有关排队问题的排列组合题解法举例

有关排队问题的排列组合题解法举例
有关排队问题的排列组合题解法举例

有关排队问题的排列组合题解法举例

例1:三个女生和五个男生排成一排

(1)如果女生必须全排在一起,可有多少种不同的排法?

(2)如果女生必须全分开,可有多少种不同的排法?

(3)如果两端都不能排女生,可有多少种不同的排法?

(4)如果两端不能都排女生,可有多少种不同的排法?

解:(1)(捆绑法)

因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有种不同排法.对于其中的每一种排法,三个女生之间又都有对种不同的排法,因此共有种不同的排法.

(2)(插空法)

要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有种方法,因此共有种不同的排法.

(3)解法1:(位置分析法)

因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有种排法,所以共有种不同的排法.

解法2:(间接法)

3个女生和5个男生排成一排共有种不同的排法,从中扣除女生排在首位的种排法和女生排在末位的种排法,但这样两端都是女生的排法在扣除女生排在

首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有种不同的排法,所以共有种不同的排法.

解法3:(元素分析法)

从中间6个位置中挑选出3个来让3个女生排入,有种不同的排法,对于其中的任意一种排活,其余5个位置又都有种不同的排法,所以共有种不同的排法,

(4)解法1:

因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,

这样可有种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有种不同排法.因此共有种不同的排法.

解法2:

3个女生和5个男生排成一排有种排法,从中扣去两端都是女生排法种,就能得到两端不都是女生的排法种数.

因此共有种不同的排法.

说明:解决排列、组合应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.

若以元素为主,需先满足特殊元素要求再处理其它的元素.

间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.例27名同学排队照相.

(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?

(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?

3名女生,

(4)若排成一排照,7人中有4名男生,女生不能相邻,有多少种不面的排法?

3

分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A

7种排法;第二步,347

剩下的4人排在后排,有A

4种排法,故一共有A

7种排法.事实上排两排与排成 A

4 A

7

7

一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A

7,相当于7个人的4

全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.

解:(1)A

7 A

4 A

75040种.

1

(2)第一步安排甲,有A

3种排法;第二步安排乙,有A

4种排法;第三步余下的5人排在5

剩下的5个位置上,有A

5种排法,由分步计数原理得,符合要求的排法共有115

A

3 A

4 A

51440种.1

347

(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的53

全排列问题,有A

5种排法;第二步,甲、乙、丙三人内部全排列,有A

3种排法.由分步计53

数原理得,共有A

5 A

3720种排法.

4

(4)第一步,4名男生全排列,有A

4种排法;第二步,女生插空,即将3名女生插入4名3

男生之间的5个空位,这样可保证女生不相邻,易知有A

5种插入方法.由分步计数原理得,43

符合条件的排法共有:A

4 A

51440种.

说明:

(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.

(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.

例3八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?

解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:215215

A

4 A

2 A

5 A

4 A

4 A

58640(种).

解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八

17

人坐法数”看成“总方法数”,这个数目是A

4.在这种前提下,不合题意的方法是“甲 A

7

11115

坐第一排,且乙、丙坐两排的八人坐法.”这个数目是A

4.其中第一个因数 C

2 A

3 A

4 A

5

111

表示甲坐在第一排的方法数,C

2表示从乙、丙中任选出一人的办法数,A

3表示把选出A

4

的这个人安排在第一排的方法数,下一个A

4则表示乙、丙中沿未安排的那个人坐在第二排5

的方法数,A

5就是其他五人的坐法数,于是总的方法数为

1711115

A

4 A

7 A

4 C

2 A

3 A

4 A

58640(种).

1

例4一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?

分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7.先选定两个空位,可以在1、2号位,也可以在2、3号位…共有六种2号,则另一空位可以在4、可能,再安排另一空位,此时需看到,如果空位在1、5、6、7号7号位,亦如此.如果相邻空位在2、3号位,另一空位可位,有4种可能,相邻空位在6、

4号,4、5号,5、6号亦如此,所以必以在5、6、7号位,只有3种可能,相邻空位在3、

须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻.

解答一:就两相邻空位的位置分类:

4

2或6、7,共有24 A

4

若两相邻空位在1、192(种)坐法.

