抓住不变量解分数应用题练习

合集下载

六年级数学分数应用题-抓不变量(2)

六年级数学分数应用题-抓不变量(2)

六年级数学分数应用题-抓不变量(2)——抓不变量解题姓名_______________ 班级 _______________一、填空题1.甲仓库有粮食180吨;乙仓库有粮食120吨;甲仓库运出一部分到乙仓库后;乙仓库与甲仓库的粮食比为7:3。

甲仓库运了()吨粮食到乙仓库。

2.甲乙两车间原有人数比是3:2;甲车间调48人到乙车间后;甲车间与乙车间的人数比是2:3。

两车间原有()人。

3.一班和二班人数比是8:7;如果将一班的3名同学调到二班去;则两个班人数相等。

两个班共有学生()人。

4.某车间男女工人人数比是2:5;现调走10名女工;现在男女人数之比是4:9;原来车间男工()人;女工人有()人。

5.一个书架有上下两层。

上层放书的本书与下层的比是8:5;如果从上层拿12本放入下层;那么两层放的书同样多。

这个书架上层原有图书()本;下层原有图书()本。

二、解决问题。

1、操场上有108名同学在锻炼身体;其中女生占29;后来又来了几名女生;这时女生人数达到男生的37。

后来有来了几名女生?2、第一桶柴油是第二桶的6倍;从第一桶取出12千克柴油加入第二桶;这时第一桶柴油的重量是第二桶的4倍。

原来第一桶有柴油多少千克?3、两个工程队;原来甲队人员比乙队少14;后来甲队增加21人;这时乙队人员是甲队的89;现在甲队有多少人? 4、新兴小学六年级有两个班;六年一班有学生48人;六年二班有学生56人;两个班各转出相同的人数后;六年二班人数还比六年一班人数多211 ;两个班各转出多少人?5、有两根蜡烛;一根长18cm;另一根长16cm;把两根蜡烛都烧掉同样的长度之后;短的长度是长的一根的56 ;求每根蜡烛都烧掉了多少厘米?6、一杯盐水;盐占盐水的15 ;现在把这杯水蒸发;蒸发了20克水后;盐占盐水的14 ;原来盐和水各多少千克?7、教室里有36个学生;其中女生占 59;后来又来了几个女生;这时候女生占总人数的1119 ;后来又来了多少个女生?8、某科技兴趣小组中女生占712;后来又转来了15女生;这样女生占总人数的35。

抓住不变量-巧解分数应用题

抓住不变量-巧解分数应用题

分数应用题——抓住不变量专项练习
一、基本练习
①甲是20,乙是30,甲是乙的) () (,乙是甲的)
() ( ②合唱队男生人数是总人数的51,那么男生人数是女生人数的)
() ( ③甲是乙的52,那么甲是甲乙和的) () (,乙是甲乙和的)
() ( ④甲是乙的
74,那么甲是甲乙之差的) () ( 二、总量是不变量
1、甲、乙两车间的人数之比是3:7,从乙车间抽调42人到甲车间后,甲、乙两车间的人数之比是2:3,求甲、乙两车间原来一共有多少人?
2、小明放一群鸭子,岸上的只数是水中的
4
3,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?
3、五年一班有5
1的同学参加夏令营,后来又有2名同学参加,这时参加夏令营的人数是不参加的31,五年一班有多少人参加了夏令营?
4、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的
2
1,原来两人各有多少元钱?
三、其中一个量是不变量
5、五年一班女生人数是男生人数的
119,后来又转进2名女生,这时女生人数是男生人数的11
10,五年一班现在共有学生多少人?
6、某厂共有职工120人,其中女职工占全厂的5
1,后来这个厂又从下岗女工中招收了一些人,这时女职工人数占全厂的41,这个厂现有职工多少人?新招收的女工多少人?
7、一杯盐水,盐占盐水的51,再加入16克盐后,盐占盐水的4
1,原来盐水有多少千克?
8、张庄小学六年级学生中女生占
127,后来又转来了15名女生,这样女生占六年级总人数的53,六年级原来有多少名学生?。

