福建厦门一中九年级数学下册第二十八章《锐角三角函数》综合经典测试(培优练)

合集下载

人教版 九年级数学 下册 第28章 锐角三角函数 综合训练(含答案)

人教版 九年级数学 下册 第28章 锐角三角函数 综合训练(含答案)
约需时间几分.(参考数据: 3≈1.7)
18. 如图,大海中某灯塔 P 周围 10 海里范围内有暗礁,一艘海轮在点 A 处观察 灯塔 P 在北偏东 60°方向,该海轮向正东方向航行 8 海里到达点 B 处,这时观察 灯塔 P 恰好在北偏东 45°方向.如果海轮继续向正东方向航行,会有触礁的危险 吗?试说明理由.(参考数据: 3≈1.73)
C. 3 5
B. 3 4
D. 4 5
3. (2020·扬州)如图,由边长为 1 的小正方形构成的网格中,点 A、B、C 都在 格点上,以 AB 为直径的圆经过点 C、D.则 sin∠ADC 的值为
()
A. 2 13
13
B. 3 13 13
C. 2 3
D. 3 2
4. 如图,点 A,B,C 在正方形网格的格点上,则 sin∠BAC=( )
=6 3+20,∴AB=BF+AF=9+20+6 3≈39.4(米).
6. 【答案】C 【解析】如解图,过点 P 作 PC⊥OB 于点 C,则在 Rt△OPC 中, OC=OP·cos∠POB=1×cosα =cosα ,PC=OP·sin∠POB=1×sinα =sinα ,即 点 P 的坐标为(cosα ,sinα ).
7. 【答案】D 【解析】如图,过点 A 作 AE⊥OC 于点 E,作 AF⊥OB 于点 F,∵四边形 ABCD 是矩形,∴∠ABC=90°, ∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴ FO=FB+BO=a•cosx+b•sinx, 故选 D.
8. 【答案】A
13. 【题目】(2020·哈尔滨)在△ABC中,∠ABC=60°,AD为BC边上的高,AD

九年级数学下册第二十八章《锐角三角函数》综合测试卷-人教版(含答案)

九年级数学下册第二十八章《锐角三角函数》综合测试卷-人教版(含答案)

九年级数学下册第二十八章《锐角三角函数》综合测试卷-人教版(含答案)一.选择题(每题3分,共24分)1.在ABC ∆中,︒=∠90C ,AB =15,sin A =31,则BC 等于( )A . 45B . 5C .51 D .451 2.在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( ) A .43 B .34 C .53 D .543.已知在Rt △ABC 中,∠C =90°.若 sin A =23,则sin B 等于( ) A.21B.22C.23D.14.下列式中不正确的是( )。

A .. cos35°=sin55°B ..sin 260°+cos 260°=1C .. sin30°+cos30°=1D ..tan45°>sin45°5.如图1,梯形护坡石坝的斜坡AB 的坡度i =1:3,坝高BC 为2米,则斜坡AB 的是( )A .B .C .D .6米6. 如图2是教学用直角三角板,边AC=30cm ,∠C=90°,tan∠BAC=33,则边BC 的长为( ).A. 303cmB. 203cmC.103cmD. 53cm7.在中,若,则的度数是( ) A . B . C . D .8.如图3,在△ABC 中,AC=,则AB 等于( ) A .4B .5C .6D .7二、(每题3分,共18分)9.计算:10.在△ABC 中,∠B =300,tanC =2,AB =4,则BC 的长是 。

11.当锐角﹥300时,则的值。

(填“>”“<”“=”) 12.如果∠A 是锐角,cosA=0.618,那么sin (90°-A )的值为_____________. 13.用计算器计算:3sin 382-≈ (结果保留三个有效数字).14. 是锐角的两条高,如果,则=三、解答题(共58分)15、计算:︒⋅︒-︒+︒30tan 60tan 45cos 330sin 216.如图4所示,已知:在△ABC 中,∠A=60°,∠B=45°,AB=8.求:△ABC 的面积(结果可保留根号).17、某学校的大门是伸缩的推拉门,如图5是大门关闭时的示意图.若图中菱形的边长都是ABC △2sin (1tan )0A B +-=C ∠45︒60︒75︒105︒,23tan ,30=︒=∠B A 32=︒•︒30tan 60sin ααcos 23AE CF 、ABC △:3:2AE CF =sin :sin A C0.5米、锐角都是50°,则大门的宽大约是多少米?(结果保留两个有效数字) (参考数据:sin 25°=0.4226,cos 25°=0.9063)18、如图,在一次课外数学实践活动中,小明站在操场的A 处,他的两侧分别是旗杆CD 和一幢教学楼EF ,点A 、D 、F 在同一直线上,从A 处测得旗杆顶部和教学楼顶部的仰角分别为45°和60°,已知DF =14m ,EF =15m ,求旗杆CD 高.(结果精确到0.01m ,参考数据:≈1.414,≈1.732)19.如图6,有一段斜坡BC 长为30米,坡角∠CBD =30°,为方便车辆通行,现准备把坡角降为15°.(1)求坡高CD ;(2)求斜坡新起点A 到点D 的距离(结果保留根号).20.如图7,测速站P 到公路AC 的距离PO 为40米,一辆汽车在公路AC 上行驶,测得此2360︒45︒FECDA车从点A行驶到点B所用时间为2秒,并测得∠APO=60°,∠BPO=30°,试判断此车是否超过了22米/秒的限制速度?参考答案一、1、B 2、B 3、A 4、C 5、A 6、C 7、C 8、B二、9、 10、132+ 11、< 12、0.618 13、0.433 14、 三、15、解:原式=333)22(3212⨯-⨯+ =12321-+=1. 16.解 过C 作CD ⊥AB 于D ,在Rt △ADC 中,∵∠CDA=90°, ∴60cot DAC cot CDDA=∠==33,即AD = CD 33⨯。

九年级数学第二十八章锐角三角函数综合测试习题(含答案) (178)

九年级数学第二十八章锐角三角函数综合测试习题(含答案) (178)