4

3,3、4,4、5或5、6,共有43 A

4

若两相邻空位在2、288(种)不同坐法,所以所有坐法总数为192288480(种).

解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有42

A

4 A

5480(种)不同坐法.

解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相4

邻的情况,4个人任意坐到7个座位上,共有A

7种坐法,三个空位全相邻可以用合并法,

5

直接将三个空位看成一个元素与其它座位一起排列,共有A

5种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A

410种不同方454

法,所以,所有满足条件的不同坐法种数为A

7 A

510A

4480(种).4

十二个技巧速解排列组合题

有关排列组合的常用解题技巧 排列组合问题是高考必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,本文介绍十二类典型排列组合题的解答策略. 1.相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 【例1】A 、B 、C 、D 、E 五人并排站成一排,如果A 、B 必须相邻且B 在A 的右边,那么不同的排法种数有[ ] A .60种 B .48种 C .36种 D .24种 分析 把A 、B 视为一人,且B 固定在A 的右边,则本题相当于4人全排列,=种,故选.P 24D 44 2.不相邻问题插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端. 【例2】七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是[ ] A .1440 B .3600 C .4820 D .4800 分析 5P 6P P P 3600B 55 62 55 62 除甲、乙外,其余个排列数为种,再用甲、乙去插个空位有种,不同排法种数是=种,故选. 3.多排问题单排法 把元素排成几排的问题,可归结为一排考虑,再分段处理. 【例3】6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是[ ] A .36 B .120 C .720 D .1440. 分析 前后两排可看成一排的两段,因此本题可视为6个不同元素 排成一排,共=种,故选.P 720C 66 【例4】8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某 1个元素要排在后排,有多少种排法? 分析 22P 1P 55P P P 57604 2 41 55 41 42 看成一排,某个元素在前半段四个位置中选排个,有种;某个元素在后半段四个位置中选一个,有种;其余个元素任排在剩余的个位置上有种,故共有=种排法. P 55 4.定序问题倍缩法(标号排位问题分步法) 在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法. (把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.) 【例5】A 、B 、C 、D 、E 五个人并排站成一排,如果 B 必须站A 的右边(A 、B 可不相邻),那么不同的排法种数有[ ]

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

排列组合问题的20种解法

排列组合问题的20种解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 44 3

由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆 里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 522 522480A A A =种不同的排法 练习题: 某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场 顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5 4 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行 排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数

排列组合问题之捆绑法-插空法和插板法

行测答题技巧:排列组合问题之捆绑法,插空法和插板法 “相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再 考虑大元素内部各元素间排列顺序的解题策略。 例1 ?若有A、B、C、D E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法 【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“ A,B”、C D E “四个人”进行排列,有■< 种排法。又因为捆绑在一起的A、B两人也要排序,有I种排法。根据分步乘法原理,总的排法有I -种 例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。若 将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法 共有多少种 【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有丄种排法;又3 本数学书有丄种排法,2本外语书有雹种排法;根据分步乘法原理共有排法.<■'I - -- I 种。 【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑” 起来的大元素内部的顺序问题。解题过程是“先捆绑,再排列”。 “不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将 问题解决的策略。 例3.若有A、B、C、D E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法

【解析】:题目要求A和B两个人必须隔开。首先将C、D E三个人排列, 有「「种排法;若排成D C E,则D C E “中间”和“两端”共有四个空位置,也即是:?D C E ,此时可将 A B两人插到四个空位置中的任意两个位置,有q种插法。由乘法原理,共有排队方法:匚二 :-。 例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种 【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目 去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有「种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有」:.方法,由乘法原理得:所有不同的添加方法为匚-.,=504种。 例4.一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电, 可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种 【解析】:若直接解答须分类讨论,情况较复杂。故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有'种方法(请您想想为什么不是八),因此所有不同的关灯方法有'_「种。 【王永恒提示】:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。解题过程是“先排列,再插空”。 练习:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法(国考2008-57) A. 20 B . 12 C . 6 D . 4 插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求

