北师大版七年级数学上册导学案:3.2 代数式(1)

合集下载

3.1代数式(第1课时代数式)(教学课件)-七年级数学上册(北师大版2024)

3.1代数式(第1课时代数式)(教学课件)-七年级数学上册(北师大版2024)

的是(
D )
A. yx
B. 100 x + y
C. 10 x + y
D. 10 y + x
7. [教材P78随堂练习T1(2)]如图,是由两个正方形组成的图形.
用图中所给的数字和字母列代数式表示出阴影部分的面积 S

2
a -3 a +18

.(结果要求化简)
分层练习-拓展
8. 【新视角·规律探究题】观察以下等式:
北师大版(2024) 七年级数学上册
3.1
代数式
第一课时 代数式
第三章
整式及其加减
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.能用字母表示运算律以及计算公式.
2. 能用字母表示一些简单问题中的数量关系和变化规律.
3.在具体情境中体会用字母表示数的意义,形成初步的
解:第 n 个等式:(2 n +1)2=[( n +1)×2 n +1]2-[( n +1)×2 n ]2.
课堂小结
用字
母表
示数



代数式
字母和数一样可以参与运算,
可以用式子把 数量关系 简明地
表示出来
用运算符号把数和字母连
接而成的式子
根据实际问题列代数式
B. m , n 的和乘 m , n 的差的积:( m + n )( m - n )

C. x 的倒数与 y 的积:

D. 加上 a 的2倍等于 b 的数: b +2 a
4. 【情境题·生活应用】一列火车长 m m,以每秒 n m的速度通过
一个长为 p m的桥洞,用代数式表示火车完全通过桥洞所需的

北师大版-数学-七年级上册-北京101中学第三章第2节《代数式》教案

北师大版-数学-七年级上册-北京101中学第三章第2节《代数式》教案

一、课题§3.1代数式二、教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习三、教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、引言数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具学好数学对于把我国建设成为有中国特色的社会主义强国具有十分重要的作用中学的数学课,是从学习代数开始的除了学习代数以外,同学们还将陆续地学习平面几何、立体几何、解析几何等内容学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度没有坚持不懈努力,没有顽强的克服困难的精神,是不可能学好代数的在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习(一)、从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律 a+b=b+a;(2)乘法交换律 a·b=b·a;(3)加法结合律 (a+b)+c=a+(b+c);(4)乘法结合律 (ab)c=a(bc);(5)乘法分配律 a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a ,b ,c 都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要025小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s 表示路程,t 表示时间,ν表示速度,你能用s 与t 表示ν吗?4、(投影)一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少?(用I 厘米表示周长,则I=4a 厘米;用S 平方厘米表示面积,则S=a 2平方厘米)此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a ,5,15÷3,4a ,a+b ,ts 以及a 2等等都叫代数式 那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容三、讲授新课1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式 学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明例1 填空:(1)每包书有12册,n 包书有__________册;(2)温度由t ℃下降到2℃后是_________℃;(3)棱长是a 厘米的正方体的体积是_____立方厘米;(4)产量由m 千克增长10%,就达到_______千克(此例题用投影给出,学生口答完成)解:(1)12n ; (2)(t-2); (3)a 3; (4)(1+10%)m例2 、说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3)ab c (4)a-dc (5)a 2+b 2 (6)(a+b) 2 解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积;(3)ab c 的意义是c 除以ab 的商; (4)a-d c 的意义是a 减去dc 的差; (5)a 2+b 2的意义是a ,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等例3 、用代数式表示:(1)m 与n 的和除以10的商;(2)m 与5n 的差的平方;(3)x 的2倍与y 的和;(4)ν的立方与t 的3倍的积 分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面解:(1)10n m ; (2)(m-5n)2 (3)2x+y ; (4)3t ν3 (四)、课堂练习1、填空:(投影) (1)n 箱苹果重p 千克,每箱重_____千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米;(3)底为a ,高为h 的三角形面积是______;(4)全校学生人数是x ,其中女生占48%,则女生人数是____,男生人数是____2、说出下列代数式的意义:(投影)(1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b 2 3、用代数式表示:(投影)(1)x 与y 的和; (2)x 的平方与y 的立方的差;(3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和(五)、师生共同小结首先,提出如下问题:1、本节课学习了哪些内容?2用字母表示数的意义是什么? 3、什么叫代数式?教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号七、练习设计1、一个三角形的三条边的长分别的a ,b ,c ,求这个三角形的周长2、张强比王华大3岁,当张强a 岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a 千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R 厘米,它的面积是多少?6、用代数式表示:(1)长为a ,宽为b 米的长方形的周长;(2)宽为b 米,长是宽的2倍的长方形的周长;(3)长是a 米,宽是长的31的长方形的周长; (4)宽为b 米,长比宽多2米的长方形的周长八、板书设计§3.1字母能表示什么(一)知识回顾 (三)例题解析 (五)课堂小结例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记1、本课所遇的问题,多数应由学生首先口答来完成,但在“说出代数式的意义”这一问题上,应向学生强调:一定要严格按照教师示范的要求去做,如“a-b c ”的意义是“a 减去b c 的差”,而不能说成是“a 与bc 的差” 2、由于这是中学数学的第一课,故设计了一个引言,目的是对学生进行学习目的、学习态度和学习方法的教育在实际教学时,可依据学生的实际情况灵活掌握,原则是多鼓励,严要求。