九年级数学第二十八章锐角三角函数综合测试习题(含答案)如图,ABC ∆内接于⊙O ,AB 是⊙O 的直径,AC CE =,连接AE 交BC 于点D ,延长DC 至F 点,使CF CD =,连接AF .(1)判断直线AF 与⊙O 的位置关系,并说明理由.(2)若10AC =,3tan 4CAE ∠=,求AE 的长.【答案】(1)直线AF 是⊙O 的切线,理由见解析;(2)16.【解析】【分析】(1)连接AC ,根据圆周角定理得到⊙ACB=90°,根据等腰三角形的性质得到⊙CAN=⊙EAC ,⊙E=⊙EAC ,得到⊙B=⊙FAC ,等量代换得到⊙FAC+⊙BAC=90°,求得OA ⊙AF ,于是得到结论;(2)过点C 作CM ⊙AE ,根据三角函数的定义得到34CM AM =,设CM=3x ,则AM=4x ,根据勾股定理即可得到结论.【详解】解:(1)直线AF 是⊙O 的切线,理由是:连接AC ,⊙AB 为⊙O 直径,⊙90ACB ∠=,⊙AC BC ⊥,⊙CF CD =,⊙CAF EAC ∠=∠,⊙AC CE =,⊙E EAC ∠=∠,⊙B E ∠=∠,⊙B FAC ∠=∠,⊙90B BAC ∠+∠=,⊙90FAC BAC ∠+∠=,⊙OA AF ⊥,又⊙点A 在⊙O 上,⊙直线AF 是⊙O 的切线;(2)过点C 作CM AE ⊥,⊙3tan 4CAE ∠=, ⊙34CM AM =, ⊙10AC =,⊙设3CM x =,则4AM x =,在Rt ACM ∆中,根据勾股定理,222CM AM AC +=,⊙()()2234100x x +=,解得2x =,⊙8AM =,⊙AC CE =,⊙22816AE AM ==⨯=.【点睛】本题考查了切线的判定和性质,圆周角定理以及解直角三角形,是基础知识比较简单.87.一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.(1)小强和小明分别买了50本和200本,他们俩分别花了多少钱?(2)如果小红买这种笔记本花了380元,她买了多少本?(3)如果小红买这种笔记本花了n 元,她又买了多少本?【答案】(1)小强:110元;小明:420元;(2)180本;(3)n ≤220时,本数=2.2n ;n >220时,本数=102n -; 【详解】(1)小强的总花费=2.2×50=110(元);小明的总花费为:2.2×100+(200-100)×2=220+200=420(元).(2)小红买的本数为:100+380 2.21002-⨯=100+80=180(本). (3)当n ≤220时,本数=2.2n ; 当n >220时,本数=100+ 2.21002n -⨯=100+2202-n =2n -10. 88.如图,CD 垂直平分AB 于点D ,连接CA ,CB ,将BC 沿BA 的方向平移,得到线段DE ,交AC 于点O ,连接EA ,EC .(1)求证:四边形ADCE 是矩形;(2)若CD =1,AD =2,求sin ⊙COD 的值.【答案】(1)见解析;(2)4.5【分析】(1)根据“有一内角为直角的平行四边形为矩形”进行证明即可;(2)如图,过D作DF⊙AC于F,利用矩形的对角线相互平分的性质、勾股定理求得OD的长度;然后利用面积法可以求得DF的长度,所以通过解Rt⊙ODF得到答案.【详解】(1)证明:由已知得BD//CE,BD=CE,⊙CD垂直平分AB,⊙AD=BD,⊙CDA=90°,⊙结合平移的性质得到:AD//CE,AD=CE,⊙四边形ADCE是平行四边形,⊙平行四边形ADCE是矩形;(2)解:过D作DF⊙AC于F,在Rt⊙ADC中,⊙CDA=90°,⊙CD=1,AD=2,由勾股定理可得:AC⊙O为AC中点,⊙OD,⊙AC•DF=AD•DC,⊙DF , 在Rt ⊙ODF 中,⊙OFD =90°,⊙sin ⊙COD =45DF OD =.【点睛】本题考查了勾股定理,矩形的性质以及平移的性质,解决本题的关键是要熟练掌握勾股定理和矩形的性质.89.计算:|1|+(﹣12)﹣2﹣1cos 45︒4)0. 【答案】0.【解析】【分析】可以先去绝对值和将余弦值化简,再根号求解后再进行求值即可.【详解】原式=﹣1+4﹣﹣2﹣1=0.【点睛】本题考查了多项式的求值,绝对值,余弦根号的化简是解决本题的关键.90.如图,在平面直角坐标系中,点A 坐标(0,6),AC ⊙y 轴,且AC=AO ,点B ,C 横坐标相同,点D 在AC 上,tan ⊙AOD=13,若反比例函数y=k x(x >0)的图象经过点B 、D .(1)求:k 及点B 坐标;(2)将⊙AOD 沿着OD 折叠,设顶点A 的对称点A 1的坐标是A 1(m ,n ),求:代数式m+3n 的值以及点A 1的坐标.【答案】(1)(6,2);(2)(3.6,4.8)【解析】试题分析:(1)先根据tan ⊙AOD =13,A 坐标(0,6)得出AD 的长,再根据点D 在反比例函数y =k x(x >0)的图象上可求出k 的值,由BC ⊙AO ,得出B 点坐标;(2)过点A 1作EF ⊙OA 交AC 于E ,交x 轴于F ,连接OA 1,根据AC ⊙x 轴可知⊙A 1ED =⊙A 1FO =90°,由相似三角形的判定定理得出⊙DEA 1⊙⊙A 1FO ,设A 1(m ,n ),可得出62m n n m -=-,m 2+n 2=2m +6n ,,再根据勾股定理可得出m 2+n 2=36,于是得到结论.解:(1)⊙点A 坐标(0,6),tan ⊙AOD=,⊙AD=2,⊙D (2,6)⊙点D 在反比例函数y=(x >0)的图象上,⊙6=,解得k=12,⊙AC=AO ,点B ,C 横坐标相同,⊙点B 、C 的横坐标都是6,⊙BC ⊙AO ,⊙B(6,2);(2)过点A1作EF⊙OA交AC于E,交x轴于F,连接OA1,⊙AC⊙x轴,⊙⊙A1ED=⊙A1FO=90°,⊙⊙OA1D=90°,⊙⊙A1DE=⊙OA1F,⊙⊙DEA1⊙⊙A1FO,⊙A1(m,n),⊙=,⊙m2+n2=2m+6n,⊙m2+n2=OA12=OA2=36,⊙m+3n=18,即m=18﹣3n,⊙(18﹣3n)2+n2=36,解得n1=6(舍去),n2=4.8,⊙m=18﹣3×4.8=3.6,即点A1的坐标为(3.6,4.8).点睛:本题考查的是反比例函数图象上点的坐标特征,翻折的性质,勾股定理、相似三角形的判定与性质、反比例函数图象上点的坐标特点等知识,难度适中.。

