次 测望的问题。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的
创见: ①割圆术与圆周率 他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并 他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并 给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数 给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数 倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积, 倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积, 得到π=3927/1250=3.1416,称为“徽率”。 得到π=3927/1250=3.1416,称为“徽率”。
相关文档
最新文档