北师大版七年级数学上册《代数式》第2课时教案

北师大版七年级数学上册《代数式》第2课时教案

第三章整式及其加减3.2代数式第2课时一、教学目标1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;2.掌握求代数式值的方法;3.能解释代数式求值的实际应用.二、教学重点及难点重点:了解代数式的值的概念,掌握求代数式值的一般方法;难点:能利用代数式求值的过程找规律.三、教学准备多媒体课件四、教学过程【复习巩固】列代数式:1.x的10倍与y的5倍的和.2.甲乙两地相距150千米,一辆汽车的行驶速度为a千米/时,用代数式表示:①这辆汽车从甲地到乙地需要行驶多长时间?②若速度增加2千米/时,则需要多长时间?加速后可以早到多长时间?设计意图:正确列出代数式是基本要求,还要能利用代数式解决一些实际问题,这就是本节课探究的内容:求代数式的值.让学生明确学习目标.板书:3.2 代数式第2课时【新知讲解】探究一:代数式的值的定义活动1.引导学生得出游戏过程实际是一个计算程序(如下图):代数式的值的概念:像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值.通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.活动2.字母的取值①代数式中的字母取值必须使这个代数式有意义.如在代数式1x -3中,x 不能取3,因为当x =3时,分母x -3=0,代数式1x -3无意义.①实际问题中,字母的取值要符合实际情况.如当x 表示人数时,x 不能取负数和分数. 下列代数式中,a 不能取0的是( B ).A. 13a B.3a C.2a -5D .2a -b解析:代数式中字母的取值必须使这个代数式有意义,由分母不能为0可知,B 选项中的a 不能取0.故选B . 探究二:求代数式的值 活动1.直接代值法:(1)步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.活动2.直接代入法求代数式的值.练一练: 当a =12,b =3时,求代数式2a 2+6b -3ab 的值.解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得.解:原式=2×(12)2+6×3-3×12×3=12+18-92=14.方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号; (3)分数的立方、平方运算,要用括号括起来. 活动2.整体代入法求值.已知x -2y =3,则代数式6-2x +4y 的值为( ) A.0 B.-1 C.-3 D.3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解. 因为x -2y =3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A . 活动3.利用程序图求代数式的值.有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2019次输出的结果是 .解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2019-1)÷3=671…2,所以第2019次输出的结果为2.归纳:求代数式的值常用的方法有:直接代入计算、整体代入计算、按指定的程序代入计算. (1)直接代入计算当已知一个代数式中各字母的取值时,可以用直接代入计算的方法. (2)整体代入计算已知一个含有字母的代数式的值,求另一个代数式的值时,可以选用整体代入的方法. 整体代入步骤:①对已知代数式或所求代数式进行适当变形;①整体代入求值.运用整体思想求代数式的值就是将一个代数式(的值)作为一个整体代入到欲求值的代数式中,从而求出代数式的值的方法.解答此类问题时,要从整体上分析已知代数式与欲求值的代数式之间结构的异同,从整体上把握解题思路,寻求解决问题的方法. (3)按指定的程序代入计算按指定的程序代入计算,即数值转换机.给出一个代数式,或提供运算程序,给出字母的取值,代入求值即可.【典型例题】例1:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.注意:如果代数式中省略乘号,代入后需添上乘号.例2. 列代数式,并求值.某公园的门票价格是:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.∴因此,他们应付445元门票费.例3在计算机上可以设置运算程序,输入一组数据,计算机就会呈现运算结果,就好像一个“数值转换机”.下面是一组“数值转换机”,请填写下表,并写出第1个图的输出结果,写出第2个图的运算过程.解:第1个图的输出结果是6x-3,第2个图的运算过程是-3,x-3,×6.趣,提高学生学习兴趣,激发学生求知欲望.