九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷时间:100分钟 满分:120分 一、选择题(每题3分,共30分) 1.cos 45°的值为( ) A.12 B.22 C.32 D .12.如图,CD 是Rt △ABC 斜边上的高.若AB =5,AC =3,则tan ∠BCD 为( )A.43B.34C.45D.35(第2题) (第4题) (第5题) (第6题) 3.在△ABC 中,若⎪⎪⎪⎪⎪⎪cos A -12+(1-tan B )2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( ) A.12B.13C.14D.245.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24 m ,那么旗杆AB 的高度是( ) A .12 mB .8 3 mC .24 mD .24 3 m6.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( ) A .26 mB .28 mC .30 mD .46 m7.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .2 3 mB .2 6 mC .(23-2)mD .(26-2)m(第7题)(第8题)8.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB等于()A.25 B.23 C.52 D.329.如图,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sin A=35,则下列结论中正确的有()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.A.1个B.2个C.3个D.4个(第9题)(第10题) (第12题)10.如图,在Rt△ABC中,∠B=90°,∠BAC=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB的长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312 B.36 C.33 D.32二、填空题(每题3分,共24分)11.已知α为锐角,sin(α-20°)=32,则α=________.12.如图,若点A的坐标为(1,3),则∠1=________.13.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.(第14题) (第15题) (第16题) (第18题)14.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若sin ∠CAM =35,则tan B =________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90 m ,那么该建筑物的高度BC 约为________m(精确到1 m ,参考数据:3≈1.73). 16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D =________.17.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为________. 18.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30 m ,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD =10 m .请根据这些数据求出河的宽度为______________m. 三、解答题(19,21,24题每题12分,其余每题10分,共66分) 19.计算:(1)(-2)3+16-2sin 30°+(2 019-π)0;(2)sin 2 45°-cos 60°-cos 30°tan 45°+2sin 2 60°·tan 60°.20.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.已知2a =3b,求∠B的正弦、余弦和正切值.21.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sin A=45,求AD的长.(第21题)22.数学拓展课程《玩转学具》课堂中,小陆同学发现,一副三角尺中,含45°角的三角尺的斜边与含30°角的三角尺的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角尺直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.(第22题)23.如图,天星山山脚下西端A处与东端B处相距800(1+3)m,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为22m/s.若小明与小军同时到达山顶C处,则小明的行走速度是多少?(第23题)24.如图,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3 m到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2 m,∠BCA=30°,且B,C,D三点在同一直线上.求:(1)树DE的高度;(2)食堂MN的高度.(第24题)答案一、1. B 2. A 3. C 4. B 5. B 6. D7.B 8. B 9. C10.B 点拨:如图,设BC =x .在Rt △ABC 中,∠B =90°,∠BAC =30°,∴AC =2BC =2x ,AB =3BC =3x .根据题意,得AD =BC =x ,AE =DE =AB =3x ,过点E 作EM ⊥AD 于点M ,则AM =12AD =12x .在Rt △AEM 中,cos ∠EAD =AM AE =12x3x=36.(第10题)二、11. 80° 12. 60° 13. 12 14. 23 15. 20816.22 点拨:如图,连接BC ,易知∠D =∠A .∵AB 是⊙O 的直径,∴∠ACB =90°.∵AB =3×2=6,AC =2,∴BC 2=62-22=32, ∴BC =4 2.∴tan D =tan A =BC AC =422=2 2.(第16题)17.123 点拨:如图,过A 点作AD ⊥CB ,交CB 的延长线于点D ,则∠ABD =180°-120°=60°.在Rt △ABD 中,AD =AB ·sin ∠ABD =6×32=33,∴S △ABC =12AD ·BC =12×33×8=12 3.(第17题)18.(30+103)三、19.解:(1)原式=-8+4-2×12+1=-8+4-1+1=-4;(2)原式=(22)2-12-32+2×(32)2×3= 3.20.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k ,∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23.21.解:(1)在Rt △ABE 中,∵∠A =60°,∠ABE =90°,AB =6,tan A =BEAB ,∴∠E =30°,BE =AB ·tan A =6×tan 60°=6 3.在Rt △CDE 中,∵∠CDE =90°,CD =4,sin E =CDCE ,∠E =30°, ∴CE =CD sin E =412=8.∴BC =BE -CE =63-8.(2)∵∠ABE =90°,AB =6,sin A =45=BEAE ,∴可设BE =4x (x >0),则AE =5x ,由勾股定理可得AB =3x , ∴3x =6,解得x =2. ∴BE =8,AE =10.∴tan E =AB BE =68=CD DE =4DE , 解得DE =163.∴AD=AE-DE =10-163=143.22.解:在Rt△ABC中,BC=2,∠A=30°,∴AC=BCtan A=2 3.∴EF=AC=2 3.∵∠E=45°,∴FC=EF·sin E= 6.∴AF=AC-FC=23- 6.23.解:如图,过点C作CD⊥AB于点D,设AD=x,小明的行走速度是a.(第23题)∵∠A=45°,CD⊥AB,∴CD=AD=x,∴AC=2x.在Rt△BCD中,∵∠B=30°,∴BC=CDsin 30°=x12=2x.∵小军的行走速度为22m/s,小明与小军同时到达山顶C处,∴2x22=2xa,解得a=1(m/s).答:小明的行走速度是1 m/s. 24.解:(1)设DE=x.∵AB=DF=2,∴EF=DE-DF=x-2.∵∠EAF=30°,∴AF=EFtan∠EAF=x-233=3(x-2).又∵CD=DEtan ∠DCE =x3=33x,BC=ABtan ∠ACB=233=23,∴BD=BC+CD=23+3 3x.由AF=BD可得3(x-2)=23+33x,解得x=6(m).答:树DE的高度为6 m.(2)如图,延长N M交DB的延长线于点P,则AM=B P=3.(第24题)由(1)知CD=33x=33×6=23,BC=23,∴PD=BP+BC+CD=3+23+23=3+4 3. ∵∠NDP=45°,∴NP=PD=3+4 3.∵MP=AB=2,∴NM=NP-MP=3+43-2=1+43(m).答:食堂M N的高度为(1+43)m.。