排列组合问题,常见解题策略

排列组合问题,常见解题策略 曹永玉 排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。 一、排列问题 1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。 例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种? 解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。 点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。 2.某个元素不排在指定位置——排除法。 例2. 5个人排队,其中甲不在排头的排法有多少? 解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种 解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有

A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。 解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。 3. 相邻问题——捆绑法 例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法? 解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。 4. 小团体问题——捆绑法 例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少? 解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。因此共A31A22A33种不同站法。 5. 不相邻问题——插空法 例5.要排一个有5个独唱节目和3个舞蹈节目单,如果舞蹈节目不排在开头,并且任意两个舞蹈节目不排在一起,则不同的排法有多少? 解析:先将5个独唱节目排列A55,形成的6个空挡中,从后面5个空挡中选3个排在舞蹈节目A53,故有A55A53种不同排法。 6. 定序排列问题——缩短法 例6.书架上有6本书,新买了3本书插进去,保持原来6本书的顺序不变,有多少种排法? 解析:9本书作全排列A99,考虑到原来6本书的顺序不变,原来的每一种

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A =

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

数学解排列组合应用题的21种策略

解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( ) A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列, 4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同 的排法种数是525 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( ) A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )

高中数学排列组合难题十一种方法教师版

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有 m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

插空法解排列组合题

插空法解排列组合题 令狐采学 曾安雄 插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。运用插空法解答有关元素不相邻问题非常方便。下面举例说明。 一. 数字问题 例1. 把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种? 解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有 二. 节目单问题 例2. 在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?

解析:若直接解答则较为麻烦。故可先用一个节目去插七个空位,有种方法;再用另一个节目去插八个空位有种方法;用最后一个节目去插九个空位有种方法。由乘法原理得,所有不同的添加方法为:。 三. 关灯问题 例3. 一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种? 解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位共有种方法,因此所有不同的关灯方法为种。 四. 停车问题 例4. 停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种? 解析:先排好8辆车有种方法,要求空位置连在一起,则在每2辆之间及其两端的9个空当中任选一个,将空位置插入其中有种方法。所以共有种方法。 五. 座位问题

例5. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种? 解法1:先将3个人(各带一把椅子)进行全排列有种,产生的四个空中分别放一把椅子,还剩一把椅子再去插空有 种,所以每个人左右两边都空位的排法有种。 解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,再让3个人每人带一把椅子去插空,于是有种。

解排列组合问题的利器之一:“隔板法”