同时,该例子也体现了数学建模思想,培养了学生的抽象思维能力和建模能力.而思考题的设置让学生体会到代数式所表达出的丰富的实际背景或几何背景.例4.如图就是小明设计的一个程序.当输入x的值为3时,你能求出输出的值吗?-3例5.人体血液的质量约占人体体重的6%~7.5%.(1)如果某人体重是a kg,那么他的血液质量大约在什么范围内?(2)亮亮体重是35 kg,他的血液质量大约在什么范围内?(3)估计你自己的血液质量.解:(1)6%a kg~7.5% a kg.(2)当a=35时,35×6%=2.1(kg),35×7.5%=2.625(kg),所以亮亮的血液质量大约在2.1 kg到2.625 kg之间.(3)用自己的体重分别乘6%和7.5%,即为自己的血液质量的范围.【随堂练习】1.当a=2,b=-1,c =-3时,求下列各代数式的值.(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解:(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.(2)当a=2,b=-1,c=-3时,a 2+b 2+c 2+2ab +2bc +2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3) =4+1+9-4+6-12 =4.(3)当a =2,b =-1,c =-3时,(a +b +c )2 =(2-1-3)2 = 4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换 a =3 , b =-2 , c =4 ,再试一试,检验你的猜想是否正确. 3.对于这一猜想,我们通过学习,将来有能力证实它的正确性. 2. 已知x =12,y =3,求代数式2x 2y -4x 2y +10x 2y 的值.分析:分别将x =12,y =3代入代数式中,再按照指定的运算进行计算;也可以先求出x 2y的值,然后再整体代入. 解:2x 2y -4x 2y +10x 2y =8x 2y ;当x =12,y =3时,原式=8×212⎛⎫⎪⎝⎭×3=6.3.已知x +y =2 013, xy =2 012,求xy -2(x +y )的值.分析:由于条件是关于x +y ,xy 的值,故应考虑用整体代入的方法计算,即将xy 看成一个整体,将x +y 看成一个整体.解:xy -2(x +y )=2 012-2×2 013=-2014.4.(1)按如图所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( D ).A .6B .21C .156D .231解析:按照本题的运算程序,是否输出结果,关键是看每次计算的结果是否大于100,在输出结果之前的计算可以是多次反复循环的.第一次:输入的数x =3,则x (x +1)2=3×(3+1)2=6,因为6<100,所以不能输出结果,而是进入“否”程序,回到“输入”,再进行计算;第二次:输入的数x =6(此时输入的数已变为第一次的计算结果),则x(x +1)2=6×(6+1)2=21,因为21<100,所以再次进入“否”程序,回到“输入”,再进行计算;第三次:输入的数x =21(此时输入的数已变为第二次的计算结果),则x(x +1)2=21×(21+1)2=231,因为231>100,所以进入“是”程序,“输出结果”231,故选D .5.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1 min 叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃).(1)用代数式表示该地当时的温度;(2)当蟋蟀1 min 叫的次数分别是80,100和120时,该地当时的温度约是多少? 分析:把握各数量之间的关系,是解决此类问题的关键. 解:(1)用x 表示蟋蟀1 min 叫的次数,则该地当时的温度为37x ℃⎛⎫+⎪⎝⎭; (2)把x 等于80,100和120分别代入37x+,得 8010131477≈+=,10012131777≈+=,12014132077≈+=. 因此,当蟋蟀1 min 叫的次数分别是80,100和120时,该地当时的温度大约分别是14 ①,17 ①和20 ①.设计意图:掌握代数式值的计算方法,渗透整体代入的数学思想.六、课堂小结1.本节课主要学习了何为代数式的值、如何求代数式的值. 2.在求代数式的值时,要注意运算方法.3.通过代数式的学习,初步体会数学模型的思想.并学会由特殊到一般、由具体到抽象的数学思想方法.设计意图:组织学生以互相提问的形式把重点知识、数学方法总结出来.学生的学习基础、归纳能力决定了学生会有不同的想法.因此,学生在倾听别人想法的同时,也完善了自己对本节知识的理解.同时这样设计也增强了教师与学生、学生与学生之间的交流,提高了课堂效率.七、板书设计。