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典测试卷(含答案解析)

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典测试卷(含答案解析)

一、选择题1.已知如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=23,AB=4,连接AC,若∠CAD=30°,则CD为()A.223+B.27C.1033D.123+B解析:B【分析】过C点作CH⊥AD延长线于H点,由CH=AB=4求出AH的长,再减去AD即得到DH的长,再在Rt△DCH中使用勾股定理即可求出CD.【详解】解:如图所示,过C点作CH⊥AD延长线于H点,∵AD∥BC,∠B=90°,∴∠BAH=90°,且∠H=90°,∴四边形ABCH为矩形,∴AB=CH=4,在Rt△ACH中,3343AH CH AB,∴DH=AH-AD=23∴在Rt△CDH中,22121627CD DH CH,故选:B.【点睛】本题考查了解直角三角形,熟练掌握30°,60°,90°三角形中三边之比为3::是解决本题的关键.2.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.5:1B.4:1C.3:1D.2:1A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A,进而可求出∠ADC,从而可得答案.【详解】解:如图,DE 是菱形ABCD 的高,DE=1cm ,∵菱形ABCD 的周长是8cm ,∴AD=2cm ,在Rt △ADE 中,∵DE=12AD ,∴∠A=30°, ∵AB ∥DC ,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC :∠A=150°:30°=5:1.故选:A .【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.3.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒C .sin 35m ︒D .m·cos35°D解析:D【分析】 根据Rt △ABC 中cos35AC AB AC m︒==,即可得到AC 的长. 【详解】 在Rt △ABC 中, AB=m ,∠A=35°,cos35AC AB AC m ︒==, ∴AC=cos35m ⋅︒,故选:D.【点睛】此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 4.如图,四边形 ABCD 中,BD 是对角线,AB=BC ,∠ABC=60°,CD=4,∠ADC=60°,则△BCD 的面积为( )A .43B .8C .23+4D .36A解析:A【分析】 先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD ,∴tan 602MH MH DH ︒==, ∴23MH =, ∴△△1423432BDC CDM S S ==⨯⨯=. 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 5.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .()3,3B .()3,1C .()2,1D .()2,3B 解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=, 则点A 的坐标为:(3,1).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.6.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x A解析:A【分析】 作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,故选:A .【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键. 7.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( ) A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D【详解】 如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.8.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()323232323AC CD ====++-tan22.5°的值为( )A .21+B .2﹣1C .2D .12B 解析:B【分析】 作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值.【详解】 解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x , ()22.5==211+2AC x C tan ta D x n D =∠=-︒故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.9.如图,Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,F 、A 、B 在同一直线上,正方形ADEF 向右平移到点F 与B 重合,点F 的平移距离为x ,平移过程中两图重叠部分的面积为y ,则y 与x 的关系的函数图象表示正确的是( )A .B .C .D .B解析:B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x , 其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.故选:B .【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.10.在半径为1的O 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75B .15或30C .75或15D .15或45C解析:C【分析】根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:AD=3222AE =, .sin ∠3∴∠AOD=60°; sin ∠AOE=22,∴∠AOE=45°; ∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C .【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.二、填空题11.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

2023-2024学年数学九年级下册人教版 第二十八章 锐角三角函数压轴题经典题型(含答案)

2023-2024学年数学九年级下册人教版 第二十八章 锐角三角函数压轴题经典题型(含答案)

