高考数学(理)计数原理

合集下载

高考数学热点《计数原理》练习

高考数学热点《计数原理》练习

从新高考考查情况来看,排列组合与二项式定理是新高考命题的热点,主要考查分类、分步计数原理的应用,排列与组合的综合应用,分组分配问题等,二项展开式的通项、二项式系数、特定项的系数、系数和问题、最值问题、参数问题等,一般以选择题和填空题的形式出现,难度中等.主要考查学生的转化与化归、分类讨论思想,数学运算和逻辑推理等核心素养.1、求二项式系数和或各项的系数和的解题技巧:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-,偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --. 2、解决排列问题的常见方法:(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.热点11 计数原理(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.3、解决组合问题的常见方法:组合问题的限制条件主要体现在取出的元素中“含”或“不含”某些元素,在解答时可用直接法,也可用间接法.用直接法求解时,要注意合理地分类或分步;用间接法求解时,要注意题目中“至少”“至多”等关键词的含义,做到不重不漏。

专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020年高考数学课标Ⅲ卷理科·第14题
18.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。(用数字填写答案)
【答案】16
解析:方法一:直接法,1女2男,有 ,2女1男,有
【题目栏目】计数原理\二项式定理\二项式定理
【题目来源】2020年高考数学课标Ⅰ卷理科·第8题
5.(2019年高考数学课标Ⅲ卷理科·第4题) 的展开式中 的系数为()
A.12B.16C.20D.24
【答案】【答案】A
【解析】因为 ,所以 的系数为 ,故选A.
【点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数,是常规考法。
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2017年高考数学课标Ⅲ卷理科·第4题
9.(2017年高考数学课标Ⅱ卷理科·第6题)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
2013-2022十年全国高考数学真题分类汇编
专题11计数原理
一、选择题
1.(2020年新高考I卷(山东卷)·第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同 安排方法共有()
A.120种B.90种
C.60种D.30种
【答案】C
现在可看成是3组同学分配到3个小区,分法有:
根据分步乘法原理,可得不同的安排方法 种

高考数学试题逐类透析——计数原理

高考数学试题逐类透析——计数原理

精品基础教育教学资料,仅供参考,需要可下载使用!九、计数原理与古典概率(一)计数原理一、高考考什么?[考试说明]1. 理解分类加法计数原理和分步乘法计数原理.2. 了解排列、组合的概念,会用排列数公式、组合数公式.解决简单的实际问题[知识梳理] 1.排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。

2.组合数公式()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01=!,01n C =. 3.排列数、组合数的性质:①m n mn n C C -=; ②111m m m n n n C C C ---=+;③; ④1121++++=++++r n r n r r r r r r C C C C C ; 4.解排列组合11k k n n kC nC --=问题的常用方法:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。

(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。

(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。

[全面解读]考试说明寥寥数语,仅需掌握两个原理,两个概念,但具体到题上却灵活多变,主要要解决几个数学模型:排数问题、排队问题、涂色问题,解题时要注意是有序的还是无序的,是相邻的还是互不相邻的,有没有特殊元素或特殊位置,这些注意到了,正确率就提高了。