3.代数式课件北师大版数学七年级上册(1)

3.代数式课件北师大版数学七年级上册(1)

输入x
数值转换机 输入x
×6 6x
-3
输出 6x-3
-3 x-3 ×6
输出 6(x-3)
探究新知
6x-3 6(x-3)
-15
-3327 Nhomakorabea-30
-18
-12
12
一般地,用具体数值代替代数式里的字母,按照代 数式中的运算关系计算得出的结果,叫做代数式的值.
探究新知
归纳总结
直接代值法: 步骤: 第一 步:代入, “当……时”,用具体数值代替代数式里的字母; 第二步:计算,“原式=……”,按照代数式中指明的运算,计算出 结果.
下表是某市2006年一月份部分居民用电度 数x以及所要缴纳的电费y(元)的明细表:
(1)从表中你能知道该市民用电费标准是每度多少元? (2)y与x之间有什么关系? (3)若一居民用94度电,应付电费多少元?
解:(1)从表中知道该市民用电费标准是每度0.5元 (2)上表反应了用电量x与缴纳电费y变量之间的关系,
(1)填表:
(2)如果剪了100次,共剪出多少 个小正方形? (3)如果剪了n次, 共剪出多少个小正方形? (4)视 察图形,你还能得出什么规律?
解:(1)结合图形,不难发现:在4的基础上,依 次多3个.即剪n次,共有 4+3(n﹣1)=3n+1. 填表:
谢谢~
(1)已知父亲身高是a米,母亲身高是b米, 试用代数式表示儿子和女儿的身高;
(2)五年级女生小红的父亲身高是1.75米,母亲的身高是1.62米;六年级男 生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与 小红谁个子高?
探究新知
核心知识点一: 求代数式的值
视察下面的过程,完成表格.

2020年北师大版七年级数学上册3.2 《代数式》课件(共25张ppt)

2020年北师大版七年级数学上册3.2 《代数式》课件(共25张ppt)
(1)如果第一个同学报给第二个同学的数是5,第 四个同学报出的答案是35,这个结果对吗?
(2)如果已知第一个同学报给第二个同学的数,你 如何最快得出答案?
x
x+1
(x+1)2
(x+1)2-1
游戏2 看谁算的快,猜的准
(1)填表:
x 0.25 0.5 1 10 100 1000 10000 100000
给出概念
用字母表示下列数量关系:
1.长为a m , 宽为b m 的长方形的周长是_a_b _m , 面积是___2_(a_+__b_)__m2 .
2.边长为a m 的立方体的体积是__a3 _ m3. s
3.小亮用t秒走了s米,他的速度为__t _米/秒. 像4+3(x-1), x+x+(x+1), 2(a+b), ab,ts , 等式子都是代数式.它们就是用基本的运算符号把数 和字母连接而成的,单独一个数或一个字母也是代数 式. 注:运算符号包括加.减.乘.除.乘方及开方 .
t
0 2 4 6 8 10
h=4.9t2
h=0.8t2
t 02 4 6
8 10
h=4.9t2 0 19.6 78.4 176.4 313.6 490
h=0.8t2 0 3.2 12.8 28.8 51.2 80
通过表格我们可估计 t(地球)≈2秒,t(月球)≈5秒
游戏1
班级同学按4个同学一组进行分组,做一个传 数游戏.第一个同学任意报一个数给第二个同学, 第二个同学把这个数加1传给第三个同学,第三 个同学再把听到的数平方后传给第四个同学,第 四个同学把听到的数减去1报出答案.
(2)当x非常大时, 么数?
的值接近于什
思维拓展:
已知:2x-y=3, 那么4x-3-2y=?