2023-2024学年数学九年级下册人教版第二十八章锐角三角函数压轴题经典题型1.如图,在△ABC中,∠C=90°,∠B=30°,AC=3,动点P从点B出发,在边BC上以每秒3个单位长度的速度运动至点C,然后又在边CA上以每秒1个单位长度的速度运动至点A停止.当点P 不与△ABC的顶点重合时,过点P作其所在直角边的垂线交边AB于点Q,再以PQ为边作等边△PQM,且点M与△ABC的另一条直角边始终在PQ同侧.设△PQM与△ABC重叠部分的面积为S 平方单位,点P的运动时间为t秒.(1)当点P在边BC上运动时,求PQ的长(用含t的代数式表示);(2)当点P在边BC上运动时,求S与t的函数关系式;(3)取AB的中点K,连接CK.当点M落在线段CK上时,求t的值.2.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点D和点E分别为AC和BC的中点,连接DE.点P从点A出发,以每秒3个单位长度的速度沿AB向终点B运动,过点P作PF⊥AB,交折线AC-CB于点F,以PF为一边向PF的右侧作正方形PFGH.设点P的运动时间为t秒(t>0).(1)DE的长为 ;(2)当点F在AC边上,且DE=3PF时,求t的值;(3)当点E落在正方形PFGH的内部时,求t的取值范围;(4)当线段DE将正方形PFGH的边PF分成两部分的比为13时,直接写出t的值.3.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=400+4003千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据2≈1.41,3≈1.73,5≈2.24)4.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM=30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E 处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE//BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:2取1.41,3取1.73,sin22°取0.37,cos22°取0 .93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)5.如图,AB为⊙O的直径,C、D为圆上两点,∠ABD=2∠BAC,CE⊥BD于点E.(1)求证:CE是⊙O的切线;(2)若BC=3,BD=7,求线段BE的长:(3)在(2)的条件下,求cos∠DCA的值.6.如图,抛物线y=m x2+(m2+3)x−(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).(1)请直接写出:m= ;抛物线的解析式 ;直线BC的解析式 ;tan∠OCA= ;(2)如图1,点P是抛物线上位于直线BC上方的一点,过点P作BC的垂线垂足为点G,求线段PG的最大值;(3)如图2,Q为抛物线上一点,若∠ACQ=45°,请求出点Q的坐标.7.综合与实践如图,正方形ACBF与正方形CDGE有公共顶点C,AC=3,CD=2,连接AD,BE.(1)如图①,当点E,G在正方形ACBF内时,线段BE与AD的数量关系是 ,位置关系是 ;(2)把正方形CDGE绕点C旋转到如图②的位置,(1)中的结论还成立吗?说明理由;(3)把正方形CDGE绕点C在平面内自由旋转.①当A,E,D三点在同一条直线上时,AE的长是 ;②旋转过程中,|AE−AD|的最大值为 .8.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)如图1,若E是线段AC上任意一点,连接EF,DF,DE,求证:△ADE≌△CDF.(2)在第(1)题的前提下,求证:BE=EF.(3)如图2,若E是线段AC延长线上一点,其他条件不变,且BE∥AF,求tan∠AFC的值.9.如图(1)如图1,在△ABC 中,∠ACB =2∠B ,CD 平分∠ACB ,交AB 于点D ,DE //AC ,交BC 于点E .①若DE =1,BD =32,求BC 的长;②试探究AB AD −BE DE是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,∠CBG 和∠BCF 是△ABC 的2个外角,∠BCF =2∠CBG ,CD 平分∠BCF ,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为S 1,△CDE 的面积为S 2,△BDE 的面积为S 3.若S 1⋅S 3=916S 22,求cos∠CBD 的值.10.如图(1),E ,F ,H 是正方形ABCD 边上的点,连接BE ,CF 交于点G 、连接AG ,GH ,CE =DF .(1)判断BE 与CF 的位置关系,并证明你的结论;(2)若CE =CH ,求证:∠BAG =∠CHG ;(3)如图(2),E ,F 是菱形ABCD 边AB ,AD 上的点,连接DE ,点G 在DE 上,连接AG ,FG ,CG ,∠AGD =∠BAD ,AF =AE ,DF =GF ,CD =10,CG =6,直接写出DF 的长及cos ∠ADC 的值.11.如图,直线y=−2x+10与x轴交于点A,与y轴交于点B,以OB为直径的⊙M交AB于另一点C,点D在⊙M上.分别过点O,B作直线CD的垂线段,垂足为E,F,连接OC.(1)求点A,B,C的坐标.(2)当点D在直线BC右侧时,①求证:EC⋅CF=OE⋅BF;②求证:EC=DF.(3)CD与EF的距离和是否为定值?若是,请直接写出定值;若不是,请直接写出取到最小值时直线CD的解析式.12.如图1是一种纸巾盒,由盒身和圆弧盖组成,通过圆弧盖的旋转来开关纸巾盒.如图2是其侧面简化示意图,已知矩形ABCD的长AB=16cm,宽AD=12cm,圆弧盖板侧面DC所在圆的圆心O是矩形ABCD的中心,绕点D旋转开关(所有结果保留小数点后一位).(1)求DC所在⊙O的半径长及DC所对的圆心角度数;(2)如图3,当圆弧盖板侧面DC从起始位置DC绕点D旋转90°时,求DC在这个旋转过程中扫过的的面积.参考数据:tan36.87°≈0.75,tan53.06°≈1.33,π取3.14.13.如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A 处测得渔船在北偏西60°的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15°的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:3≈1.73)14.已知正方形ABCD的边长为4,△BEF为等边三角形,点E在AB边上,点F在AB边的左侧.(1)如图1,若D,E,F在同一直线上,求BF的长;(2)如图2,连接AF,CE,BD,并延长CE交AF于点H,若CH⊥AF,求证:2AE+2FH=BD (3)如图3,将△ABF沿AB翻折得到△ABP,点Q为AP的中点,连接CQ,若点E在射线BA上运动时,请直接写出线段CQ的最小值.