计数原理-备战高考数学(理)一轮复习考点

计数原理-备战高考数学(理)一轮复习考点

计数原理【命题趋势】两个基本计数原理是高考必考内容,有时会单独考查,有时会出现在解答题的过程之中,我们必须掌握.(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.排列组合是高考中的必考内容,必须掌握.有时会是单独一道小题,有时会是在概率统计解答题中涉及,分值至少5分.(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.二项式定理和排列组合在高考中一般交替考查,二者必出其一,二项式定理好拿分,熟练掌握即可.(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【重要考向】考向一分类加法、乘法计数原理考向二两个计数原理的综合应用考向三排列与组合的综合应用考向四二项展开式通项的应用考向一分类加法、乘法计数原理(1)分类加法计数原理的特点:①根据问题的特点能确定一个适合于它的分类标准.②完成这件事的任何一种方法必须属于某一类.(2)使用分类加法计数原理遵循的原则:有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则.(3)应用分类加法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既不重复也不遗漏. (4)应用分步乘法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事.②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏. (5)两个计数原理的区别与联系定义:若数列 {a n } 满足所有的项均由 ﹣1,1 构成且其中-1有m 个,1有p 个 (m +p ≥3) ,则称 {a n } 为“ (m,p) ﹣数列”.(1)a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项,则使得 a i a j a k =1 的取法有多少种? (2)a i ,a j ,a k (i <j <k) 为“ (m,p) ﹣数列” {a n } 中的任意三项,则存在多少正整数 (m,p) 对使得 1≤m ≤p ≤100, 且 a i a j a k =1 的概率为 12 .【答案】 (1)解:三个数乘积为1有两种情况:“ ﹣1,﹣1,1 ”,“ 1,1,1 ”,其中“ ﹣1,﹣1,1 ”共有: C 32C 41=12 种, “ 1,1,1 ”共有: C 43=4 种,利用分类计数原理得:a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项, 则使得 a i a j a k =1 的取法有: 12+4=16 种.(2)解:与(1)同理,“ ﹣1,﹣1,1 ”共有 C m 2C p 1种, “ 1,1,1 ”共有 C P 3 种,而在“ (m,p) ﹣数列”中任取三项共有 C m+p3种, 根据古典概型有:C m 2C p 1+C p 3C m+p3=12 ,再根据组合数的计算公式能得到: (p ﹣m)(p 2﹣3p ﹣2mp +m 2﹣3m ﹣2)=0 , ①p =m 时,应满足 {1≤m ≤p ≤100m +p ≥3p =m ,∴(m,p)=(k,k),k ∈{2,3,4,…,100} ,共 99 个,②p 2﹣3p ﹣2mp +m 2﹣3m ﹣2=0 时,应满足 {1<m ≤p <100m +p ≥3p 2−3p −2mp +m 2−3m −2=0 , 视 m 为常数,可解得 p =(2m+3)±√24m+12,∵m ≥1, ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,∵m ≥1 , ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,(否则 p ≤m ﹣1 ),下设 k =√2m +1 ,则由于 p 为正整数知 k 必为正整数, ∵1≤m ≤100 , ∴5≤k ≤49 ,化简上式关系式可以知道: m =k 2−124=(k−1)(k+1)24,∴k ﹣1,k +1 均为偶数,∴设k=2t+1,(t∈N∗),则2≤t≤24,∴m=k2−124=t(t+1)6,由于t,t+1中必存在偶数,∴只需t,t+1中存在数为3的倍数即可,∴t=2,3,5,6,8,9,11,…,23,24,∴k=5,11,13,…,47,49.检验:p=(2m+3)+√24m+12=(k−1)(k+1)24≤48+5024=100,符合题意,∴共有16个,综上所述:共有115个数对(m,p)符合题意.【考点】古典概型及其概率计算公式,分类加法计数原理,组合及组合数公式【解析】(1)易得使得a i a j a k=1的情况只有“ ﹣1,﹣1,1”,“ 1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“ ﹣1,﹣1,1”共有C m2C p1种,“ 1,1,1”共有C P3种.再根据古典概型的方法可知C m2C p1+C p3C m+p3=12,利用组合数的计算公式可得(p﹣m)(p2﹣3p﹣2mp+m2﹣3m﹣2)=0,当p=m时根据题意有(m,p)=(k,k),k∈{2,3,4,…,100},共99个;当p2﹣3p﹣2mp+m2﹣3m﹣2=0时求得p=(2m+3)±√24m+12,再根据1≤m≤p≤100,换元根据整除的方法求解满足的正整数对即可.某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m元(m为三位数的百位上的数字,如三位数为234,则奖励100×2= 200元).(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;(2)求抽奖者在一次抽奖中获奖金额X的概率分布与期望E(X).【答案】(1)解:因为总的基本事件个数n1=A53=60,摸到三位数是奇数的事件数n2=A31A42=36,所以P1=3660=35;所以摸到三位数是奇数的概率35.(2)解:获奖金额 X 的可能取值为50、100、200、300、400、500, P(X =50)=35 , P(X =100)=1×3×260=110, P(X =200)=1×3×160=120,P(X =300)=1×3×260=110 , P(X =400)=1×3×160=120 , P(X =500)=1×3×260=110 ,获奖金额 X 的概率分布为均值 E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150 元. 所以期望是150元.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,分步乘法计数原理【解析】(1)首先利用排列求出摸三次的总的基本事件个数: n 1=A 53=60 ;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.(2)获奖金额X 的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解考向二 两个计数原理的综合应用(1)利用两个原理解决涂色问题解决着色问题主要有两种思路:一是按位置考虑,关键是处理好相交线端点的颜色问题;二是按使用颜色的种数考虑,关键是正确判断颜色的种数.解决此类应用题,一般优先完成彼此相邻的三部分或两部分,再分类完成其余部分.要切实做到合理分类,正确分步,才能正确地解决问题. (2)利用两个原理解决集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有123,,,,{}n a a a a 的子集有2n 个,真子集有21n个.对有 n(n ≥4) 个元素的总体 {1,2,3,⋅⋅⋅,n} 进行抽样,先将总体分成两个子总体 {1,2,3,⋅⋅⋅,m} 和 {m +1,m +2,⋅⋅⋅,n} ( m 是给定的正整数,且 2≤m ≤n −2 ),再从每个子总体中各随机抽取2个元素组成样本.