北师大版2024新版七年级数学上册课件:3.1 课时2 代数式

北师大版2024新版七年级数学上册课件:3.1 课时2 代数式

课堂小结
5.(1)代数式6a可以表示什么? (2)代数式(1+8%)x可以表示什么? 解:(1)(答案不唯一)①如果a表示正六边形的边长,那么 代数式6a可以表示正六边形的周长. ②如果a表示一本书的价格,那么6a可以表示买6本这种 书的价格; (2)(答案不唯一)若x表示某件物品的原价,那么(1+8%)x 表示价格提高8%后的价格.
典型例题
例3 (1)一个两位数的个位数字是a,十位数字是b (b≠0),
请用代数式表示这个两位数.
(2)如何用代数式表示一个三位数?
个位上的数字是a,表示a个一.
解:(1)这个两位数是10b+a.
十位上的数字是b (b≠0),表示b个十.
(2)个位上的数字用a表示,十位上的数字用b 表示,
百位上的数字用c (c≠0)表示. 这个三位数是100c+10b+a.
课堂小结
1.下列各式不是代数式的是( A )
A.S=πR2
B.1
C.1a
D.m+n
课堂小结
2. (1)x与2的平方和; (2)x与2的和的平方; (3)x的平方与2的和.
解:(1)x2+4. (2)(x+2)2. (3)x2+2.
课堂小结
4.国庆节期间,李老师一家四口开车去森林公园游玩, 若门票每人a元,进入园区每辆车收费30元,李老师一 家开一辆车进园区所需费用是_(_4_a_+__3_0_) 元.
探究新知 归纳:列代数式的注意事项: (1)抓住关键词语,如 “大”“小”“多”“少”“和”“差”“积”“商”“倍”等,弄 清题目中的量及各量之间的关系. (2)厘清运算顺序,通常按照“先读先写”的顺序列式,并正确运用 括号. (3)对层次较多的题目,可以采取“浓缩原题,分段处理,最后组装” 的方式来处理. (4)在具体情境中,运用公式或根据数量关系列代数式.

北师大版2024新版七年级数学上册课件:3.2 课时2 去括号


典型例题
例2 先化简,再求值: 3x2+(2x2-3x)-(-x+5x2),其中x=314.
解:原式=3x2+2x2-3x+x-5x2 =-2x.
当x=314时,原式=-2×314=-628.
课堂练习
1.把a-(-2b+c)去括号正确的是( B )
A.a-2b+c
B.a+2b-c
C.a-2b-c
A.①②④
B.②④
C.①③
D.③④
课堂练习
4.化简: (1)(x+2y)-(-2x-y).
(2)6a-3(-a+2b).
解:(1)原式=x+2y+2x+y =3x+3y.
(2)原式=6a+3a-6b =9a-6b.
课堂练习
5.已知x+4y=-1,xy=-5, 求(6xy+7y)+[8x-(5xy-y+6x)]的值. 解:原式=6xy+7y+8x-(5xy-y+6x)
=6xy+7y+8x-5xy+y-6x =2(x+4y)+xy. 当x+4y=-1,xy=-5时, 2(x+4y)+xy=2×(-1)+(-5)=-7. 所以所求值为-7.
课堂练习
6.已知一个三角形的三边长分别为(3x-5)cm,(x+4)cm, (2x-1)cm. (1)用含x的式子表示三角形的周长; 解:周长为(3x-5)+(x+4)+(2x-1)
去括号前后,括号里各项的符号有什么变化?
探究新知
观察比较两式等号两边画横线的变化情况. (1)4+ 3(x-1) =4+ 3x-3 (2)4x -(x-1) =4x -x+1
去括号前后,括号里各项的符号有什么变化?
探究新知
观察比较两式等号两边画横线的变化情况. (1)4+ 3(x-1) =4+ 3x-3 (2)4x -(x-1) =4x -x+1