答案解析部分1.【答案】(1)解:PQ =t(2)解:当0<t≤2时,S =34t 2;当2<t <3时,S =-23t 2+93t -93.(3)解:①如图①3t =332,解得t =32;②如图②,3[3-(t -3)]=32∙(t -3),解得t =5综上所述,满足条件的t 的值为32或5.2.【答案】(1)52(2)解:t =524(3)解:当点E 落在GH 上时,∵AP =3t ,PF =4t ,四边形PFGH 是正方形,∴PH =GH =PF =4t ,∠PHG =∠BHE =90°,∴BH =AB−AP−PH =5−3t−4t =5−7t . ∵cos B =BH BE =BC AB ,∴5−7t 2=45,解得t =1735;当点E 落在PF 上时,∵AP =3t ,∴BP =5−3t ,∵cos B =BP BE =BC AB ,∴5−3t 2=45,解得t =1715.综上所述,t 的取值范围是1735<t <1715.(4)解:t 的值为25或4345.3.【答案】(1)解:如下图,过点C 作 CH ⊥AB 交AB 于点H ,设 CH =x在 Rt △ACH 中, ∠A =45° , AH =CH =x在 Rt △BCH 中, ∠B =30° , BH =3x∴AB =(3+1)x =400+4003∴x=400,∴CH=400∵400<600,海港C受台风影响(2)解:如下图,以CP=600千米为半径画弧交AB于P、Q两点,此时台风在PQ之间时,海港受到影响,在Rt△PCH中,CP=600,CH=400∴PH=CP2−CH2=2005∴PQ=2PH=4005=205≈45(小时)则时间:t=400520答:台风影响该海港持续的时间有45小时.4.【答案】(1)解:作AF⊥BC,交CB的延长线于点F,则AF//MN//M′N′,∴∠ABM=∠BAF,∠ACM′=∠CAF,∵∠ABM=30°,∠ACM′=60°,∴∠BAF=30°,∠CAF=60°,∵AF=6米,∴BF=AF⋅tan30°=6×3=23(米),CF=AF⋅tan60°=6×3=63(米),3∴BC=CF−BF=63−23=43(米),即BC的长为43米;(2)解:设水池的深为x米,则BN=CN′=x米,由题意可知:∠DBN =22°,∠ECN′=40.5°.DE =8.72米,∴DN =BN ⋅tan22°≈0.4x (米),N′E =CN′⋅tan40.5°≈0.85x (米),∵DN +DE =BC +N′E ,∴0.4x +8.72=43+0.85x ,解得x ≈4,即水池的深约为4米.5.【答案】(1)解:如图,连接OC ,∵∠ABD =2∠BAC ,∠COB =2∠BAC ,∴∠ABD =∠COB ,∴OC ∥DE ,∵CE ⊥BD ,∴CE ⊥OC ,∴CE 是 ⊙O 的切线.(2)解:如图,作OF ⊥BD ,设BE =x ,∵OF ⊥BD ,BD =7,∴∠OFB =90°,BF =12BD =72,∴EF =BF +BE =72+x ,O B 2=O F 2+B F 2,∵CE ⊥BD ,CE ⊥OC ,∴∠E =∠OCE =90°,∴四边形OCEF 是矩形,C E 2=B C 2−B E 2=9−x 2,∴OF =CE ,OC =EF =72+x ,∴OB =OC =72+x ,∴(72+x )2=9−x 2+(72)2,x 1=−92(舍去),x 2=1,∴BE =1.(3)解:由(2)得x =1,∴OB =92,∴AB =2OB =9,∵∠ADB =90°,BD =7,∴cos ∠ABD =BD AB =79,∵∠DCA =∠ABD ,∴cos ∠DCA =cos ∠ABD =79.6.【答案】(1)m =−1;y =−x 2+4x−3;y =x−3;13(2)解:如图1,过点P 作PH ∥y 轴交BC 于点H ,设P(t ,−t 2+4t−3),则H(t ,t−3),∴PH =−t 2+4t−3−(t−3)=−t 2+3t ,∵OB =OC =3,∴∠BCO =∠CBO =45°,∵PH ∥y 轴,∴∠PHG =45°∵∠PGH =90°∴PG =PH ⋅sin ∠PHG =(−t 2+3t)×sin45°=−22(t−32)2+928,∴当t =32时,PG 的最大值为928;(3)解:如图2,过点B 作BE ⊥CB 交CQ 的延长线于点E ,过点E 作EF ⊥x 轴于点F ,则∠BFE =∠CBE =90°,∵∠CBO =45°,∴∠EBF =45°,∴BF =EF =22BE ,∵∠BCO =∠ACQ =45°,∴∠BCE =∠OCA ,∴tan ∠BCE =tan ∠OCA∴BE CB =OA OC,又可知A(1,0),∴OA =1,C(0,−3)∴OC =3由OB =OC =3,得BC =32∴BE 32=13,∴BE =2,∴BF =EF =22×2=1,∴OF =OB +BF =3+1=4∴E(4,−1),又C(0,−3)∴直线CE 的解析式为y =12x−3,联立方程组{y =12x−3y =−x 2+4x−3,解得:{x 1=0y 1=−3,{x 2=72y 2=−54,∴点Q 的坐标为(72,−54).7.【答案】(1)BE=AD ;BE⊥AD(2)解:成立,理由如下:如图,∵正方形ACBF,正方形CDGE,∴BC=AC,CE=CD,∠BCA=∠ECD=90°,∴∠BCA+∠ECA=∠ECD+∠ECA,即∠BCE=∠DCA,∴△BCE≅△ACD(SAS),∴BE=AD、∠CBO=∠CAD,∵∠BOC=∠AOE,∠OBC+∠BOC=90°∴∠OAD+∠AOE=90°,∴BE⊥AD;(3)7−2;228.【答案】(1)证明:在菱形ABCD中,∠ABC=60°,∴△ADC为等边三角形,∠DAC=∠DCA=∠ACB=60°,∴AD=CD,∠DAE=∠DCF=60°,∵CF=AE,∴△ADE≌△CDF(SAS)(2)证明:∵△ADE≌△CDF(SAS),∴ED=FD,∠ADE=∠CDF,∵∠ADC=60°,∴∠EDF=60°,∴△EDF为等边三角形,∴EF=DE,∵AD=AB,∠DAE=∠BAE=60°,AE是公共边,∴△ABE≌△ADE(SAS),∴BE=DE,∴BE=EF.(3)解:过A作AH⊥BF,∵BE ∥AF ,∴△BCE ∽△FCA ,∴CE AC =BC CF,设AC =1,CE =x ,可得方程x 2+x−1=0(x >0),解得,x =5−12,∵CH =12,AH =32,∴tan ∠AFC =32:(5−12+32)=15−239.