用 P ij 表示元素 i 和 j 同时出现在样本中的概率. (1)求 P 1n 的表达式(用m ,n 表示); (2)求所有 P ij (1≤i <j ≤n) 的和.【答案】 (1)解:由题意,从m 和 m −m 个式子中随机抽取2个,分别有 C m 2 和 C n−m2 个基本事件, 所以 P 1n 的表达式为 P 1n =m−1C m2⋅n−m−1C n−m2=4m(n−m) .(2)解:当 i,j 都在 {1,2,⋅⋅⋅,m} 中时,可得 P ij =1C m2 ,而从 {1,2,⋅⋅⋅,m} 中选两个数的不同方法数为 C m 2 ,则 P ij 的和为1;当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,同理可得 P ij 的和为1; 当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时, P ij =4m(n−m) ,而从 {1,2,⋅⋅⋅,m} 中选取一个数,从 {m +1,m +2,⋅⋅⋅,n} 中选一个数的不同方法数为 m(n −m) , 则 P ij 的和为4,所以所有 P ij 的和为 1+1+4=6 .【考点】相互独立事件的概率乘法公式,古典概型及其概率计算公式,计数原理的应用,组合及组合数公式【解析】(1)根据组合数的公式,以及古典概型的概率计算公式和相互独立事件的概率计算公式,即可求解;(2)当 i,j 都在 {1,2,⋅⋅⋅,m} 中时求得 P ij 的和为1,当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,求得 P ij 的和为1,当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时得到 P ij 的和为4,即可求解.6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达) (1)男甲必排在首位; (2)男甲、男乙必排在正中间; (3)男甲不在首位,男乙不在末位; (4)男甲、男乙必排在一起; (5)4名女生排在一起; (6)任何两个女生都不得相邻; (7)男生甲、乙、丙顺序一定.【答案】 解:(1)男甲必排在首位,则其他人任意排,故有A 99种, (2)男甲、男乙必排在正中间,则其他人任意排,故有A 22A 77种,(3)男甲不在首位,男乙不在末位,利用间接法,故有A 1010﹣2A 99+A 88种,(4)男甲、男乙必排在一起,利用捆绑法,把甲乙两人捆绑在一起看作一个复合元素和另外全排,故有A 22A 88种,(5)4名女生排在一起,利用捆绑法,把4名女生捆绑在一起看作一个复合元素和另外全排,故有A 44A 77种,(6)任何两个女生都不得相邻,利用插空法,故有A 66A 74种, (7)男生甲、乙、丙顺序一定,利用定序法,A 1010A 33=A 107种【考点】计数原理的应用【解析】(1)男甲必排在首位,则其他人任意排,问题得以解决. (2)男甲、男乙必排在正中间,则其他人任意排,问题得以解决, (3)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决, (4)男甲、男乙必排在一起,利用捆绑法,问题得以解决, (5)4名女生排在一起,利用捆绑法,问题得以解决, (6)任何两个女生都不得相邻,利用插空法,问题得以解决, (7)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.考向三 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.7名学生,按照不同的要求站成一排,求下列不同的排队方案有多少种. (1)甲、乙两人必须站两端; (2)甲、乙两人必须相邻.【答案】 (1)甲、乙为特殊元素,先将他们排在两头位置,有 A 22 种站法,其余5人全排列,有 A 55种站法.故共 A 22⋅A 55 有=240种不同站法.(2)(捆绑法):把甲、乙两人看成一个元素,首先与其余5人相当于六个元素进行全排列,然后甲、乙两人再进行排列,所以共 A 66⋅A 22 有=1440种站法.【考点】排列、组合的实际应用,排列、组合及简单计数问题 【解析】(1)运用捆绑法直接求解即可; (2)运用特殊元素分析法直接求解即可.一个笼子里关着10只猫,其中有7只白猫,3只黑猫.把笼门打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻.如果 10 只猫都钻出了笼子,以X 表示7只白猫被3只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则 X =3 . (1)求三只黑猫挨在一起出笼的概率; (2)求X 的分布列和数学期望.【答案】 (1)解:设“三只黑猫挨在一起出笼”为事件A ,将三只黑猫捆绑在一起,与其它7只白猫形成 8 个元素, 所以, P(A)=A 33A 88A 1010=115,因此,三只黑猫挨在一起出笼的概率为 115 ;(2)解:由题意可知,随机变量X 的取值为1、2、3、4, 其中 X =1 时,7只白猫相邻,则 P(X =1)=A 77A 44A 1010=130 ,P(X =2)=(A 32C 21C 21C 61+6A 33+A 32C 61)A 77A 1010=310 ,P(X =3)=(A 31C 21A 62+A 32A 62)A 77A 1010=12 ;P(X =4)=A 63A 77A 1010=16, 所以,随机变量 X 的分布列如下表所示:因此, E(X)=1×130+2×310+3×12+4×16=145.【考点】古典概型及其概率计算公式,离散型随机变量的期望与方差,排列及排列数公式,排列、组合的实际应用【解析】(1)利用捆绑法计算三只黑猫挨在一起出笼的情况种数,再利用古典概型的概率公式可求得所求事件的概率;(2)由题意可知,随机变量X 的可能取值有1、2、3、4,利用排列组合思想求出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,利用数学期望公式可求得随机变量X 的数学期望.考向四 二项展开式通项的应用求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n ).(1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.已知 f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗).(1)若 a n =n −1 ,求 f(n) ;(2)若 a n =3n−1 ,求 f(20) 除以5的余数【答案】 (1)因为 f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n . 所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n0 2f(n)=nC n 0+nC n 1+nC n 2+⋯+nC n n =n(C n 0+C n 1+C n 2+⋯+C n n)=n ⋅2n ,∴f(n)=n ⋅2n−1(2)因为 f(n)=30C n 0+31C n 1+32C n 2+⋯+3n C n n =(1+3)n =4n .f(20)=420=(5−1)20=C 200520−C 201519+C 202518−⋯+C 201852−C 201951+C 202050 除以5余数为1,所以 f(20) 除以5的余数为1. 【考点】二项式系数的性质,二项式定理的应用【解析】(1) 因为f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗),再结合a n =n −1 , 得出f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n ,再利用倒序求和法,所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n 0 , 再利用两式求和法结合二项式的系数的性质,得出 f(n) 。