解排列组合问题的利器之一:“隔板法” 发表时间:2014-01-20T14:00:41.903Z 来源:《职业技术教育》2013年第10期供稿作者:赵善辉[导读] 上述问题还可以转化为方程x1+x2+x3+x4=8的正整数解的个数,方程的一组解(x1,x2,x3,x4) 赵善辉(山东省齐河县职业中专山东德州251114) 排列、组合是历年对口高考必考内容之一,它联系实际,生动有趣,题型多样,思路灵活。教材中出现的解决这类问题常见的方法有插空法、捆绑法、排除法等,本文在这里介绍教材里没有出现的一种方法——隔板法。 隔板法可解决相同元素的分配问题,在相同元素之间插入隔板来达到分配的目的,它强调的是分配之后每组元素的个数,而与每一组包含哪几个元素无关。 【例1】把8个相同的篮球任意分给甲乙丙丁四所学校,每所学校至少一个,有多少种不同的分法? 解析:可把8个相同的篮球排成一列,8个篮球中间有7个空隙(不包括两端),用3个隔板分别插在7个空隙中,把8个篮球分成4组,例如OOIOOOIOIOO依次分配给甲乙丙丁四所学校的篮球数为2、3、1、2,所以每一种分隔法都对应了一种分法,于是分法种数为C73=35。 上述问题还可以转化为方程x1+x2+x3+x4=8的正整数解的个数,方程的一组解(x1,x2,x3,x4)对应一种分配方案,有8个1排成一列,中间有7个空隙(不包括两端),7个空隙中选出3个分别插入3个“+”,8个1被分成4组,每种插入方法对应着方程的一个解,此方程正整数解的个数为 C73=35。 【例2】把8个相同的篮球任意分给甲乙丙丁四所学校,有多少种不同的分法? 解析:设分给甲乙丙丁四所学校的篮球数分别为x1、x2、x3、x4,方程x1+x2+x3+x4=8(x1∈N,x2∈N, x3∈N,x4∈N)解的个数即为分配方案的种数,(x1+1)+(x2+1)+(x3+1)+(x4+1)=8+1+1+1+1=12。 设x1+1=y1,x2+1=y2,x3+1=y3,x4+1=y4, y1+y2+y3+y4=12 (y1∈N,y2∈N,y3∈N,y4∈N) 两个方程解的个数相同,由【例1】中的方法知,第二年方程的解有C113=165个,方程x1+x2+x3+x4=8(x1∈N,x2∈N,x3∈N,x4∈N)解的个数为C113=165,所以有165种分法。 可用借球法这样解释:本题中有的学校可能没分到球,先借4个球分别给4个学校,以上问题变成了:12个相同的篮球任意分给甲乙丙丁四所学校,每所学校至少一个,有多少种不同的分法?用隔板法可得有C113=165种分配方案。 隔板法在解题过程中带有一定的格式化、程序化,可使解题过程简单明了、快捷准确,但任何一种方法都不是包治百病的灵药,在解决具体问题时还应灵活掌握,各种方法综合运用。 以下几题,同学们可小试牛刀。 练习:(1)把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法? A.190 B.171 C.153 D.19 (2)(a+b+c+d)10的展开式中共有多少项? (3)在所有的三位数中,各位数字之和是19的数共有多少个? 答案:(1)B (2)C143=364 (3)C102=45 【分析】三位数的数字和等于19,这个三位数的三个数字不可能有0。可以想象成19个1排成一排,中间插2个木板,分成三部分,这三部分的和肯定等于19。第一部分是百位上的数字,第二部分是十位上的数字,第三部分是个位上的数字。但是每一部分有可能大于9,不能作为一个三位数的某一个位上的数字,找一个新的三位数,新三位数的每一位加原来三位数的对应位的数字都等于10(百位数字加百位数字,十位数字加十位数字,个位数字加个位数字)。新三位数和老三位数是一一对应的,有多少个这样的新三位数就有多少个这样的老三位数。新三位数的数字和等于30-19=11,可以用“隔板法”,就不会出现上面的问题了。

排列组合问题的解题方法与技巧的总结(完整版)

种。故不同插法的种数为:26A + 22A 16A =42 ,故选A 。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:由题意,选用3种颜色时,C 43种颜色,必须是②④同色,③⑤同色,与①进行全排列,涂色 方法有C 43A 33=24种4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有 C 21A 44=48种所以不同的着色方法共有48+24=72种;故答案为72 六、混合问题--先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4 人,则不同的分配方案共有( )种 A. B.3种 C. 种 D. 解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三 个不同的路口的不同的分配方案共有: 种,故选A 。 例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共 有() A .24种 B .18种 C .12种 D .6种

解:黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33, ∴种法共有C32A33=18,故选B. 七.相同元素分配--档板分隔法 例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。 解一:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有2 C种插法,即有15种分 6 法。 2、解二:由于书相同,故可先按阅览室的编号分出6本,此时已保证各阅览室所分得的书不小于其编号,剩下的4本书有以下四种分配方案:①某一阅览室独得4本,有种分法;②某两个阅览室分别得1本和3本,有种分法;③某两个阅览室各得2本,有种分法;④某一阅览室得2本,其余两阅览室各得1本,有种分法.由加法原理,共有不同的分法3+=15种. 八.转化法: 对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解 。例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他

解决排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C ,然后排首位共有14C 最后排其它位置共有34A ,由分步计数原理得113434288C C A = C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

插空法解排列组合题

插空法解排列组合题 曾安雄 插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。运用插空法解答有关元素不相邻问题非常方便。下面举例说明。 一. 数字问题 例1. 把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种? 解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有 二. 节目单问题 例2. 在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种? 解析:若直接解答则较为麻烦。故可先用一个节目去插七个空位,有种方法;再用另一个节目去插八个空位有种方法;用最后一个节目去插九个空位有种方法。由乘法原理得,所有不同的添加方法为: 。

三. 关灯问题 例3. 一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种? 解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位共有种方法,因此所有不同的关灯方法为 种。 四. 停车问题 例4. 停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种? 解析:先排好8辆车有种方法,要求空位置连在一起,则在每2辆之间及其两端的9个空当中任选一个,将空位置插入其中有种方法。所以共有 种方法。 五. 座位问题 例5. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?