【答案】(1)解:①∵CD 平分∠ACB ,∴∠ACD =∠DCB =12∠ACB ,∵∠ACB =2∠B ,∴∠ACD =∠DCB =∠B ,∴CD =BD =32,∵DE //AC ,∴∠ACD =∠EDC ,∴∠EDC =∠DCB =∠B ,∴CE =DE =1,∴△CED∽△CDB ,∴CE CD =CD CB,∴132=32CB ,解得BC =94;②∵DE //AC ,∴AB AD =BC CE,同①可得,CE =DE ,∴AB AD =BC DE,∴AB AD −BEDE=BCDE−BEDE=CEDE=1,∴AB AD −BEDE是定值,定值为1(2)解:∵DE//AC,∴S1S2=ACDE=BCBE,∵S3S2=BECE,∴S1⋅S3S22=BCCE,又∵S1⋅S3=916S22,∴BC CE =9 16,设BC=9x,则CE=16x,∵CD平分∠BCF,∴∠ECD=∠FCD=12∠BCF,∵∠BCF=2∠CBG,∴∠ECD=∠FCD=∠CBD,∴BD=CD,∵DE//AC,∴∠EDC=∠FCD,∴∠EDC=∠CBD=∠ECD,∴CE=DE,∵∠DCB=∠ECD,∴△CDB∽△CED,∴CD CE =CB CD,∴C D2=CB⋅CE=144x2,∴CD=12x,过点D作DH⊥BC于点H,∵BD =CD =12x ,∴BH =12BC =92x ,∴cos∠CBD =BH BD =92x 12x =38.10.【答案】(1)解:BE ⊥CF ,理由:∵四边形ABCD 为正方形,∴BC =CD ,∠BCE =∠CDF =90°.∵CE =DF ,∴△BCE≌△CDF (SAS ),∴∠CBE =∠DCF .∵∠CBE +∠CEB =90°,∴∠DCF +∠CEB =90°,∴∠CGE =90°,即BE ⊥CF(2)证明:∵∠CBG =∠EBC ,∠CGB =∠ECB =90°,∴△CGB ∽△ECB ,∴CG CE =BG BC. ∵CE =CH ,BC =AB ,∴CG CH =BG AB,即CG BG =CH AB .∵∠CBG +∠BCG =90°,∠ABG +∠CBG =90°,∴∠BCG =∠ABG ,即∠HCG =∠ABG ,∴△HCG ∽△ABG ,∴∠BAG =∠CHG ;(3)解:DF =154,cos ∠ADC =81511.【答案】(1)解:令x =0,则y =10;令y =0,则0=−2x +10,解得x =5; ∴A(5,0),B(0,10),∴OA =5,OB =10,AB =52+52=55,作CG ⊥OB 于点G ,∵以OB 为直径的⊙M 交AB 于另一点C ,∴∠BCO =90°,∵sin ∠CBO =OA AB =OC OB ,即555=OC 10,∴OC =25,∵cos ∠BOC =OG OC =OC OB ,即OG 25=2510,∴OG =2,∴CG =OC 2−OG 2=4,∴C(4,2);(2)证明:①∵∠BCO =90°,BF ⊥CD ,OE ⊥CD ,即∠BCO =∠BFC =∠CEO =90°, ∴∠OCE =∠CBF ,∴△OCE ∽△CBF ,∴CE BF =OE FC ,即EC ⋅CF =OE ⋅BF ;②作MN ⊥CD 于点M ,则OE ∥MN ∥BF ,且OM =BM ,∴OM BM =EN NF,∴EN =NF ,∵MN ⊥CD ,∴CN =DN ,∴EN−CN =NF−DN ,即EC =DF ;(3)解:CD 与EF 的距离和不是定值;直线CD 的解析式为y =43x−103.12.【答案】(1)解:如图,连接AC ,BD 相交于点O ,为矩形ABCD 的中心,∵AB =16,AD =12,∠BAD =90°,∴BD =AB 2+AD 2=256+144=20,∴⊙O 半径长为:OD =12BD =12×20=10.0cm ,∵tan ∠ADB =AB AD =1612≈1.33,∴∠ADB ≈53.06°,∴∠DOC =2∠ADB =2×53.06°≈106.1°;(2)解:如图,∵S 弓形DmC =S 弓形Dn C ′,∴DC 扫过的的面积:S 阴=S 扇形CD C ′=90π×162360≈201.0(c m 2).13.【答案】(1)解:过点P 作PD ⊥AB 于D 点,∴∠BDP =∠ADP =90°,在Rt △PBD 中,∠PBD =90°−45°=45°,BP =20海里,∴DP =BP·sin45°=102(海里), BD =BP·cos45°=102(海里),在Rt △PAD 中,∠PAD =90°−60°=30°,∴AD =DP tan30°=106(海里), ∴AB =BD +AD =(102+106)海里,∴观测站A ,B 之间的距离为(102+106)海里;(2)解:补给船能在82分钟之内到达C 处,理由:过点B 作BF ⊥AC ,垂足为F ,∴∠AFB =∠CFB =90°,由题意得:∠ABC =90°+15°=105°,∠PAD =90°−60°=30°,∴∠C =180°−∠ABC−∠PAD =45°,在Rt △ABF 中,∠BAF =30°,∴BF =12AB =(52+56)海里, 在Rt △BCF 中,∠C =45°,∴BC =BF sin45°=2(52+56)=(10+103)海里, ∴补给船从B 到C 处的航行时间=10+10320×60=30+303≈81.9(分钟)<83分钟, ∴补给船能在83分钟之内到达C 处.14.【答案】(1)解:∵△BEF为等边三角形,∴∠BEF=60°=∠AED,BF=BE,∵四边形ABCD是正方形,∴∠A=90°,AD=4,∴tan∠AED=ADAE=3,∴AE=433,∴BE=AB−AE=4−433;(2)证明:如图,延长AF,CB交于点G,∵四边形ABCD是正方形,∴AB=AD=BC,∠ABC=∠ABG=90°,∴BD=AB2+AD2=2AB,∵CH⊥AF,∴∠CHG=∠ABG=90°,∴∠G+∠BAG=90°=∠G+∠BCH,∴∠BAG=∠BCH,∴△ABG≌△CBE(ASA),∴BE=BG,∠G=∠BEC,∵△BEF为等边三角形,∴BE=BF=EF,∠BEF=∠BFE,∴BG=BF,∴∠G=∠BFG,∴∠BFG=∠BEC,∴∠GFE=∠CEF,∴∠HFE=∠HEF,∵CH⊥AF,∴∠HFE=∠HEF=45°,∴EH =FH ,∴EF =2FH ,∴BE =2FH ,∴BD =2AB =2AE +2BE =2AE +2FH ;(3)解:当点E 在线段AB 上时,如图,取AB 的中点N ,连接NQ ,∵将△ABF 沿AB 翻折得到△ABP ,∴∠ABF =∠ABP =60°,∵点Q 为AP 的中点,∴NQ ∥BP ,∴∠ANQ =∠ABP =60°,∴点Q 在过线段AB 的中点,且与AB 成60°角的直线上移动,∴当CQ ⊥NQ 时,CQ 有最小值,如图,延长QN ,CB 交于点H ,连接AQ ,∵点N 是线段AB 的中点,∴BN =AN =2,∵∠ANQ =60°=∠BNH ,∴tan ∠BNH =BH BN =3,∴BH =23,∴CH =23+4,∵∠H =90°−∠BNH =30°,∴CQ =12CH =2+3,HN =2BN =4,HQ =3CQ =23+3,∴NQ =23−1>2,∴∠NAQ>60°,∴此时点E不在线段AB上,∴点E在线段AB上时,CQ>2+3,当点E在线段AB的延长线上时,∵将△ABF沿AB翻折得到△ABP,∴∠ABF=∠ABP=120°,∵点Q为AP的中点,点N是线段AB的中点,∴NQ∥BP,∴∠ANQ=∠ABP=60°,∴点Q在过线段AB的中点,且与AB成60°角的直线上移动,∴当CQ⊥NQ时,CQ有最小值,同理:CQ=2−3;综上所述,CQ的最小值为2−3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.在ABC中,若21cos|1tan|02AB,则C的度数是( )