高考数学复习热点11 计数原理

高考数学复习热点11 计数原理

热点11 计数原理【命题趋势】计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解.【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如 此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数.【考查题型】选择题【限时检测】(建议用时:35分钟)1.(2021·全国高三专题练习)的展开式中各项的()()()()()234511111x x x x x -----指数之和再减去各项系数乘以各项指数之和的值为()A .0B .C .D .5590120【答案】C【分析】()()()()()234511111x x x x x -----,151413109876521x x x x x x x x x x x =--+++---++-所以,的展开式中各项的指数之和为()()()()()234511111x x x x x -----,15141310987652190++++++++++=展开式中各项系数乘以各项指数之和为,1514131098765210--+++---++=因此,所求结果为.90090-=故选:C.2.(2021·山东高三专题练习)已知若()20121nn n px b b x b x b x -=+++⋅⋅⋅+,则( )123,4b b =-=,p =A .1B .C .D .121314【答案】C【分析】展开式的通项为:,()1n px -()()()11n rr rrrr n n T C px C px -+=⋅⋅-=⋅-故,,解得,.()113nb C p pn =⋅-=-=-()2222142n n n b C p p -=⋅==9n =13p =故选:C.3.(2021·山东高三专题练习)2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、A A B 乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )A .18种B .20种C .22种D .24种【答案】B【分析】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有种不2232C A 同分配方案,当医院B 有2人,则共有种不同分配方案,所以当医院A 只分配1人1222C A 时,共有种不同分配方案;2232C A +122210C A =第二类:若医院A 分配2人,当乙在医院A 时,共有种不同分配方案,当乙不在A 医33A 院,在B 医院时,共有种不同分配方案,所以当医院A 分配2人时,1222C A 共有种不同分配方案;33A +122210C A =共有20种不同分配方案.故选:B4.(2021·全国高三专题练习)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方ABCD A 形的边按逆时针方向行走了几个单位,如果掷出的点数为,则棋子就按逆()1,2,,6i i =⋅⋅⋅时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点处的i A所有不同走法共有( )A .21种B .22种C .25种D .27种【答案】D【分析】由题意,正方形的周长为8,抛掷三次骰子的点数之和为8或16,ABCD ①点数之和为8的情况有:;;;;,排列方法共有1,1,61,2,51,3,42,2,42,3,3种;133113333321C A A C C ++++=②点数之和为16的情况有:;,排列方法共有种.4,6,65,5,611336C C +=所以,抛掷三次骰子后棋子恰好又回到起点处的所有不同走法共有种.A 21627+=故选:D.5.(2021·山东高三专题练习)已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )A .240种B .360种C .480种D .600种【答案】C【解析】:用分类讨论的方法解决.如图中的6个位置,123456①当领导丙在位置1时,不同的排法有种;55120A =②当领导丙在位置2时,不同的排法有种;143472C A =③当领导丙在位置3时,不同的排法有种;2323233348A A A A +=④当领导丙在位置4时,不同的排法有种;2323233348A A A A +=⑤当领导丙在位置5时,不同的排法有种;143472C A =⑥当领导丙在位置1时,不同的排法有种.55120A =由分类加法计数原理可得不同的排法共有480种.故选C .6.(2021·山东高三专题练习)某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )A .240种B .288种C .192种D .216种【答案】D【详解】最前排甲,共有种;最前排乙,最后不能排甲,有种,根55A 120=据加法原理可得,共有种,故选D .7.(2020·全国高三专题练习(理))某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( )A .72种B .48种C .36种D .24种【答案】C【分析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有种排法,336A =再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有种排法,236A =则后六场开场诗词的排法有种,6636⨯=故选:C.8.(2020·全国高三专题练习(理))为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A .B .C .D .12131416【答案】D【分析】记第名民工选择的项目属于基础设施类、民生类、产业建设类i 分别为事件,,,.i A i B i C 1,2,3i =由题意,事件,,,相互独立,i A i B i C 1,2,3i =则,,,,301()602i P A ==201()603i P B ==101()606i P C ==1,2,3i =故这3名民工选择的项目所属类别互异的概率是.331111()62366i i i P A P A B C ==⨯⨯⨯=故选:D.9.(2020·全国高三专题练习(理))在()()()()()2345111111x x x x x ++++++++++的展开式中,含项的系数是( )2xA .B .1015C .D .2025【答案】C【分析】解法一:中含的项为,中含的项为,中()21x +2x 222C x ()31x +2x 223C x ()41x +含的项为,中含的项为,2x 224C x ()51x +2x 225C x 则含项的系数为.2x 2222234520C C C C +++=故选:C .解法二:由等比数列求和公式知:,()()()()()()6234511111111x x x x x x x+-++++++++++=中含的系数为,原式含项的系数为.()31x + 3x 3620C =∴2x 20故选:C .10.(2020·全国高三专题练习(理))若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=()A .284B .356C .364D .378【答案】C【分析】令x =1,则a 0+a 1+a 2+…+a 12=36, ①令x =-1,则a 0-a 1+a 2-…+a 12=1, ②①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,再令x =0,则a 0=1,所以a 2+a 4+…+a 12=364.故选:C.11.(2020·山西高三月考(理))如图所示的是古希腊数学家阿基米德的墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为荣的发现.