六年级上册数学试题-专题训练 分数应用题之抓住不变量 苏教版

六年级上册数学试题-专题训练 分数应用题之抓住不变量 苏教版

六年级上册数学试题-专题训练分数应用题之抓住不变量苏教版本文介绍了分数应用题中的“抓住不变量”方法,即先求出不变量,然后以不变量为单位,列出等式或不等式,从而解决问题。

具体来说,分为三种类型:分量不变(量已知)、分量不变(量未知)和差量不变(量已知)。

在每种类型中,通过列出等式或不等式,可以求出未知量的值。

在分量不变(量已知)类型中,需要先求出不变量,然后以不变量为单位,列出等式,从而求出未知量的值。

例如,在甲乙两人共有160元,其中甲占3/5的情况下,甲用去一些后,甲剩下的是两人剩下总数的1/5,需要求出甲用去多少元。

解决方法是,先求出不变量为160/5=32,然后以不变量为单位,列出等式3/5x-32=2/5x,解得x=80,即甲用去80元。

在分量不变(量未知)类型中,同样需要先求出不变量,然后以不变量为单位,列出等式,从而求出未知量的值。

例如,在甲钱是乙钱的2/5的情况下,甲用去20元后,甲钱是乙钱的3/5,需要求出原来两人各有多少元。

解决方法是,先求出不变量为2/5x,然后以不变量为单位,列出等式2/5x-20=3/5x,解得x=100,即原来甲乙各有100元。

在差量不变(量已知)类型中,需要求出两个量的差不变,然后列出等式或不等式,从而求出未知量的值。

例如,在苹果40千克,梨60千克,各吃了同样多后,苹果是梨的情况下,需要求出各吃了多少千克。

解决方法是,设吃了x千克,那么梨吃了60-x千克,由于差量不变,所以有40-x=60-x,解得x=10,即各吃了10千克。

最后,通过“抓住不变量”方法,可以在解决分数应用题时更加高效地找到解题思路,从而快速解决问题。

六年级数学分数应用题-抓不变量(2)

六年级数学分数应用题-抓不变量(2)

多种方法解决分数应用题(2)——抓不变量解题姓名_______________ 班级 _______________一、填空题1.甲仓库有粮食180吨,乙仓库有粮食120吨,甲仓库运出一部分到乙仓库后,乙仓库与甲仓库的粮食比为7:3。

甲仓库运了()吨粮食到乙仓库。

2.甲乙两车间原有人数比是3:2,甲车间调48人到乙车间后,甲车间与乙车间的人数比是2:3。

两车间原有()人。

3.一班和二班人数比是8:7,如果将一班的3名同学调到二班去,则两个班人数相等。

两个班共有学生()人。

4.某车间男女工人人数比是2:5,现调走10名女工,现在男女人数之比是4:9,原来车间男工()人,女工人有()人。

5.一个书架有上下两层。

上层放书的本书与下层的比是8:5,如果从上层拿12本放入下层,那么两层放的书同样多。

这个书架上层原有图书()本,下层原有图书()本。

二、解决问题。

1、操场上有108名同学在锻炼身体,其中女生占29,后来又来了几名女生,这时女生人数达到男生的37。

后来有来了几名女生2、第一桶柴油是第二桶的6倍,从第一桶取出12千克柴油加入第二桶,这时第一桶柴油的重量是第二桶的4倍。

原来第一桶有柴油多少千克3、两个工程队,原来甲队人员比乙队少14 ,后来甲队增加21人,这时乙队人员是甲队的89,现在甲队有多少人4、新兴小学六年级有两个班,六年一班有学生48人,六年二班有学生56人,两个班各转出相同的人数后,六年二班人数还比六年一班人数多211,两个班各转出多少人5、有两根蜡烛,一根长18cm ,另一根长16cm ,把两根蜡烛都烧掉同样的长度之后,短的长度是长的一根的56 ,求每根蜡烛都烧掉了多少厘米6、一杯盐水,盐占盐水的15 ,现在把这杯水蒸发,蒸发了20克水后,盐占盐水的14 ,原来盐和水各多少千克7、教室里有36个学生,其中女生占 59 ,后来又来了几个女生,这时候女生占总人数的1119,后来又来了多少个女生8、某科技兴趣小组中女生占712,后来又转来了15女生,这样女生占总人数的35。