排列组合问题的解题方法

第一课时 排列组合问题的解题方法(一) 教学目标: 掌握几类特殊的排列问题的解决技巧. 教学重点:掌握“条件排列”、“集团排列”、“间隔排列”、“部分顺序排列”问题的解题 技巧. 教学难点:如何应用“技巧”解题. 教学过程: 【例析技巧】 一.集团排列问题:部分元素必须安排在一起(相邻)的排列问题,称之为“集团排列” 问题.解决这类问题,常用“捆绑法”,其方法是先排“集团”部的元素,再把这个大“元素” 与其它元素一起排列即可. 例1 若7位同学站成一排 (1)甲、乙两同学必须相邻的排法共有多少种? (2)甲、乙和丙三个同学都相邻的排法共有多少种? (3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? (4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种? 解:(1)先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学) 一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有2 2A 种方法.所以这 样的排法一共有62621440A A ?=种. (2)方法同上,一共有55A 33A =720种. (3)解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素, 因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾, 有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑” 进行排列有22A 种方法.所以这样的排法一共有25A 44A 2 2A =960种方法. 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站 在排头或排尾有255A 种方法,所以,丙不能站在排头和排尾的排法有960)2(225566=?-A A A 种方法.

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

高中数学搞定排列组合方法,各种问题大全

高考数学定排列组合方法 问题大全 排队问题大全 三男四女排队30问小结 [ 典例 ]:有3名男生和4名女生,若分别满足下列条件, 则各有多少种不同的排法: 1.全体排一排:50407 7=A 2、选5人排一排:==5 75557A A C 2520 3.甲站在正中间:6!=720 ____________ 4.甲只能站在正中间或两头: 5.甲既不在排头也不在排尾: 6.甲、乙必须在两头: ______________ 7.甲、乙不站排头和排尾: ____________ 8.甲不在排头、乙不在排尾: 9.甲在乙的右边: ________________ 10.甲、乙必须相邻: _____________ 11.甲、乙不能相邻: 12.甲、乙、丙三人都相邻: 13.甲、乙、丙三人都不相邻: 14.7人排成一排,其中甲、乙、丙三人中,有两人相邻,但这三人不同时相邻: 15.男女生各站在一起: 16.男生必排在一起: __( 或女生必排在一起:______________ ) 17.男女各不相邻(即男女相间、4女互不相邻): 18.男生不排在一起: 19.任何两男生彼此不相邻: 20.甲、乙两人之间须相隔1人: 21.甲、乙两人中间恰有3人: 22.甲、乙、丙3人自左至右顺序不变(即男生顺序一定,只排女生): 23.从左到右,4名女生按甲、乙、丙、丁的顺序不变(即只排男生): 24.甲、乙两人相邻,但都不与丙相邻: 25.甲、乙相邻且丙不站排头和排尾: 26.排成前后两排,前3人后4人: 27.前3后4人且甲、乙在前排,丙排后排: 28.三名男生身高互不相同,且从左到右按从高到矮顺序排: 29.若两端都不能排女生: 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13

隔板法解决排列组合问题

隔板法解决排列组合问题 Prepared on 22 November 2020

“隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有 序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种 (2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种 (3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种 解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”看成隔板,则如图00隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入2个,4个,4个,2个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法,所以 不同的放法有3 11 C=165种。 (2)法1:(分类)①装入一个盒子有1 44 C=种;②装入两个盒子,即12 个相同的小球装入两个不同的盒子,每盒至少装一个有21 41166 C C=种;③装入三个盒子,即12个相同的小球装入三个不同的盒子,每盒至少装一个有32 411 C C=220种;④装入四个盒子,即12个相同的小球装入四个不同的盒子,每 盒至少装一个有3 11165 C=种;由加法原理得共有4+66+220+165=455种。

相关文档
最新文档