设圆柱的体积与球的体积之比为,圆柱的表面积与球的表面m 积之比为,则的展开式中的常数项是( )n 621m x nx ⎛⎫- ⎪⎝⎭A .15B .-15C .D .13541354-【答案】A【分析】:设球的半径为,则圆柱的底面半径为,高为,所以圆柱的体积R R 2R ,球的体积,所以.又圆柱的表面23122V R R R ππ=⨯=3243V R π=313223423V R m V R ππ===积为,球的表面积为,所以2212226S R R R R πππ=⨯+=224S R π=,,,展开式的通项21226342S R n S R ππ===1m n =662211m x x nx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令,解得,其常数项为.()123161rr rr T C x-+=-1230r -=4r =()42426115C x x ⎛⎫-= ⎪⎝⎭故选:A12.(2020·江西吉安市·白鹭洲中学高三期中(理))已知随机变量,且()2~1,X N σ,则的展开式中的系数为( )()()0P X P X a ≤=≥()43221ax x x ⎛⎫+⋅+ ⎪⎝⎭2x A .40B .120C .240D .280【答案】D【分析】根据正态曲线的性质可知,,解得,012a +=⨯2a =的展开式的通项公式为,,()312x +132r r r r T C x +=⋅{}0,1,2,3r ∈的展开式的通项公式为,,422x x ⎛⎫+ ⎪⎝⎭()243814422s s s s s s s s T C x c x -+--++=⋅=⋅{}0,1,2,3,4s ∈令两式展开通项之积的指数为,可得或,x 382r s -+=33r s =⎧⎨=⎩02r s =⎧⎨=⎩∴的展开式中的系数为()432212x x x ⎛+⋅⎫+ ⎪⎝⎭2x ,333300223434222225624280C C C C ⋅⋅⋅+⋅⋅⋅=+=13.(2020·湖南长沙市·高三月考)某单位有6名员工,2020年国庆节期间,决定从6人中留2人值班,另外4人分别去张家界、南岳衡山、凤凰古城、岳阳楼旅游.要求每个景点有1人游览,每个人只游览一个景点,且这6个人中甲、乙不去衡山,则不同的选择方案共有()A .120种B .180种C .240种D .320种【答案】C【分析】以人为对象,分类讨论:甲不值班乙值班:;甲值班乙不值班:;31343372C C A =31343372C C A =甲乙都不值班;;甲乙都值班;.21342372C C A =4424A =故不同的选择方案.72727224240N =+++=故选:C14.(2020·全国高三专题练习(理))中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )A .种B .种C .种D .种30506090【答案】B【分析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1121020C C ⋅=若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1131030C C ⋅=所以共有种203050+=故选B15.(2020·湖北武汉市·华中师大一附中高三其他模拟(理))2020年湖北抗击新冠肺炎期间,全国各地医护人员主动请缨,支援湖北,某地有3名医生、6名护士来到武汉,他们被随机分到3家医院,每家医院1名医生、2名护士,则医生甲和护士乙分到同一家医院的概率为()A .B .C .D .16121813【答案】D【分析】3名医生平均分成3组,有1种分法,6名护士平均分成3组有种分法,226433156156C C A ⨯==3名医生、6名护士分到3家医院,每家医院1名医生、2名护士的分配方法有(种),333315540A A ⨯⨯=医生甲和护士乙分到同一家医院的分配方法有(种),211224532222180C C C A A A ⨯⨯⨯=则医生甲和护士乙分到同一家医院的概率为.18015403=故选:D .16.(2020·全国高三其他模拟(理))公元五世纪,数学家祖冲之估计圆周率的值的范π围是:,为纪念数学家祖冲之在圆周率研究上的成就,3.141592631415927π<< .某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )A .B .C .D .15174567【答案】D【分析】由题意从小数点后的6位数字中随机选取两个数字做为小数点后的前两位,可分为以下情况:①选出两个1,共可组成1个数字;②选出一个1,共可组成个不同数字;12428C A ⋅=③没有选出1,共可组成个不同数字;2412A =所以共可组成个不同的数字;181221++=其中小于等于3.14的数字有:3.11、3.12、3.14,共3个,则大于3.14的数字个数为18,故所求概率.186217P ==故选:D.17.(2020·全国高三专题练习(理))某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( ).A .444种B .1776种C .1440种D .1560种【答案】B【分析】理、化、生、史、地、政六选三,且理、化必选,所以只需在生、史、地、政中四选一,有(种).14C 4=对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有(种);114244192C C A =第2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有(种),133C =语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,也可一科在上午任一节,一科在下午第二节,有(种),14C 4=其他三科可以全排列,有(种).()12332334252C A A +=综上,共有(种).()41922521776⨯+=故选:B18.(2020·全国高三专题练习)函数的导函数为,则的展开261()(=-f x x x ()f x '()f x '式中含项的系数为( )2x A .20B .C .60D .20-60-【答案】D【分析】函数导函数为,()f x 25211()6()(2)f x x x x x '=-+则的展开式的通项公式为,251(x x -251031551()()(1)r r r r r r r T C x C x x --+=-=-令,则,此时含项为,1031r -=3r=x 335(1)10C x x -=-再令,则,此时含项为,1034r -=2r =4x 22445(1)10C x x -=所以含的项为,2x 4221(10210660x x x x x -⨯+⨯⨯=-故含项的系数为,2x 60-故选:.D 19.(2020·湖南郴州市·高三二模(理))中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A .408B .120C .156D .240【答案】A【分析】解:根据题意,首先不做任何考虑直接全排列则有(种),66720A =当“乐”排在第一节有(种),55120A =当“射”和“御”两门课程相邻时有(种),2525240A A =当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),242448A A =则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),72012024048408--+=故选:.A 20.(2020·全国高三专题练习)展开式中的常数项为()6331x x ⎫⎫-⎪⎪⎭⎭A .B .15C .D .6666-15-【答案】C展开式的通项公式为,而61x ⎫-⎪⎭()363216611rrrr r rr T C C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,故要想产生常数项,则或3323323x x x ---=-333122r r -=⇒= ,则所求常数为.33302rr -=⇒=()106621315C C ⨯⨯--⨯=-故选:C.。