抓不变量解答分数应用题(供参考)

抓不变量解答分数应用题(供参考)

抓不变量解答分数应用题一、抓住和不变1、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?练习:甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多1/5,甲乙原来各有多少吨?2、某校五年级学生参加大扫除的人数是未参加的1/4,后来又有2个同学主动参加,实际参加的人数是未参加人数的1/3,问某班五年级有学生多少人? 练习:煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。

如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?2、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的1/2,原来两人各有多少元钱?3、小明放一群鸭子,岸上的只数是水中的3/4,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?二、抓住部分不变1、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6。

又买来多少本科技书?练习:有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?2、现有质量分数为20%的食盐水80克。

把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?练习:有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?2、在阅览室里,女生占全室人数的1/3,后来又进来5名女生,这时女生占全室人数的5/13,阅览室原有多少人?三、抓住差不变王叔叔和李叔叔每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,王叔叔和李叔叔每月工资各为多少元?综合练习:1.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。

那么,原来混合糖中奶糖和巧克力各有多少个?2、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?3、乙队原有人数是甲队的3/7。

分数应用题(抓住不变量专题)

分数应用题(抓住不变量专题)

△图书室里有学生28人,其中男生占 3/7,后来又来了一些男生,这时男生 占7/15。又来了多少名男生?
△图书室里有一些学生,其中男生占 3/7,后来走了4名男生,这时男生占 2/5。原来共有男生多少名?
△图书室里有一些学生,其中男生占 3/7,后来走了12名女生,这时男生占 3/5。原来共有男生多少名?
△甲、乙、丙三人生产一批玩具,甲生 产的个数是其他两人之和的1/2,乙生 产的个数是其他两人之和的1/3,甲生 产了120个。丙生产了多少个?
△甲、乙、丙三人生产一批玩具,甲生 产的个数是其他两人之和的1/2,乙生 产的个数是其他两人之和的1/3,甲比 乙多生产了120个。这批玩具共有多少 个?
△有一批货物,第一次运走的与剩下的 比是5:3,第二次运走50吨,这时运 走的是剩下的3倍。假设每辆车每次可 运10吨,则已经运了多少车次?
○甲乙丙三人生产一批玩具,甲生产的 个数是其他两人之和的1/2,乙生产的 个数是其他两人之和的1/3,丙生产了 100个。这批玩具共有多少个?
△甲、乙、丙三人共生产了960个玩具。 其中甲生产的个数是乙、丙和的3/5, 乙生产的个数是甲、丙和的2/3,丙生 产了多少个?
△有一批货物,第一次运走的与剩下的 比是3:5,第二次又运走30吨,这时 运走的是剩下的9/11,请问这批货物 原有多少吨?
△有一批货物,第一次运走的与剩下的 比是9:4,第二次运走20吨,那么剩 下的货物只占原有货物的2/13,请问 这批货物原有多少吨?
△有一批货物,第一次运走的与剩下的 比是3:7,第二次运走90吨,这时运 走的是剩下的3倍,请问这批货物原有 多少吨?
△学校买回四种图书,科技书是文艺书 的3/4,连环画是其余三种书的1/3, 史地书是其余三种书的1/4,史地书比 文艺书少80本,买回的四种书共多少本?

分数应用题比的应用抓住不变量结合复习

分数应用题 抓住不变量 比的应用例1、一根竹竿露出水面2米,泥中部分占全长的52,水中部分比泥中部分多1米。

这根竹竿全长多少米?2、一辆客车从甲地开往乙地,已行了全程的53还多22米,还剩全程的81,客车已行了多少千米?3、一桶油,第一次用去51,第二次比第一次多用去20千克,还剩16千克,这桶油有多少千克?例2、某校六(1)班有学生46人,六(2)班比全年级人数的31多2人,这两个班人数的和共占全年级人数的75,六年级共有学生多少人?【巩固训练】1、水果店运来一批水果,已知苹果100千克,梨比水果总数的41多8千克,苹果和梨一共占这批水果的125。