七年级上册数学第二章《代数式》导学案

4、课本P56的例1,例2你有何发现?三、预习自测1. 若圆的半径用r 来表示,那么圆的面积可以表示为 _____________________ ,圆的周长可以表示为 ______________ 。

2. 某城市市区人口为 a 万人,市区绿地面积为 b 万平方米,则平均每人拥有绿地 _____________________________ 平方米3. 某城市市内公用电话的付费标准是:通话一方从接通开始计费,时间不超过3分钟付费0.4元,超过3分钟后每1分钟加付0.2元。

则通话时间为0到3、4、5、6分钟各需付费 ___________________ 、_、 __________ 、_元。

如果通话时间用字母 n (n>3)表示,那么通话 n 分钟应付费 _________________________________________________ 元。

探究案:一、质疑探究一一质疑解疑、合作探究。

(一)基础知识探究探究点一:用字母表示数的特点问题1:1,2,3 是三个连续的整数,同样地, -2,-1,0也是三个连续的整数,如果用字母 n 表示任意一个整数,那么与它相邻的两个整数怎样表示呢? 二、当堂检测一一有效训练、反馈矫正1. P57练习2. 某城市5年前人均年收入为 n 元,预计今年人均年收入是5年前的2倍多500元,今年人均年收入将达到 _______ 元。

3. 一位同学第二次的测验成绩比第一次的提高了10分,若他第二次的测验成绩为 a 分,那么他第一次的测验成绩是 ______________________ 分。

课堂作业:P57 A1、2、问题 2:观察下面一组等式:(+2)+(-2)=0,( +12)+(-12)=0,( +3.8)+(-3.8)=0,你能用简明的 语言说明这些等式所揭示的数学规律吗?如果用字母a 表示数,上面的规律可写 成。

探究点二:用字母表示运算规律及公式问题1:设a,b,c 表示任意三个有理数,则乘法结合律可表示为 _______________________________________ 。

七年级数学《代数式》导学案

七年级,数学,《,代数式,》,导学案,青,坨营,青坨营中学导学案设计
课题
课时
1
授课教师
教学
目标
(1)会把代数式反应的数量关系用文字语言表述出来。

(2)会把文字语言表达的数量关系用代数式表示出来。

重点
难点
重点:理解并能说出代数式表示的意义,会列代数式。

难点:代数式表示的意义和准确列代数式。

教学内容
师生随笔
1、在代数式中,字母与数或字母与字母相乘时,通常乘号写作“”或,如2×a写作或(但不能写作a2)。

2、代数式中出现除法运算时,一般以形式出现,如s÷t写作。

三、课堂检测
1、说出下列代数式的意义
2、用代数式表示
(1)a的3倍与4的和
(2)买单价是x元的球拍y副,付出100元,应找回多少元?
(3)a、b两数的积与这两数和的积
(4)大华身高acm,小亮身高bcm,他们的平均身高为多少cm?
附加题:
用代数式表示:用化肥若干千克给一块麦田追肥,如果每公顷施肥600千克,那么缺少1700千克;如果每公顷施肥500千克,那么余出300千克。

设麦田共有a公顷,请用两种方法表示出化肥的数量。

四、课堂总结:
1、用自己的话说说什么是代数式,并每人举两个例子在小组中交流。

2、你知道列代数式应注意哪些问题了吗?
五、课后作业:
101页1、2、3、4题。

师生反思、总结:。

北师大版七年级数学上册 3 2代数式(第二课时) 同步导练(含答案)