高中 高考理科数学专项复习 计数原理、概率、随机变量及其分布 排列与组合

高中 高考理科数学专项复习 计数原理、概率、随机变量及其分布 排列与组合
【点拨】(1)应用排列、组合数公式解此类方程时,应注意验
m 1 m 证所得结果能使各式有意义. (2)应用组合数性质 Cm = C + C + n 1 n n

时,应注意其结构特征:右边下标相同,上标相差 1;左边(相对 于右边)下标加 1,上标取大.使用该公式,像拉手风琴,既可从 左拉到右,越拉越长,又可以从右推到左,越推越短.
* (3) 排列数公式: A m n = ________________________. 这里 n , m ∈ N ,并且
________. (4)全排列:n 个不同元素全部取出的一个____________,叫做 n 个元素的一 个全排列.An n=n×(n-1)×(n-2)ׄ×3×2×1=__________,因此,排列数公 式写成阶乘的形式为 Am n= ,这里规定 0!=________.
-m
n! m!(n-m)!
m ②Cn Cm n
-1
辽宁)6 把椅子摆成一排,3 人随机就座,任 (2014· 何两人不相邻的坐法种数为( A.144 B.120 ) C.72 D.24
Байду номын сангаас
解: 剩余的 3 个座位共有 4 个空供 3 人选择就座, 故 任何两人不相邻的坐法种数为 A3 4=24.故选 D.
第十章
计数原理、概率、随机变量及其分布
§10.2
排列与组合
1.排列 (1)排列的定义:从 n 个不同元素中取出 m(m≤n)个元素,按照____________ 排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列. (2) 排 列 数 的 定 义 : 从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 的 ________________的个数叫做从 n 个不同元素中取出 m 个元素的排列数, 用符号 ______表示.

计数原理-高考数学复习

计数原理-高考数学复习

时,再选2名男生,有 C62 种方法;然后排队长、副队长位置,有A24
种方法.由分步乘法计数原理知,共有 C62 A24 =180(种)选法.所以
依据分类加法计数原理知,共有480+180=660(种)不同的选法.
目录
法二 不考虑限制条件,共有 A28 C62 种不同的选法,而没有
女生的选法有A26 C42 种,故至少有1名女生的选法有 A28 C62 -
=70(种).故选B.
4
4
4 4
目录
解题技法
定序问题的求解方法
n 个不同元素的全排列有 种排法, m 个特殊元素的全排列有



种排法.当这 m 个元素顺序确定时,共有
种排法.


提醒 对于定序问题,可先不考虑顺序限制,排列后,再除以定序元
素的全排列.
目录
考向3 分组、分配问题
(−1)!
(−1)!
−1
的阶乘形式,显然是正确的; −1 =

,所
[(−1)−(−1)]!
(−)!
·(−1)!
·(−1)!
!
−1
1
以③不正确; ·−1 =



[(−1)−(−1)]!
(−)! (−)!