这批水果一共有多少千克?3、一根钢管,第一次截取全长的41,第二次截取2米,剩下的比全长的一半多1米,这根钢管长多少米?例3、六(1)班人数比六(2)班多16人,已知六(1)班人数的41与六(2)班人数的31相等,六(1)班和六(2)班各有学生多少人?【巩固训练】1、金洋希望小学六年级的学生人数的91与五年级人数的81相等,已知六年级比五年级多17人,五六年级各有多少人?例4、化肥厂运一批化肥,第一天运了总数的81多16吨,第二天运了总数的61少2吨,还剩88吨没有运,这批化肥共有多少吨?1、胜利小学有学生若干人,男生比全校学生总数的31多200人,女生比全校学生总数的43少285人。

全校共有学生多少人?2、某服装厂,去年上半年完成全年计划的85,下半年生产了7600套服装,结果全年超额完成了101,原计划生产服装多少套?1、一堆砖,用去了它的103后,又增加了340块,这时砖的总块数比原来没有用时的块数多81,原来有多少块砖?2、甲乙两车同时从A 、B 两地相向而行,相遇时乙车行的路程占甲车行的32,相遇后甲车又行了96千米,共行了全程的54,求A 、B 两地相距多少千米?3、乙堆煤比甲堆煤多24吨,甲堆煤运走43后,剩下的等于乙堆煤的51,甲堆煤多少吨?4、兄弟两人共有存款2000元,哥哥取出自己存款的61后,还比弟弟多200元,兄弟俩原来各有存款多少元?5、一辆公共汽车在发车时,车上共有72。

抓住不变量,解分数应用题的方法

抓住不变量解分数应用题的方法例1、甲乙两个班,甲班的人数是乙班的54,现在从甲班调2位男生到乙班,这时甲班的人数是乙班的43。

甲班原有多少人?分析与解答:解决这道题的关键就是抓住两班的总人数不变,由于甲班的人数是乙班的54,则甲班人数是两班总人数的454+=94,同理从甲班调2位男生到乙班,这时甲班的人数是两班总人数的433+=73,这时乙班男生人数比甲班男生人数多了总数的73-94=631,则总人数的631就是从甲班调2位男生到乙班的人数所对应的分率,那么两班的总人数就是2÷631=126(人),再由甲班的人数是乙班的54可知,甲班人数占总人数的94,因此甲班有126×94=56(人)。

例2、六(1)班男生是女生的54,后来又招来2名女生,现在男生是女生的43。

六(1)原来有多少人?分析与解答:解决这道题的关键是抓住招聘前后的男生人数不变,由于招聘前男生是女生的54,则女生人数是男生人数的45,后来又招来2名女生后女生人数是男生人数的34,这时女生人数就比男生人数多了34-45=121,那么男生人数有2÷121=24(人),由男生是女生的54可知,男生人数是全班人数的454+=94,所以六(1)原来有24÷94=54(人)。

例3、六年级男生占全年级人数的52,现在男生和女生各增加100人,这时男生人数占全年级人数的125。

现在六年级男生、女生各有多少人?分析与解答:解决这道题的关键是抓住男女生人数差不变,增加前,男女人数差占全年级的523-=51=102(差相同),增加后,男女人数差占全年级的1257-=122,因为男生和女生各增加100人,那么总人数就增加了100×2=200(人),由上面分析可知,总人数增加200人以后,总人数增加了12-10=2(份),说明每份就是200÷2=100(人),又因为男生和女生各增加100人后男生人数占全年级人数的125,说明现在男生人数占5份,女生人数占12-5=7份,所以现在男生人数有100×5=500(人),女生有100×7=700(人)。

抓不变量解题专项练习

分数应用题专项练习
1、五年级有学生240人,其中女生占715 ,后来又转来几名女生,这样女生占总数的1531
,问转来女生多少人?
2、学校足球队分成甲、乙两个组,甲、乙两组的人数比是7:8;如果从乙组调8人到甲组,则乙组人
数是甲组人数的45
,学校足球队一共有多少人?
3、学校田径队原来女生人数占13 ,后来又有6名女生参加进来,这样女生就占田径队总人数的49。