3.2代数式(二)基础导练1. 代数式2a-b 表示的意义是_____________________________.2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________.⑵a 、b 两数的和的平方与它们差的平方和________________.3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米.4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律用自然数n(n ≥1)表示出来______________________.6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________,当a=5时,这个两位数为_________.7. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ).A . 0.7a 元B .0.3a 元C .a 310 元D . a 710元 8. 根据下列条件列出的代数式,错误的是( ). A . a 、b 两数的平方差为a 2-b 2 B . a 与b 两数差的平方为(a-b)2C. a 与b 的平方的差为a 2-b 2 D . a 与b 的差的平方为(a-b)29. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( ).A . –2005B . 2005C . -1D . 110. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( ).A . ( mx+ny )元B . (m+n)(x+y) C. (nx+my )元 D . mn(x+y) 元11. 当x=-2,y=3时,代数式4x 3-2y 2的值为( ).A . 14B . –50C . –14D . 50 能力提升12. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值.13. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平方. 14.人在运动时的心跳速率通常和人的年龄有关.如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a).⑴ 正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少? ⑵ 一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?15. 给出下列程序:⇒ ⇒若输入x=1时,输出的值为-2,求输入x=-2时,输出的值是多少?参考答案:1.2a 与b 的差2.⑴(1+10%)x ⑵(a+b)2 +(a-b)23. 2.1+0.3n 5.14.1.6+0.5(n-2)6.n 2+n=n(n+1) 6.10(a-3)+a 257.D8.C9.C 10.A 11.B 12. ∵3a 2-2a +6=8 13. b 2-4ac=(-21)2-4×(-1)×23=425 ∴ 3a 2-2a=2 ∵(±25)2=425 ∴1232=-a a ∴425是±25的平方. ∴.2111232=+=+-a a 14. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数164次.⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险.15.4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七 年级 上 (上/下) 数学 学科导学案
本周习惯养成:

知识链接:
请同学们看下列问题:
如4+3(x-1),x+x+(x-1),a+b,
ab,2(m+n), ,a3 …… 这些式子你熟悉
吗?
像这样的一些式子都是代数式。
单独的一个数或者一个字母也是代数式。如:x,a,b,0,3等。
一、示标自学

例1 列代数式,并求值.
参观花展:
门票:成人10元/人;学生5元/人.
(1)一个旅游团有成人x人、学生y人,请你根据上图确定该旅游团应付多少门票费?
(2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?
解:(1)
(2)

(1)如果用x(元/kg)表示大米的价格,用y(元/kg)
表示食油的价格,那么10x+5y就表示小强的妈妈购买10kg大米和5kg食油所用的费用;
想一想:10x+5y还能表示什么?你还能举其它的例子吗?

现代营养学家用身体质量指数衡量人体胖瘦程度以及是否健康,这个指数等于人体质量(千
克)与人体身高(米)平方的商。对于成年人来说,身体质量指数在20~25之间,体重适中;
身体质量指数低于18,体重过轻;身体质量指数高于30,体重超重。
(1)设一个人的体重为w(千克),身高为h(米),
求他的身体质量指数。

课题:3.2代数式(一) 课型: 新授 编号:
主备人: 审核: 小主人:
学习目标:
1.能用字母和代数式表示以前学过的运算律和计算公式。
2.体会字母表示数的意义,形成初步的符号感。
(2)张老师的身高是1.75米,体重是60千克,他的体重是否适中健康?你的身体质量指数呢?
(二)巩固新知
1、练一练:用代数式表示
(1)f的11倍再加上2可以表示为 ;
(2)数a的 与这个数的和可以表示为 ;
(3)一个教室有2扇门和4扇窗户,n个这样的教室有 扇门和 扇窗户;

2、试一试:代数式6p可以表示什么呢?(按要求填写下表)

要求
与人有 关的 与植物 有关的 与几何 有关的 与书本
有关的

填写
内容

二、感悟成功 颗粒归仓
1、知识归纳:

2、感悟生成:
三、达标测试 巩固落实
1: 举例说明下列代数式的意义

(1)8a2可以解释为 ;
(2) m可以解释为 ;
(3)(a+b)(a-b)可以解释为 ;
(4)(1+8%)x可以解释为 .

2 教材第83页1、2、3题

相关文档
最新文档