,所以④正确.
目录
1. 分类相加,分步相乘,有序排列,无序组合,特殊元素(位置)优
间接法.
目录
2. 组合问题常见的两类题型
(1)“含有”或“不含有”问题:“含”,则先将这些元素取
出,再由另外元素补足;“不含”,则先将这些元素剔除,
再从剩下的元素中去选取;
(2)“至少”或“最多”问题:用直接法和间接法都可以求解,

历年(2020-2023)全国高考数学真题分类(计数原理)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(计数原理)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(计数原理)汇编【2023年真题】1. (2023·新课标I 卷 第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有_______种(用数字作答).2. (2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种【2022年真题】3.(2022·新高考I 卷 第13题)8(1)y x y x-+的展开式中26x y 的系数为__________(用数字作答).4.(2022·新高考II 卷 第5题)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( ) A. 12种B. 24种C. 36种D. 48种【2020年真题】5.(2020·新高考I 卷 第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种B. 90种C. 60种D. 30种6.(2020·新高考II 卷 第6题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A. 2种 B. 3种C. 6种D. 8种参考答案1. (2023·新课标I 卷 第13题)解:当从这8门课中选修2门课时,共有1144.16C C =; 当从这8门课中选修3门课时,共有12214444..48C C C C +=;综上,共有64种. 2. (2023·新课标II 卷 第3题)解:结合题意初中部和高中部所占的比例为2:1,抽取初中部40人,高中部20人,故不同的抽样结果为4020400200C C ⋅ 种,故选.D3.(2022·新高考I 卷 第13题)解:因为8()x y +展开式的通项818r r r r T C x y -+=,令5r =,则35x y 的系数为5856C =;令6r =,则26x y 的系数为6828C =,所以26x y 的系数为562828.-+=- 4.(2022·新高考II 卷 第5题)解:先利用捆绑法排乙丙丁成四人,再用插空法选甲的位置,则有23123224A A C =种. 5.(2020·新高考I 卷 第3题)解:可以按照先选1名志愿者去甲场馆,再选择2名志愿者去乙场馆,剩下3名安排到丙场馆,安排方法有123653C C C 60.=故选:.C6.(2020·新高考II 卷 第6题)解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:212312 6.C C A =故选:.C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元滚动检测十 计数原理考生注意:1.本试卷分第Ⅰ卷(填空题)和第Ⅱ卷(解答题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分160分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.(2016·南通模拟)(x -2x)5的展开式中,x 项的系数为________. 2.(2016·石家庄质检二)一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为________.3.(2016·苏州模拟)安排6名歌手演出顺序时,要求歌手乙、丙均排在歌手甲的前面或者后面,则不同排法的种数是________.4.在(x 2-1x)9的二项展开式中,常数项是________. 5.(2016·云南第二次统测)已知(2x -1)3=a 0+a 1x +a 2x 2+a 3x 3,则a 0+a 2=________.6.(2016·南京模拟)若C 3n +123=C n +623(n ∈N *)且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 0-a 1+a 2-…+(-1)n a n =________.7.(2016·广东深圳第二次调研)在1+(1+x )+(1+x )2+(1+x )3+(1+x )4+(1+x )5的展开式中,含x 2项的系数是________.8.(2016·湖南师大附中月考三)现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两个相邻,则不同的站法种数是________.9.(2016·运城质检)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数,则这样的偶数的个数是________.10.(2016·连云港一模)设(5x -1x)n 的展开式的各项系数和为M ,二项式系数和为N ,若M -N =240,则展开式中x 的系数为________.11.用字母A ,Y ,数字1,8,9构成一个字符不重复的五位号牌,要求字母A ,Y 不相邻,数字8,9相邻,则可构成的号牌的个数是________.(用数字作答)12.(2016·淮安一模)设复数x =1+i 1-i(i 是虚数单位),则C 01 000+C 11 000x +C 21 000x 2+…+C 1 0001 000x 1 000=______.13.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有________种不同的排列方法.14.(2016·潍坊模考)(1+x +x 2)(x -1x)6的展开式中的常数项为________. 第Ⅱ卷二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2016·南京模拟)航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数是多少?16.(14分)(2017·山西太原五中二模)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有多少种?17.(14分)若(x +a x )(2x -1x)5的展开式中各项系数的和为2,求该展开式中常数项的值.18.(16分)(2016·苏州模拟)求S =C 127+C 227+…+C 2727除以9的余数.19.(16分)(2016·临沂3月检测)有4名男生、5名女生,全体排成一行,下列情形各有多少种不同的排法?(1)甲不在中间也不在两端; (2)甲、乙两人必须排在两端; (3)男女相间.20.