现在田径队有女生多少人?
4、学校图书馆有科技书和故事书共1500本,其中科技书占310。

后来又买了一些科技书,这样科技书占总数的25。

又买来科技书多少本?
5、甲、乙两仓库大米的重量比是4:5,从甲仓调20吨给乙仓,则甲、乙两仓大米重量的比是1:2。

甲、乙两仓各有大米多少吨?
6、甲、乙两筐苹果个数的比是1:4,如果从乙筐取出7个苹果放入甲筐,这时甲筐苹果是乙筐苹果的35。

原来甲、乙两筐各有苹果多少个?
7、医生配制了100克含盐10%的盐水,现在想把这杯盐水变成含盐4%的盐水,是向杯子里加水还是加盐?应该加多少克?
8、一根绳子剪去部分是剩下的16 ,如果多剪10厘米,则剪去的部分是剩下的15。

这根绳子全长多少厘米?
9、学校故事书占全校图书总数的35 ,又买进400本故事书后,这时故事书占总数的23
,问学校原来共有多少本图书?
10、筐内筐外各放了一部分鸡蛋,如果从筐内拿一个放到筐外去,这时筐外的鸡蛋个数就是筐内的12
;如果从筐外拿一个放到筐内,这时筐外鸡蛋的个数是筐内的13。

问原来筐外筐内各有多少个鸡蛋?。

抓住不变量解题,一题四解,适合五六年级

一个分数,如果分子加上2就成了2/3,如果分子减少了3,分数变成了1/3,问原来分数是多少? 方法1:前后两种情况的分母是不变的,所以分母必须是一样的。

同时分子一个是加2一个是减去3所以第一个分子比第二个分子大2+3=5,而题目中的分母一样是3,这个时候分子差2-1=1,实际上分子差应该是5,所以分子分母应该同时扩大5倍即乘5,所以第一个分数变成10/15,第二个分数变成5/15,还原得到原来的分子是10-2=8,分母是15,所以原来分数是8/15,或者第二个分子是减去3之后为5,说明原来是3+5=8,分母是15,所以也是8/15方法2:转化为分子加上2之后是分母的2/3,分子减去3之后是分母的1/3,这个地方把不变量分母看作单位“1”,增加2之后的分子为2/3,减去3之后的分子为1/3,第一个分子比第二个分子多2+3=5对应2/3-1/3=1/3,量率对应得到,5÷1/3=15------单位1分母。

分母为15,分子加上2之后是分母15的2/3即10,所以原来分子是10-2=8,所以分数是8/15方法3: 设原来分数是AB 。

322=+A B 313=-A B 通过交叉相乘,乘积相等。

得到:(B+2)×3=2×A(B-3)×3=A ×1得到:3B+6=2A...........①3B-9=A...........②①减去②得到,6+9=A ,A=15,代入得到B=8,所以是8/15。

方法4:解:设分子是X 。

分子增加2变成X+2,这个时候分母是分子的23倍,所以分母是(X+2)×23。

所以得到原来的分子是X ,原来的分母是(X+2)×23。

在第二个条件中,分子减少3,分子变成了X-3,分母还是(X+2)×23这个时候分子和分母的关系是,分母是分子的3倍。

(X-3)×3=(X+2)×23 X=8分母=(8+2)×23=15 所以分母是8/15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1、甲乙两个班,甲班的人数是乙班的
54,现在从甲班调2位男生到乙班,这时甲班的人数是乙班的
43。

甲班原有多少人?
2、六(1)班男生是女生的
54,后来又招来2名女生,现在男生是女生的43。

六(1)原来有多少人?
3、六年级男生占全级人数的
52,现在男生和女生各增加100人,这时男生人数占全级人数的
125。

现在六年级男生、女生各有多少人?
4、一个工厂,女工是全厂职工的
15
8,现在又招来60名女工,这时女工占全厂职工的95,求现在有女工多少人?
5、甲乙两人去银行存钱,已知甲的钱是甲乙两人总钱数的5
3,如果甲拿出50元给乙,那么乙与甲钱数的比是9:11.求甲乙共有钱多少元?。

相关文档
最新文档