A.45 B.60 C.75 D.

105

2.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问

题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD的平台BC上(如图),测得52.5,5AEDBC==米,35CD米,19DE米,则铁塔AB

的高度约为( )(参考数据:52.50.79,52.50.61,52.51.30sincostan)

A.7.6 米 B.27.5 米 C.30.5 米 D.

58.5 米

3.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得

地面上的影长为8m,坡面上的影长为4m.已知斜坡的坡角为30,同一时刻,一根长为2m且垂直于地面放置的标杆在地面上的影长为4m,则树的高度为( )

A.10m B.12m C.63m D.

423m

4.在正方形网格中,小正方形的边长均为1,∠ABC如图放置,则sin∠ABC的值为( ) A.52 B.55 C.33 D.1 5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值

是( )

A.2 B.255 C.55 D.

1

2

6.如图,半径为5的O中, OABC,30ADC,则BC的长为( )

A.52 B.53 C.522 D.

53

2

7.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使得其面积

变为原矩形面积的一半,则平行四边形ABCD的内角BCD的大小为( )

A.100° B.120° C.135° D.150° 8.如图,在ABC中,90ACB,D是BC的中点,DEBC,//CEAD,若

2AC,30ADC,①四边形ACED是平行四边形;②BCE是等腰三角形;③

四边形ACEB的周长是10213;则以上结论正确的是( ) A.①②③ B.①② C.①③ D.②③ 9.如图,在扇形OAB中,120AOB,点P是弧AB上的一个动点(不与点A、B重

合),C、D分别是弦AP,BP的中点.若33CD,则扇形AOB的面积为( )

A.12 B.2 C.4 D.

24

10.在半径为1的O中,弦AB、AC的长度分别是3,2,则BAC为( )度.

A.75 B.15或30 C.75或15 D.15或

45

11.在平面直角坐标系中,正方形1111DCBA、1122DEEB、2222ABCD、2343DEEB、

3333ABCD…按如图所示的方式放置,其中点1B在y轴上,点1C、1E、2C、3E、4E、

3C…在x轴上,已知正方形1111DCBA的边长为1,1160BCO,112233BCBCBC…

则正方形2019201920192019ABCD的边长是( )

A.201812 B.201912 C.201933 D.

20183

3





12.如图所示,矩形ABCD的边长AB=2,BC=23,△ADE为正三角形.

若半径为R的圆能够覆盖五边形ABCDE(即五边形ABCDE的每个顶点都在圆内或圆上),则R的最小值是( )

A.23 B.4 C.2.8 D.2.5 13.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为( )

A.513 B.1213 C.512 D.

12

5

14.河堤横断面如图所示,迎水坡10AB米,迎水坡AB的坡比为1:3(坡比是坡面的

铅直高度BC与水平度AC之比),则AC的长是( )

A.53米 B.102米 C.15米 D.10米

第II卷(非选择题) 请点击修改第II卷的文字说明

参考答案 二、填空题 15.如图,在ABC中,6ABBC,点O为BC中点,点P是射线AO上的一个动

点,且 60AOC.要使得BCP为直角三角形,CP的长为 ________ .

16.如图,矩形ABCD中,1AB,3BC,以B为圆心,BD为半径画弧,交BC延

长线于M点,以D为圆心,CD为半径画弧,交AD于点N,则图中阴影部分的面积是________.

17.如果在某建筑物的A处测得目标B的俯角为37°,那么从目标B可以测得这个建筑物

的A处的仰角为_____. 18.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交

,ADBC于,EF两点.若23,120ACAEO,则FC的长度为_________,

AOE

S

等于_____. 19.01sin4513(32018)6tan302________.

20.如图,在RtABC中,,906AACcm,8ABcm,把AB边翻折,使边落在

BC边上,点A落在点E处,折痕为BD,则tanDBE的值为_______ .

21.如图所示,ABO中,ABOB,OA=2,AB=1,把ABO绕点O旋转150°后得到

11ABO,则点1A的坐标为_______

22.如图,在四边形ABCD中,AD=CD,∠D=60°,∠A=105°,∠B=120°,则ADBC的值

为__________.

23.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的

⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,

0).设点M转过的路程为m(01m),,随着点M的转动,当m从13变化到

2

3时,点N相应移动的路径长为___. 24.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB,BC长为6米,

坡角为45°,AD的坡角为30°,则AD的长为 ________ 米 (结果保留根号)

25.乐乐同学的身高为166cm,测得他站立在阳光下的影长为83cm,紧接着他把手臂竖

直举起,测得影长为103cm,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm.

26.如图,在ABC中,90A,10BC,3sin5B,D是BC边上的一个动点

(异于B、C两点),过点D分别作AB、AC边的垂线,垂足分别为E、F,则EF的最小值是________.

三、解答题 27.在平面直角坐标系xOy中,O的半径为1.对于图形M,给出如下定义:P为图

形M上任意一点,Q为O上任意一点,如果,PQ两点之间的距离有最大值,那么称这个最大值为图形M的“圆距”,记作dM.如图,已知点2,0A. (1)直接写出d(点A)的值; (2)设T是直线24yx上一点,以为T圆心,1长为半径作T.若dT满足612dO,求圆心T的横坐标x的取值范围;

(3)过点A画直线2ykxk与y轴交于点B,当d(线段AB)取最小值时,直接写出k的取值范围.

28.如图,ABC是O的内接三角形,60BAC,设O的半径为2.

(1)求BC的长; (2)求弧BC与弦BC围成的图形面积(结果保留).

29.如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作

AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB//CD.

(1)求证:四边形ACDB为菱形; (2)求四边形ACDB的面积.

30.计算: 11126tan60|243|3





【参考答案】 一、选择题 1.C 2.C 3.C 4.B 5.D 6.B 7.D 8.A 9.A 10.C 11.D 12.C 13.B 14.A

二、填空题 15.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边

的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜

16.【分析】先根据矩形的性质勾股定理可得再利用正弦三角函数可得然后根据即可得

相关文档
最新文档