(16分)(2016·镇江模拟)已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.答案解析1.40解析 (x -2x)5的展开式的通项是T r +1=C r 5·(-2)r ·x 5-2r . 令5-2r =1得r =2.因此x 项的系数是C 25·(-2)2=40.2.24解析 利用“插空法”求解.不坐人的3个座位产生4个空位,从中选3个空位安排3个同学,所以有A 34=24(种)不同坐法.3.480解析 不同的排法种数为2(A 55+A 24A 33+A 23A 33+A 22A 33)=480. 4.84解析 依题意,二项式(x 2-1x)9的展开式的通项是 T r +1=C r 9·(x 2)9-r ·(-1x)r =C r 9·(-1)r ·x 18-3r . 令18-3r =0,得r =6,因此(x 2-1x)9的展开式中的常数项是 C 69·(-1)6=84.5.-13解析 利用二项式展开式的通项公式求解,由题意可得a 0=(-1)3=-1,a 2=C 13×22×(-1)=-12,所以a 0+a 2=-13.6.256解析 ∵3n +1+n +6=23,∴n =4,令x =-1,则a 0-a 1+a 2-…+(-1)n a n =(3+1)4=256.7.20解析 (1+x )n 二项展开式的通项为T r +1=C r n x r ,要使其出现x 2项 ,则r =2且n ≥2,n ∈N *,故含x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.8.24解析 先排男生有A 22种排法,再让老师站在两男生的中间,最后让三名女生插两空有 C 23A 22A 22种排法,所以共有A 22C 23A 22A 22=24(种)排法.9.108解析 第一步,先排不受限制的数字2、4、6,有A 33种排法;第二步,把不相邻的数字1和5插入已经排好的2、4、6内且最后的数字是偶数,有A 23种插法;第三步,把剩余的3插入已经排好的1、2、4、5、6内且其不与5相邻并保证最后的数字为偶数,有3种插法.根据分步计数原理可得满足条件的偶数的个数是A 33×A 23×3=108.10.150解析 据题意M -N =4n -2n =240,解得n =4,故通项公式为T r +1=C r 454-r (-1)342r x ,令4-32r =1,得r =2,故展开式中x 的系数为C 2452=150. 11.24解析 将8与9捆绑在一起有A 22种方法,将捆绑好的8,9与1排列有A 22A 22种排法,再将字母A ,Y ,插入其3个空中可得共有A 22A 22A 23=24(种)不同的排法,即可构成的号牌个数是24. 12.2500解析 因为有C 01 000+C 11 000x +C 21 000x 2+…+C 1 0001 000x 1 000=(1+x )1 000,而复数x =1+i 1-i =i ,则所求的值即为(1+i)1 000=(2i)500=2500i 500=2500.13.1 260解析 第一步,从9个位置中选出2个位置,分给相同的红球,有C 29种选法;第二步,从剩余的7个位置中选出3个位置,分给相同的黄球,有C 37种选法;第三步,剩下的4个位置全部分给4个白球,有1种选法.根据分步计数原理可得,不同的排列方法共有C 29C 37=1 260(种).14.-5解析 (x -1x)6的展开式的通项为T r +1=(-1)r ·C r 6x6-2r (r =0,1,…,6),令6-2r =0, ∴r =3,T 4=(-1)3·C 36=-C 36;令6-2r =-1,∴r =72(舍);令6-2r =-2, ∴r =4,T 5=C 46x -2,∴(1+x +x 2)(x -1x)6的展开式中的常数项为1×(-C 36)+C 46=-5. 15.解 由于0号实验不能放在第一项,所以第一项实验有5种选择,最后两项实验的顺序确定,所以共有5A 55A 22=300(种)不同的编排方法. 16.解 甲、乙所选的课程中至少有1门不相同的选法可以分为两类:甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有C 24C 22=6(种);甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选 一门作为相同的课程,有C 14=4(种)选法;②甲从剩余的3门中任选1门,乙从最后剩余的2门中任选1门有C 13C 12=6(种)选法,由分步计数原理知此时共有C 14C 13C 12=24(种).综上,由分类计数原理知,甲、乙所选的课程中至少有1门不相同的选法共有6+24=30(种).17.解 令x =1,则其展开式系数和为(1+a )×(2-1)5=2,即a =1,从而(x +1x )(2x -1x )5=x 2+1x ·(2x 2-1)5x 5=(x 2+1)(2x 2-1)5x 6,其中(2x 2-1)5的展开式的通项为 T r +1=C r 5(2x 2)5-r ·(-1)r =C r 525-r ·(-1)r x 10-2r .当10-2r =4,即r =3时,该项为-40x 4; 当10-2r =6,即r =2时,该项为80x 6,所以(x 2+1)(2x 2-1)5x 6的展开式中常数项为40. 18.解 S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.19.解 (1)方法一 (元素分析法):先排甲有6种,再排其余人有A 88种,故共有6·A 88=241 920(种)排法.方法二 (位置分析法):中间和两端有A 38种排法,包括甲在内的其余6人有A 66种排法,故共有A 38·A 66=336×720=241 920(种)排法.方法三 (等机会法):9个人全排列有A 99种,甲排在每一个位置的机会都是均等的,依题意得甲不在中间及两端的排法种数是A 99×69=241 920. 方法四 (间接法):A 99-3·A 88=6A 88=241 920(种).(2)先排甲、乙,再排其余7人.共有A 22·A 77=10 080(种)排法.(3)(插空法)先排4名男生有A 44种方法,再将5名女生插空,有A 55种方法,故共有A 44·A 55=2880(种)排法.20.解 (1)由已知得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝ ⎛⎭⎪⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116. ∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3.(2)由(1)知,当x 2的系数取得最小值时,m =5,n =3, ∴f (x )=(1+x )5+(1+2x )3.设f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33=59,令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1,两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30.。

相关文档
最新文档